THE CHARACTERIZATION OF SCHWARZ THEOREM AND UNIT DISCS

MUHAMMET KAMALİ — MUSTAFA BAYRAKTAR

Atatürk University, Faculty of Sciences and Arts, Department of Mathematics, Erzurum, TURKEY.

(Received Nov. 30, 1993; Accepted July 17, 1994)

ABSTRACT

Let $\bar{D} = \left\{z \in C\colon \mid z \mid \leq r\right\}$ be a set and $A(\bar{D})$ be an algebra of bounded analytic functions on \bar{D} . In this paper taking complex algebra R, we gave the characterization of Schwarz theorem. In the special case r=1, we obtained the characterization of Schwarz lemma. Taking $a \in R$ that satisfies some conditions we gave algebraic characterization of conformal mapping from \bar{D} to \bar{U} , where $\bar{U} = \{w \in C\colon \mid w \mid \leq 1\}$, and investigate the case r=1.

INTRODUCTION

This paper presents a solution to problem in subject of rings of analytic functions. In late 1940's, it was shown that two domains; D_1 and D_2 in the complex plane, are conformally equivalent iff the rings $B(D_1)$ and $B(D_2)$ of all bounded analytic functions defined on them are algebraically isomorphic. Let R be a ring. It is well know that if R is isomorphic with the ring of bounded analytic functions on an annulus $A = \{z \in C\colon \rho_1 < \mid z \mid < \rho_2\}$, where ρ_1 and ρ_2 are unknown, then it deduces the number ρ_1/ρ_2 from the ring R [2].

In our study we have taken the known ring and given some algebraic characterizations.

ALGEBRAIC CHARACTERIZATIONS

Let \varnothing be an isomorphism mapping $B(\bar{D})$ onto R. We will denote elements of $B(\bar{D})$ by f, g, f, \ldots and elements of R by $a, b, c \ldots$. Let e and 1 be multiplicative identy of R and $B(\bar{D})$, respectively. Thus, $1 \in B(\bar{D})$ is the function identically equal to 1 on \bar{D} . Since $\varnothing : B(\bar{D}) \to R$ is an isomorphism, \varnothing (1) = e. Furthermore \varnothing (n1) = ne, so that \varnothing $(\pm (m/n), 1) = \pm (m/n)$ e. -e has two square roots in R, one is

the image of i. 1, the other is the image of –i. 1. It is algebraically impossible to distinguish between these, since R has an automorphism which takes one into the other (corresponding to the mapping $f \to \overline{f} \in B(\overline{D})$). Thus, we choose one root of –e and make it which correspond to i.1; denote it as ie.

Henceforth, we will denote the complex number field by C and the complex rational number field by C_r . Where a complex number, both real and imaginary parts are real rationals, is called a complex rational number. Clearly, C_r and C are subrings of $B(\bar{D})$.

Lemma 2.1. For each $\alpha \in C_r$, \varnothing $(\alpha) = \alpha$ (or $\bar{\alpha}$).

Proof: If $\alpha \in C_r$, there are the rational numbers r_1 and r_2 such that $\alpha = r_1 + ir_2$. Since \varnothing (1) = e and \varnothing (i) = i(or - i), we get \varnothing [($r_1 + ir_2$). 1] = $r_1e + r_2ie$ (or $r_1e - r_2ie$), ([3], [4]).

Lemma 2.2. For each real number c, \varnothing (c1) = cc.

Proof: If c is a rational number, by the Lemma (2.1), \emptyset (c1) = ce. If c is an irrational number, for each rational number c, $c - r \neq 0$.

Thus there exist $(c-r)^{-1} = \frac{1}{c-r}$. Then \varnothing $[(c-r). 1] = \varnothing$ (c1) - re

and
$$\varnothing$$
 $\left[\left(\frac{1}{c-r}\right),1\right] = \frac{e}{(\varnothing \ (c1)-re}$. Therefore $\varnothing \ (c1) = ce$.

Corollary 2.3. If $c \in C$, \emptyset (c1) = ce, [2].

Lemma 2.4. Let $f \in B(\bar{D})$ and let \bar{R}_f be the closed range of f. Then $\lambda \in \bar{R}_f$ iff $f - \lambda 1$ has no inverse in $B(\bar{D})$.

Proof: If $\lambda \in \bar{\mathbb{R}}_f$ there is $z_0 \in \bar{\mathbb{D}}$ such that $f(z_0) = \lambda$. Then $(f-\lambda l)(z_0) = 0$. Hence $f-\lambda l$ has no inverse in $B(\bar{\mathbb{D}})$. Now we suppose that $f-\lambda l$ has no inverse in $B(\bar{\mathbb{D}})$. Then at least for one point $z_0 \in \bar{\mathbb{D}}$, $(f-\lambda l)(z_0) = 0$. If follows that $f(z_0) = \lambda$, i.e. $\lambda \in \bar{\mathbb{R}}_f$.

Lemma 2.5. $\lambda \in \overline{R}_f$ iff \emptyset (f) $-\lambda e$ has no inverse in R.

Proof: If $\lambda \varnothing \bar{R}_f$, $f - \lambda 1$ has no inverse in $B(\bar{D})$ by Lemma 2.4. Since \varnothing is an isomorphism, \varnothing $(f - \lambda 1) = \varnothing$ $(f) - \lambda e$ has no inverse in R, [1]

Let σ (f) and σ (a) be spectrum of $f \in B(\overline{D})$ and $a \in R$ respectively. If ρ (a) = sup $\{ |\lambda| : \lambda \in \sigma$ (a) $\},$

then ρ (a) is also the maximum modulus (Hereinafter abbreviated MM) of $\varnothing^{-1}(a)$.

In this paper, we always consider complex algebra. Now we give first our theorem connected with algebraic characterization.

Theorem 2.6. Let R be a complex algebra, a, b, c \in R and \varnothing : $B(\bar{D}) \to R$ be a C-isomorphism. If $\varnothing^{-1}(b) = z$, then $\rho(a) = M$ algebraicly characterizes Schwarz Theorem.

Proof: Let $\varnothing^{-1}(c) = \varphi(z)$, where b, $c \in R$ and a = b.c. Then $\varnothing^{-1}(a) = f(z)$. Since $\varnothing^{-1}(a) = \varnothing^{-1}(b) \varnothing^{-1}(c)$, we obtain $f(z) = z.\varphi(z)$. We can write from here

$$\varphi(z) = \frac{f(z)}{z} ,$$

for $z \neq 0$.

For $\varphi(z)$ to be in $B(\bar{D})$, f(z) must be zero at z=0, i.e f(0)=0. Because, as f(0)=0 the point z=0 is a removable singular point for the function $\varphi(z)$. Hence, for each $z, \varphi(z) \in B(\bar{D})$. By the maximum modulus principle in a disk that concentric with \bar{D} and has a radii k < r,

$$\mid \phi(z) \mid \ \leq \ \frac{M}{k} \ ,$$

because $\rho(a) = MM (\varnothing^{-1}(a)) = M$. It follows from that for $k \to r$

$$|\varphi(z)| \leq \frac{M}{r}$$

that is,

$$|f(z)| \le \frac{M}{r} |z|.$$

If we take M = 1 and r = 1 as a result of Theorem 2.6, we obtain an algebraic characterization of Schwarz Lemma. More clearly,

Corollary 2.7. Let R be complex algebra a, b, $c \in R$ and \varnothing : $B(\bar{U}) \to R$ be C-isomorphism. If $\varnothing^{-1}(b) = z$, then $\rho(a) = 1$ algebraicly characterizes Schwarz Lemma.

Another result of Theorem 2.6 is the following.

Corollary 2.8. Let $B(\bar{D})$ be a complex algebra of the bounded analytic functions on \bar{D} and $f \in B(\bar{D})$ be schlicht. Furthermore suppose that f(0) = 0 and MM(f) = 1. Then,

$$f(z) = \frac{1}{r} \exp i\theta z$$

where $\mathbf{\bar{D}} = \{\mathbf{z} \in \mathbf{C} \colon |\mathbf{z}| \leq \mathbf{r}\}.$

Proof: Since w = f(z) schlicht, $z = f^{-1}(w) \in B(\overline{U})$. Then, we deduce

$$\mid f(z) \mid \; \leq \; \frac{M}{r} \mid z \mid$$

by the Schwarz Theorem.

Since f is the function from \bar{D} to \bar{U} , we obtain

$$| f(z) | \le \frac{1}{r} | z |$$

for M=1 and hence $r\mid w\mid \ \leq \ \mid z\mid$.

Conversely, since the mapping $z=f^{-1}(w)$ maps the closed unity ball to $\bar{D},\,M=r$ and r=1. Thus,

$$||f^{-1}(w)|| \leq \frac{r}{1}.||w||$$

and from here we get $\mid z\mid \leq r\mid w\mid$. We find $r\mid w\mid =\mid z\mid$ from both inequalities or

$$\left|\frac{\mathbf{w}}{\mathbf{z}}\right| = \frac{1}{\mathbf{r}}.$$

If follows for that

$$f(z) = \frac{1}{r} \exp i\theta$$
. z

The mapping $f(z) = \frac{1}{r} \exp i\theta$. z maps \bar{D} to \bar{U} such that f(0) = 0.

Now we will give an algebraic characterization of f which maps conformally \bar{D} onto \bar{U} such that $f(\alpha) = 0$, where α is interior point of \bar{D} .

We need the following Lemma.

Lemma 2.9. Let $\alpha \in \bar{D}$ be. Suppose that $f \in B(\bar{D})$ satisfies the following conditions.

$$a) f(\alpha) = 0,$$

b)
$$MM(f) = 0$$
,

c) f is schlicht.

Then,

$$f(z) = \lambda. \frac{z - \alpha}{r^2 - \tilde{\alpha}z}, \qquad (2.9.1)$$

where $|\lambda| = r$ and $\bar{D} = \{z \in C : |z| \le r\}$.

Proof: $I_{\alpha}=\{f\in B(\bar{D})\colon f(\alpha)=0\}$ is the maximal ideal of $B(\bar{D}).$ I_{α} is generated by $h(z)=z-\alpha,$ i.e, $I_{\alpha}=< z-\alpha>.$ The function that we are looking for must be in $I_{\alpha}.$ If $\alpha=0$, by Corollary 2.8 f(z)=

$$\lambda$$
. $\frac{z}{r^2}$. If $\alpha \neq 0$, for any z in \bar{D} MM $(z-\alpha) \neq 1$. Therefore $f(z) \neq 0$

$$z-\alpha$$
. If $f(z)=(z-\alpha)$ g (z) , $f(\alpha)=0$ and $MM(f)=1$, then $g(z)$

must be $\frac{\lambda}{r^2 - \bar{\alpha}z}$, where $r = |\lambda|$. Thus

$$f(z) = \lambda. \frac{z-\alpha}{r^2-\bar{\alpha}z},$$

where $r = |\lambda|$.

Furthermore if f is schlicht, $f(\alpha) = 0$ and MM(f) = 1, then this function must be in the form of (2.9.1), [5].

Theorem 2.10. Let R be any algebra such that \varnothing is an isomorphism from B(\bar{D}) to R. Furthermore, suppose that the following conditions are satisfied for some $a \in R$.

- a) For each $\lambda \in \sigma(a) = \overline{U}$, there is only one point z_0 .
- b) For each $\alpha \in C$, $< b \alpha e >$ is a maximal ideal of R. Furthermore, $\varnothing^{-1}(b) = z$ and $a \in < b \alpha e >$, where $b \in R$.
 - c) $\rho(a) = MM (\varnothing^{-1}(a)) = 1$.

Then $\varnothing^{-1}(a)$ is a conformally mapping from \bar{D} to \bar{U} and

$$\varnothing^{-1}(a) = \lambda \frac{z - \alpha}{r^2 - \bar{\alpha}z}$$
,

where $|\lambda| = r$.

Proof: Since $a \in \langle b - \alpha e \rangle$, there is an element $c \in R$ such that $(b - \alpha e) c = a$. Since \varnothing is isomorphism, we can write $\varnothing^{-1}(a) = \varnothing^{-1}(b - \alpha e)$. $\varnothing^{-1}(c)$ and $\varnothing^{-1}(a) = \{\varnothing^{-1}(b) - \varnothing^{-1}(\alpha e)\}$ $\varnothing^{-1}(c)$. Thus we find

$$\varnothing^{-1}(\mathbf{a}) = (\mathbf{z} - \alpha) \varnothing^{-1}(\mathbf{c}).$$

By the Lemma 2.9, MM ($\varnothing^{-1}(a)$) = 1 and hence

$$\varnothing^{-1}(\mathbf{c}) = \frac{\lambda}{\mathbf{r}^2 - \bar{\alpha}\mathbf{z}}.$$

Clearly, $\emptyset^{-1}(c) \in B(\bar{D})$. We obtain

$$\mathbf{c} \ = \ \frac{\varnothing \ (\lambda)}{\varnothing \ (\mathbf{r}^2) - \varnothing \ (\bar{\alpha}\mathbf{z})} \ = \ \frac{\lambda \mathbf{e}}{\mathbf{r}\mathbf{e}\mathbf{r}\mathbf{e} - \bar{\alpha}\mathbf{e}\mathbf{b}\mathbf{e}}$$

from the equality and so c ∈ R. Thus

$$a = (b - \alpha e)$$
. $\frac{\lambda e}{r^2 e - \bar{\alpha} e h e} \in (b - \alpha e)$

and we deduce the mapping

$$\varnothing^{-1}(a) = \lambda \frac{z - \alpha}{r^2 - \bar{\alpha}z}.$$

It is well know that this is the mapping from $\bar{\mathbf{D}}$ onto $\bar{\mathbf{U}}$. At the same time, the mapping $\varnothing^{-1}(\mathbf{a})$ is unique. Because, $\lambda_0 \in \bar{\mathbf{R}} \varnothing^{-1}(\mathbf{a})$, by $\lambda_0 \in \sigma$ (a). Since each a point $\bar{\mathbf{R}} \varnothing^{-1}(\mathbf{a})$ correspond to unique \mathbf{z}_1 by the Lemma 2.4 and (a), $\varnothing^{-1}(\mathbf{a}) \in \mathbf{B}(\bar{\mathbf{D}})$ is one –to–one. Since \varnothing is an isomorphism and $<\mathbf{b}-\alpha\mathbf{e}>$ is maximal principal ideal in $\mathbf{R}, \varnothing^{-1}(\mathbf{b}-\alpha\mathbf{e})$ is a maximal principal ideal in $\mathbf{B}(\bar{\mathbf{D}})$. This maximal principal ideal is generated by the $\varnothing^{-1}(\mathbf{b})-\varnothing^{-1}(\alpha\mathbf{e})=\mathbf{z}-\alpha$. Then $\varnothing^{-1}(\mathbf{a})\in <\mathbf{z}-\alpha>$ by (b). $\varnothing^{-1}(\mathbf{a})$ is schlicht. Thus

$$\varnothing \bar{z}^{1}(a) = \lambda \cdot \frac{z - \alpha}{r^{2} - \bar{\alpha}z}$$

by Lemma 2.9.

Corollary 2.11. Let R be any algebra and $\varnothing : B(\bar{U}) \to R$ be a C-isomorphism. Furthermore suppose that the following conditions hold.

- a) For each $\lambda_0 \in \sigma(a) = \overline{U}$, there is an unique $z_0 \in \overline{U}$.
- b) For each $\alpha \in C$, $< b \alpha e > is$ maximal ideal of R, where $b \in R$, $\varnothing^{-1}(b) = z$ and $a \in < b \alpha e > .$

c)
$$\rho(a) = MM (\varnothing^{-1}(a)) = 1.$$

Then $\emptyset^{-1}(a)$ is conformally mapping from \bar{U} onto U and

$$\varnothing^{-1}(\mathbf{a}) = \lambda \frac{\mathbf{z} - \alpha}{1 - \bar{\alpha}\mathbf{z}}, \quad (|\lambda| = 1).$$

Proof: This corollary is the special case of Theorem 2.10 for r = 1.

REFERENCES

- BAYRAKTAR, M., Üst yarı düzlemin birim daireye konform tasvirinin cebirsel karekterizasyonu, Journal of Mathematics and Statistics of the Faculty of Arts and Science, Gazi University, Volume 2, (1989), s. 111-116.
- [2] BECK, A., On Ring on Ring, Proc. Amer Math. Soc. 15 (1964), s. 350-353.
- [3] BERS, L., On Rings of Analytic Functions, Bull. Amer. Math. Soc. 54 (1948), s. 311-315.
- [4] KAKUTANI, S., Rings of Analytic Functions, Proc. Michigan Conference on Functions of a Complex Variable, (1955), s. 71-84.
- [5] KODAIRA, K., Introduction to Complex Analysis, Cambridge University Press-Cambridge, (1977). p. 117-133.