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ON THE PAIR OF AXOIDS UNDER THE SYMMETRIC HELICAL
MOTION OF ORDER k IN THE EUCLIDEAN SPACE En»

MURAT TOSUN*, MUSTAFA CALISKAN**, NURI KURUOGLU**

ABSTRACT

The purpose of this paper, after giving a summary of known results about helical motion
of order k and axoids in Euclidean space E, is to define the symmetric helical motion of order
k and to obtain some results about integral invariants of the pair of axoids under the motion.

1. HELICAL MOTION OF ORDER k

A one parameter motion of a body in Euclidean space Er is
generated by the transformation

A

[f]:[o (1:] [f]vAAT:In (1.1)

where A:J — SO(n) and C:J - IR1 are functions of differentiability
class C' (r > 3) on real interval J. % and x correspond to the position
vectors of the same point with respect to orthomormal coordinate
systems of the moving space E and fixed space E, respectively, [4].

The equation (1.1) by differentiation with respect to te] yields

x=B (xC) + C,B— AA-1, & — 0. (1.2)

Since the matrix A is orthogonal the matrix B is skew. Therefore
only in the case of even dimension it is possible that the determinant
| B| may not vanish. If |B| 3£ 0 in teJ, we get exatly one solution
Q(t) of the equation

B(Q<C L+ C=0. (L3)

In this case, Q is the center of the instantaneous rotation of the
motion and called the pole of the motion in t. At the pole Q, the velocity
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vector vanishes by the equation (1.2). Therefore we get a differentiable
curve a:J — E of poles in the fixed space E, called the fixed pole curve.
By (1.1) there is uniquely determined the moving pole 7:J - E from
the fixed pole curve, point to point. If |B| = 0, we obtain by the rules
of Linear Algebra:

For every teJ there exist a umit veector e(t) € kernB and At)elR
so that the solutions Q of the equation

B (Q-C) + C = e (1.4)

fill a uniquely determined linear subspace Ex(t) = En with the dimen-
sion k = n — rankB. E(t) is the axis of the instantaneous screw (A 7 0)
of the motion or the axis of the insantaneous rotation (A = 0) and
will be called the instantaneous axis of the motion in te], [3]. In this
second case, we obtain a generalized ruled surface of dimension k + 1
in E generated by the instantaneous axis Ex(t), teJ, which we call
the fixed axoid & of the mation. The fixed axoid o determines the
moving axoid 7 in E generator to generator by (1.1). The axoids o
ve F of a motion in E1 touch each other along every common pair
Ex(t) © o and Ex(t) = 7 for all te] by rolling and sliding upen
each other under the motion, [5]. Such motion is called an (instan-
taneously) helical motion of order k in En, [5].

2. GENERALIZED RULED SURFACES

In any k-dimensional generator Ex(t) of a (k + 1) dimensional
generalized ruled surface (axiod, in 27k + 1)-Regelflache”) g < En
there exist a maximal linear subspace Ky m(t) < Eg(t) of dimension
k—m with the property that in every point of Ki_n(t) no tangent space
of & is determined (Ki_m(t) contains all singularities of &5 in Ex(t))
or there exists a maximal linear subspace Zyx_m(t) < Ex(t) of dimension
k-m with the property that in every point of Zi_,, the tangent space
of  is orthogonal to the asymptotic bundle of the tangent spaces in
the points of infinity of Ex(t) (all points of Zy_m(t) have the same
tangent space of o). We call Ki_m(t) the edge space in Eg(t) © @ and
Z_w(t) the ceniral space in Ex(t) © @. A point of Zy_mft) is called
a central point. If & possesses generators all of the same type the edge
spaces resp. the central spaces generate a generalized ruled surface
contained in @ which call the edge ruled surface resp. the central ruled
surface. For m = k the edge ruled surface degenerates in the edge of
&, the central ruled surface in the line of gtriction. So the ruled surface
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with edge ruled generalize the tangent surfaces of E3, the ruled surface
with central ruled surface generalize the ruled surfaces with line of
striction of E3.

For the analytical represention of a (k -+ 1)-dimensional ruled
surface & we choose a leading curve o in the edge resp. central ruled
surface {1 < & transversal to the generators. In [2] it is shown that
there exists a distinguished moving orthonormal frame (ONF) of o
{e1,. .., ex} with the properties:

(i) 4e1s-.., ex} is an ONF of the Ex(t) = &,
(i) {emy1,e--» ek} is an ONT of the Ky _n(t) rasp. Zi_m(t) < Ex(t),
vew k
(i) & = Z wye; + Kjag,;, 1 <i<m,
=1

@.1)

bmy, = X(mikyl €1 » with K; > 0, a5 = —oji,

k]

1

%(miky(myx = 0, 1 <p, x <k-m,
(iv) {€1s+++» €k Akyqs. .., Ak m} is an ONF.

A moving ONF of @ with the properties (i)—(iv) is called a principal
frame of . If K;>...> Ky >0, the principal frame of & is determined
up to the signs. By a given principal frame the vectors ax, ,..., ax,m
are well defined.

A leading carve o of (k J 1)-dimensional ruled surface o is a
leading curve of the edge resp. central surface Q < g too iff its tangent
vector has the form

! Giei + Mme1 2aximer - (2.2)

aft) =

M=

where nm 4 1 £ 0, ax , m . 1 is a unit vector well defined up to the
sign with the property that {ej,..., €x, @k, 15+« k + m» ar .. omy 1}
is an ONF of the tangential bundle of 2. One shows: 7y | 1(t) = 0,
in teJ iff the generator Ey(t) © & contains the edge space Kiy_m(t).
If 4m ; 1(t) # 0, we call the m—magnitudes

P = A2+1 ] —ci<m (2.3)
K;
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the principal parameters of distribution. These parameters are direct
generalizations of the parameter of distribution of the ruled surface
in E3 (see [2]). A (k +4 1)-dimensional ruled surface with central
ruled surface and no principal parameter of distribution (m = 0) is a
(k + 1)-dimensional cylinder.

Moreover the parameter of distribution of a generalized ruled
surface @ given in [3] by

P=m/ PP, Py (2.4)
and the total parameter of distribution of & can be dedined in [5] by

m
D = P;. (2.3)

i=1
Suppose that gj, 1 <i <<k, are 2—dimensional closed principal
ruled surfaces such that the generators of ; have the direction of the

unit vectors ej(t), 1 <<i <C k. Then, in the case m = k, there exist
k—pitches given by

Li= - jPCi(t)dt, 1<i<k,
0 (2.6)

where peIN denotes a period of the meotion.

Let {ej,..., ex, 8k 1,-+-» 8k m> akymy1} be ONF of the tangen-
tial bundle T(t) of . If we complete this ONF by an arbitrary
{akimizse s a,} of the orthogonal complement, called a complementary
ONF. From the orthogonality conditions, then we obtain by differen-
tiation, [3]:

. m n—k-m
axyi=-Kiei+ £ tyaxj+twiakimyr + 2 Ypakimpel <1< m.
i=1 A=2 2.7)

Suppose that dim T(t) = k + m + 1. If & is a closed ruled sur-

face, the m-apex angles of & can be define by

P
A — j wi(t) dt, 1 <i < m, 2.8)
0

and also the apex angle of & is defined, in [6], by

A="y Az Am| - (2.9)
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3. THE PAIR OF AXOIDS UNDER THE SYMMETRIC
HELICAL MOTION

Let # © E and « € E be moving and fixed pole curves of the
helical motion of order k. Suppose that {&(t),..,sx(t)} is an ONF system
at g(t) and let Ex(t) = Sp {&4(t),..., 6x(t)}. Then Ey(t) generates the
moving axoid F with the leading curve & in E.A parametrization of
Z is

k
& (t, dy,.. Lkl = &) + = 4;8(t), ;e IR, t € J. (31)
i=1 . : ; :

Let {eq(t),..., ex(t)} be an ONF system satisfaying the following.
equation at the point o(t) in the fixed space E: ‘

Ag = —e, 1 <i <k (3.2)

Ei(t) = Sp {ey(t),. .., ex(t)) generates the fixed axoid & with
leading curve « in E by (1.1). And also a parametrization of & is.

k
Z (tyug,. .., ug) = aft) + X uei(t), uj e IR, t e J. (3.3)
i=]

Definiton 3.1, If a helical motion given by (1.1) satisfies the equ-
ation (3.2), then the motion is called a symmetric helical motion of
ovder k.

Let & and o he (k 4+ 1)- dimensional moving and fixed axoids
with the leading curves 5 and «, resp. (z and « are the pole curves of
the motion). Then we have the following equations, [1]:

« = Az, (3.4)
s = §, ‘ 3.5)

where 5 and s lengthes of 3 and o, respectively.
Then we have the following theorem.

Theorem 3.2, Under the symmetric helical motion of order x
the moving and fixed axoids touch each other along every common
pair g and « for all t € J by rolling and sliding upon each other.

Let Ex(t) and Ey(t) be the generator spaces of the axoids 3 and
@, respectively. From (3.2) we have
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Agy+As = -8, 1 <i <k,

_Bei + Aéi = —é,

Ag = —&;, 1 <i <k, (Be; = 0). (3.6)
Then we immediately read off from (3.2) and (3.6).

Theorem 3.3, Under the symmetric helical motion of order k,
the generator spaces Ey(t) and Ex(t) correspond to each other by the
equations (3.2) and (3.6).

Let A(t) and A(t) be the asymptotic bundles, with respect to the
Ex(t) and Ey(t), of the axoids F and & resp. Then A(t) and A(t) can
be given resp. by

A(t) = Sp {B1r--vs 8k 815ens Bk} (3.7)
A(t) = Sp {el,...,ek, €lonens ék}. (3.8)
Suppose that dim A(t) (= dimA(t)) = k 4+ m, 0 < m <k, then

m vectors of el, e2, .., €x are linearly mdependent Let the linearly

independent vectors are renumbered as &yx,1, €k 2. -+ ek +m- Then
the set

{él,..., €1, ék+1,..., ék.;,m} (3.9)
is a basis of the asymptotic bundle A(t). Similarly, we get a basis for the
asymptotic bundle A(t) as follows

{15205 €y ERyfoe ey ék+m}- (310)
By the Gram-Schmidt process form (3.9) and (3.10) we get the
following orthogonal bases for A(t) and A(t) resp.,

{619- cey €Ky }_’k+19' R }-’k+m} ’ (3.11)
{els’ ces €ky Yhifoe:oo yk+m} . (3.12)

Under the symmetric helical motion of order k, the above ortho-
gonal systems correspond to each other by the equation

AV = Vi 1 <j <m. (3.13)
If we set

= Vit Vi )

B3 = /5 ag,y = ———, 1 <j<m,

S Y [ oy !

then we get the following ONFs for A(t) and A(t)resp.,
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{él,...,ék, 3TN RN :‘ik_g.m}v (3.15)
1€15v+es @ky Bkylseres Aeim) (3.16)
Therefore we have the following theorem.

Theorem 3.4, Under the symmetric helical motion of order k,
the asymptotic bundles A(t) and A(t) correspond to each other by the
following equations:

Ag; = —e, 1 <i <k,
Adyj=-ax,j 1 <j<m (3.17)

Let T(t) and T(t) be the tangential bundles of & and o resp. If
dimT(t) (= dimT(t)) = k + m + 1, then

{B1oe s B> Bkyloe s s Biyms B (3.18)
is a basis T(t) and

{€1se vy €ky Ekplse e s Ekymy O (3.19)
is a basis for T(t). Using the Gram-Schmidt process, we get following
ONFs for T(t) and T(t) resp.

8forvs 82y Blgy (s v vs Akyms Bkymyl)s (3.20)

{15+ +s €,y Ay foe v vy Bkyms Akyme] e (3.21)
We can give the following theorem.

Theorem 3.5. Under the symmetric helical motion of order k, the

tangential bundles T(t) and T(t) correspond to each other by the fol-
lowing equations:

Ag = -6, 1 <i <k,
Adg = -ag;p 1 <j<m,
A5k+m+1 = akymyl-. (322)

Now we can complete the ONF8,..., 8k, a1k 10e > Akyms 8k meth
of T(t) to the ONF

{éle- sy €k 5k+1,. . wék-'_ma 5k+m+1’- BER) én} (3‘23)

of En. The orthonormal complement

Wkpmyse - os ) (3.24)
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is called a complementary ONF of 3.
If we set
Aak-‘Lln-g-?\ = Ykimyin 2 < i< n*—k-Hh (325)
then we get an orthogonal complement {yyx m 2...,y,} of & under

the symmetric helical motion of order k. If we set

Yi mgn
yxemenl

Ak, myn = 2 <& < n—k-m, (3.26)

then we have the following orthonormal complementary ONF of o
{agemyns. s 2. (3.27)

Theorem 3.6, Under the symmetric helical motion of order k, the
complementary ONTs (3.24) and (3.27) satisfy the following equation:

Adgimyn = aremen 2 <A < n-k-m.

Therefore, for the symmetric helical motion of order k, we can
give the following two corollaries:

Corollary 3.7, T(t) and T(t) being two tangential bundles
which are correspond to each other under the symmetric helical
motion of order k. Let {&,....6, 3x,m> dk m;1,---»a, and
(€100« s €y Blcyms> Akymplor s a,} be two ONFs of E with respect
to the T(t) and T(t) resp. Then we have the following equations:
(3.2), (3,17), and

Ad, mp = agemen 1 <A < n—k-m, (3.28)

Corollary 3.8. A symmetric helical motion of order k of En is a
reflection with respect to the subspace Splix,m,1,...,4,} of dimen-

sion (n—k-m).

4. THE INTEGRAL INVARIANTS OF THE PAIR OF AXOIDS
WHICH CORRESPOND TO EACH OTHER UNDER THE SYM-
METRIC HELICAL MOTION OF ORDER k

Theovem: 4.1, Let 5 and o be the (k 4 1)- dimensional moving
and fixed axoids which correspond to each other under the symmetric
helical motion with the leading curves & and « resp., {&1,..., &k} and
{e1,. .., ey} being the principal ONFs of 7 and @ resp., we have

Ei = _Civ 1 < i < k7 (4'1)
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Nmil = Mmils (4.2)
. k _ _ . 15
where & = X %8 + Nmi1dkim1 and « = 2 Gies + Ymi18kimet
1=] i=]
Proof:
k _
A(&) = A ( '21 Ciéi + "’)m+15k+m+1)9
i=

. k .
Alg) = El GAGE) + met Ak my)- (4.3)

Using (3.2), (3.22), and (3.4) the theorem is proved.
Theorem 4.2, For

: — m — n—k-m __

agp = ~Ki&i + I 1yiegg + Wilkimer + 2 Yiddkemos 1<0< m,
=1 =2 (4.4)

. m n-k-m

ax,i = —Kie; 4 _21 Tijaki + Widkime1 + 7\22 Yirdkimen 1 <i<{m,
i= =

(4.4)

we have
Ki=Ki wi=-wi, ypo= —yin, 1 <i<m, 2 <A<nkm (45
Proof:
. — m _ _ n_k_m _
Aldry) = A | -Kig + jzzl Tijike + Widk mi1 + EZ Yikak+m+7\]-

Since A linear, using (3.2), (3.17), (3.22), and (3.28) we get.

m u—-k—-m

Adg = Kiei - 2 tyjagyy + Widkomer - 2 Yodkim (46)
=1 r=2
From (3.17)
Ady; + Al = ~ag,
Aldgyy = —aky - Ak,

Adgi = —ax + AA-lag; (Bxs = —Alag,y),
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agy = —Adyy & Bax; AA-1=B), 1<i<m. (47
If we set (4.7) in (4,4)’, then we obtain

. m n_li_m
Ady; = Kiej — 2 tjax,j — Wik, met + 2‘2 Yir@ky min+Bagyi. (4.8)
i-1 -
Therefore from (4.6) and (4.8), the teorem is proved.

Theorem 4.3, If P; and P; principal parameters of distribution
of the axoids & and @ resp., then

Pi=P;, 1 <i<m. (4.9)
Proof: Using (4.2) and (4.5) in Pi==4m. |/ Ki, the theorem is proved.
Corollary 4.4, For the axoids % and o,

P =P, (4.10)

D = D. (4.11)

Corollary 4.5, Let Li and L; be i-pitches of % and @ resp. under
the closed symmetric helical motien of order k. Then we have

Li=-L,1<i<m=k, (4.12)

T=1, (4.13)

where L = m\/ Li...Lm| (pitch of ).

Theorem 4.6, Let 2; and 2; be i-apex angles of @ and @ resp.
under the closed symmetric helical motion of erder k. Then we have

M=-A, 1 <i<m=k (4.14)

Proof: Since
P _
A= J wi(t) dt
0

and wi = -wi, 1 <i<m=Xk, we get

Xi=—7\i,1§i§m=k.
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Covollary 4.7. Tf % and A are apex angles of the axoids 2 and o
resp. under the symmetric helical motion of order k, then

A=
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