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ABSTRACT

In this paper we derive sufficient conditions for strict convexity of subsets in a complete
simply connected smooth Riemannian manifold without focal points in terms of local and global
exposed points. )

1. INTRODUCTION

In [12,13], the concept of exposed points of subsets in linear
metric spaces has been introduced. In [13], exposed points of subsets
of Minkowski space have been specially considered. As far as I know
the same concept and the corresponding local one have not yet been
studied for subsets in curved spaces.

Hyperplanes as well as half-spaces bounded by hyperplanes were
used in linear metric spaces to define and study exposed points. In a
complete simply connected C* Riemannian manifold W without con-
jugate points horospheres as well as horodises are the candidate ge-
ometric objects to play the same part of hyperplanes and half-spaces
in linear spaces. Moreover, if we deal with subsets in a complete simply
connected C* Riemannian manifold W without focal pointé, horos-
pheres behave nicely [7, 8]. Actually, in this case horospheres are level
hypersurfaces of Bursemann functions. For certain Busemann func-
tion horospheres are equidistant (parallel) family of hypersurfaces whose
orthogonal trajectories are geodesics [7, 8].

From now on let W (resp. V?f) denote a complete simply connec-
ted C*® Riemannian manifold without conjugate (resp. focal) points.
Let W, denote the tangent space of W at the point p e W. B is the
closure of the subset B = W. 8B is the boundary of the subset B, All
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manifolds and maps are sufficiently smooth for discussions to make
sense.

For each element v of the unit sphere bundle SW let by: W - R
denote the Busemann function of v and Hy denote the horosphere of
W characterized by v, i.e Hy = {x e W: by(x) = 0} . Dy denotes the
open horodisc of W, Dy = {xe W:by(x) > 0}. Consequently 8Dy = H.
Notice that in Euclidean space En, by is the usual height function in the
direction of v. For more details about the properties of horospheres and
horodiscs see [7,8,10].

For basic propertics of W and W we refer the reader to [6, 7, 8,
9, 10]. The principal properties of convex subsets in Riemannian ma-
nifolds and metric spaces would be found in [1, 2, 6, 12, 13].

The following main facts concerning W and W are needed thro-
ughout this work.

a) The exponential map expy: Wy — W is a global diffeomorphism
for each point pe W.

b) Each manifold without focal points has no conjugate points
but the converse is not generally true.

¢) Each Riemannian manifold with sectional curvature K << 0
has no focal points [6].

d) For each pair of points p, g € W there exists a unique geodesic
segment from p to q and will be denoted by [pq]. We shall write (pq)

-
for the same segment with end points deleted. pq will denote the
the geodesic ray through p and q with p as initial point.

In few words, the main goal of this paper is to derive sufficient

~

conditions for strict convexity of subsets in W.

2. ON CONVEXITY

This section is mainly devoted to quote the following important
facts concerning convexity.

A subset B © W is convex if for each pair of points, p, ¢ B
the connecting geodesic segment is contained in B. A convex subset
with a non-empty interior is called a convex body. A convex subset
B < W is called strictly convex if its boundary 6B contains no geodesic
segments.
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For an open convex subset B « W we can show that the closure
B is also convex (see [3,4]). This is no longer valid in general Riem-
annian manifolds. It is direct to prove that the intersection of any
number of convex subsets in W is convex taking into account that
the empty set @ is itself convex,

Lemima 2.1. [3]

Geodesic balls in {V are strictly convex bodies.
Lemma 2.2, {3]

Horodises in \”{/ are convex bodies.

Although horodisc in W is a limit of sequence of geodesic balls,
horodisc is convex not necessarily strictly convex subset. Half-spaces
in En are examples of this fact. Notice that convexity of geodesic balls
and horodiscs in W is lost.

Lemma 2.3. [3]

Let B € W be an open convex subset with smooth boundary 2B
and pedB an arbitrary point. If v is a maximal geodesic tangent to

8B at p then yNB = @. If B is strictly convex, then y NB = {p}.

From Lemma 2.2 and Lemma 2.3 we have the following

Corollary 2.4.

Tn W and for an arbitrary point peﬁ} let y: (-0, o) — W be
maximal geodesic parametrized by arc-length such that p = y(0)

and y'(0) = veW,. Then yaW — (Dyy D_y).

The rest of this section will be devoted to give a short note about
support element and its relation with convexity.

In [1], the support and local support elements in Riemannian
manifold are given as follows,

If B is an open subset of a complete Riemannian manifold M, then
an open half-space V;, of the tangent space My at pedB is called a sup-
port element for B if V;, contains the initial tangent vectors of all minimal
geodesics from p to points of B. V; is a local support element for B if
for some opcn neighborhood U of p, Vy is a support clement for B nU.
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Now we specialize to talk about support elements of subsets in
manifolds without conjugate points.

Let us consider Vy to be a half-space of W;. Using the exponential
map expp: Wp -> W, we have that T(p) = expp (8Vy) is a geodesic
hypersurface of W at p since @Vp is an (n—1)-subspace of the linear
space Wp, dim W, = n. As expy is a global diffeomorphism then W-T(p)
has two unbounded components one of them is the image of V} under
eXpyp.

Let B be an open subset of W such that B is contained in one
component of W-T(p) for some pedB. Using exppy=1: W - W, we have
that exp,™'B is contained in an open half-space, say Vp, of Wy. Con-
sequently for any arbitrary point xeB the unique conneciing geodesic
segment [px] from p to x has the property that expy=!(px) = Vp
which ensures that the initial velocity of [px] is contained in Vy.

From the above argument we obtain the following information about
support elements in W,

Let B be an open subset of W and peéB. B has a support element
at p if and only if B is contained wholly in a component of W-T(p)
for some geodesic hypersurface T(p) at p. B has a local support clement
at p if and ounly if there exists a neighborhood U about p in W such
that B NU is contained in a component of W-T(p). Moreover, if B is
a smooth hypersurface of W then T(p) will be tangent to ¢B at p. In
this case T(p) is unique. ‘

In the light of the above mentioned discussion, Proposition (1)
[1] may be restated in W as follows.

Proposition 2.4,

A connected open subset B of W is convex if and only if B has the
property that at each boundary point pe@B there exists a neighborhood
U of p such that B NU is contained in one component of W-T(p) where
T(p) is a geodesic hypersurface at p.

3. MAIN RESULTS

Definition 3.1. For a subset B&€W the peint peB is an exposed
point of B if there exists a unit vector veWp, such that

(i) B <Dy (ii) BNH, = {p}.



LOCAL AND GLOBAL EXPOSED POINTS 6l

Definition 3.2. For a subset B&'W the point peB is called a local
exposed point of B if there exists a neighborhood U of W about p
such that B NU has p as an exposed point.

From the above definitions it becomes clear that for a subset
B<W, no interior point.could be either exposed or local exposed point.
Each global exposed point is local exposed but the converse is not

generally true. One can show that if B is a compact subset of V?f, then
B has at least two exposed points [5]. Moreover if a subset BcW
has an exposed point peB, then there exists a unit vector veWy such
that by(x) > 0 for all xeB, x % p.

Definition 3.3. Let BcW be a subset. A point peW has a foot
point g in B if

(i) ¢geB (ii) d(p, q) = d(p, B)
where d(p,B) denotes the Hausdorff distance from p to B.

A point peB is a foot of itself in B. For a compact subset BcW a
point peB has a foot point in B [12 ]. For other properties of foot points
see [4]. ‘ 7

~ In this section we establish —as main results— the following two

theorems 3.4 and 3.5 which relate convexity of subsets- of ‘?{7 with
both local and global exposed points of the same subset.

Theorem 3.4. Let B&W be a connected open subset with smooth
boundary 2B. Assume that each boundary point is a local exposed point

of B, then B is a strictly convex body of W.

- Proof: Let us consider an arbitrary point pedB. Let y: [0, c0) — W
be the interior geodesic ray parametrized by arc-length such that y(0)
= p and ¥y is starting perpendicular to 6B. Let us write y'(0) =v.
As p is a local exposed point of B, then there exists a neighborhood U
anblout p such that p is an exposed point of B NU. Hence B N UcDy
and (BnU) nH, = {p} (see Fig. (1)). Using Corollary 2.4 we have
that B n U is contained in one component of ﬁf—T(p) where T(p) is the

geodesic hypersu'rface' of W at p tangent to 0B at p. Hence B N U has
a support element at p which is a local support element of B at p. Apply-
ing Proposition 2.4 and taking into account that.p is an arbitrary

point of B we have that B is a convex body of W.
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~
w

Fig. (1)

It remains now to show that B is strictly convex.

Assume in contrary that B is convex but not strictly convex.
Consequently, there exists a geodesic segment [xy]=&B joining some
pair of points x, yedB. Without loss of generality assume that the point
p mentioned above is the mid-point on [xy] between x and y. Let

qe(BnU) n [xy] and q £ p (see Fig. (1)). Since p is a local exposed

. -~ — B —
point of B, then the geodesic ray pq satisfies qe pq N Dy, i.e pq N
Dy =~ o contradicting Lemma 2.3, and the proof of Theorem 3.4
is now completed.

It is worth mentioning that the above Theorem 3.4 could be prov-

ed through showing that B is the intersection of a family of closed
horodiscs in W.

Theorem 3.5. Let BcW be an open bounded subset with smodth
boundary ¢B. Assume that each boundary point is a global exposed

point of B, Then B is a strictly convex body of Ww.

Proof: The crucial point in the proof is to show that B is a connec-

ted subset of W. Assume in contrary that B is disconnected and assume
without less of generality that B = B, U B, where B, and B, are

disjoint open bounded subsets of W. Consider an arbitrary point peB,.
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Since B; is compact and p¢B,, then there exists a point qeB; which

is a foot point of p in B,. The geodesic segment [pq] meets oB, ort-
hogonally (transversally) at q and so there exists a point, say m, in
B, such that [pq] < [pm], i.e q lies between p and m on the geodesic

‘aegmént [pm] (see Fig. (2)). Let Veﬁfq be the velocity of [pm] at g
and assume that v is a unit vector. Considering the closed horodlscs

D, and D_y we have that for the points p, meB,

Fig. (2)

by(m) >0, by(p) <0

b_y(m) <0, b_yp)>0
which means that qe#B is not an exposed point of B contradicting the
assumption of the theorem. Hence B is connected.

Since each boundary point pedB is an exposed point of B, then

p is a local exposed point of B. Now we can repeat the same disscussion
mentioned in the proof of Theorem 3.4 to show that B is-a strictly
convex body of W.

Remarks 3.6. (a) Neither the converse of Theorem 3.4 nor that
of Theorem 3.5 is generally true. We give here only an example in the
2-dimensional hyperbolic space H2 in its half-space ‘model to ensure
our claim concerning Theorem 3.4.

‘Let H2 be the subset {(x,y):y> 0} < E2 under the hyperhohc
metric [11] Let B « H2 be the open subset

B—B(p,a+8) n H2
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where B (p, a + 8) is an Euclidean open ball centered at p = (0, a—9)
a > 0, with radius a - 3 for sufficiently small § > 0. We can see
easily that B is a strictly convex body in H2 while the point (0, 2a)
is not a local exposed point of B. The closed horodiscs Dy and D_ for
the unit vector veH2(j,,, are indicated in Fig. (3). Notice that H,
is an Euclidean cirele S (q, a) where q = (0, a) while H_,is the Euclidean
straight line y = 2a. (b) In hyperbolic space H?, we can define two
different types of exposed points in regard to horospheres- or totally
geodesic hypersurfaces. In the last case when adopting the totally
geodesic hypersurfaces idea, we can prove that Theorems 3.4 and
3.5 and their converses are valid.

/)
R =%
(0.12) hiv
8(7'4)
HZ
B(f;a"'s)
-

o.(3)

¢) We can study exposed points of subsets in sphere S? as a manifold
with focal (or conjugate) points in terms of totally geodesic hypersur-
faces. Cut points (or antipodal points) should be taken into aceount
in this case. -
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