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ABSTRACT

In tlıis paper we derive sufficient coııditioııs for strict convexity of subsets iıı a complete
siınply connectcd smooth Riemannian manifold witlıout focal points in terms of local and global 
exposed points.

1. INTRODUGTION

In [12, 13], the concept of exposed points of subsets in linear 
metric spaces has been introduced. In [13], exposed points of subsets 
of Minkowski space have been specially considered. As far as I know
the same concept and the corresponding loeal 
studied for subsets in curved spaces.

one have not yet been

Hyperplanes as well as half-spaces bounded by hyperplanes were
used in linear metric spaces to define and study exposed points. In a
complete simply connected C“ Riemannian manifold W wrthout con­
jugate points horospheres as well as horodiscs are the candidate ge- 
ometric objects to play the same part of hyperplanes and half-spaces 
in linear spaces. Moreover, if we deal with subsets in a complete simply 
connected C” Riemannian manifold W without focal points, horos­
pheres behave nicely [7, 8 ]. Actually, in this case horospheres are level 
hypersurfaces of Bursemann functions. For certain Busemann func- 
tion horospheres are equidistant (parallel) family of hypersurfaces whose
orthogonal trajectories are geodesics [7, 8 ].

From now on let W (resp. W) denote a complete simply connec-
ted C® Riemannian manifold witliüut conjugate (resp. focal) points. 
Let Wp denote tlıe tangent space of W at tlıe point p e W. B is tlıe 
closure of the subset B c W. 8B is the boundary of the subset B. Ali
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manifolds and maps 
sense.

are suffieiently smooth for diseussions to make

RFor eaeh element v of the unit sphere bundle S W let by: W ->
denote the Busemann funetion of 
W characterized by v, i.e Hy =

and Hy denote the horosphere of
e W: bv(x) = 0|. Dy denotes the

öpen horodisc of W, Dy = {x e W; by(x) > OJ.. Consequently SDy = Hy. 
Notice that in Euclidean space E", by is the usual height funetion in the
direetion of v. For more 
horodises see [7, 8, 10].

details about the properties of horospheres and

V

For basic properties of W and W we refer the reader to [6, 7, 8, 
9, 10]. The prineipal properties of eonvex subsets in Riemannian ma­
nifolds and metric spaees would be found in [1, 2, 6, 12, 13].

The following main faets concerning W and W are needed thro- 
ughout this work.

a) The exponential map expp; Wp -> W is a global diffeomorphism 
for eaeh point p e W.

b) Eaeh manifold without foeal points has no coujugate points 
but the converse is not generally true.

e) Eaeh Riemannian manifold with seetional eurvature K < 0 
has no foeal points [6 ].

d) For eaeh pair of points p, q e W there exists a uuique geodesie
segment from p to q and will be denoted by [pq]. We shall write (pq) 

for the same segment with end points deleted. pq will denote the
the geodesie ray through p and q with p as initial point.

In few words, the main goal of this paper is to derive suffieient 

eonditions for striet convexity of subsets in W.

2. ON GONVEXITY

This seetion is mainly devoted to quote the following important 
faets coneerning eonvexity.

A subset B c W is convex if for eaeh pair of points, p, q e B 
the eonneeting geodesie segment is eontained in B. A convex subset 
with a non-empty interior is ealled a oonvex body. A eonvex subset 
B c Vis ealled strietly oonvex if its boundary SB eontains no geodesie 
segments.
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For an öpen convex subset B c W we can show that the closure 
B is also convex (see [3, 4]). This is no longer valid in general Riem­
annian manifolds. It is direct to prove that the intersection of any 
number of convex subsets in W is convex taking into account that 
the empty set 0 is itself convex.

Lemma 2.1. [.3]

Geodosic balls in W arc strictly convex bodies.

Lemma 2.2. [3 ]

Jforodiscs in W are coııvex Itodics.

Altbough horodisc in W is a limit of sequence of geodesic balls,
lıorodisc is convex not nccessarily strictly subset. Half-spacesconvex
in E“ are examples of this fact. Notice that convexity of geodesic balls 
and horodiscs in W is lost.

Lemma 2.3. [3 ]

Let B c W be an öpen convex subset witlı smooth boundary öB
and pe5B an arbitrary point. If y is a maximal geodesic tangent to
0B at p tlıen y flB = 0, If B is strictly convex, then y D B == {p|. 

From Lemma 2.2 and Lemma 2.3 we have the following

Corollary 2.4.

In W and for an arbitrary point peW let y; (-oo, oo) -> W be 
maximal geodesic parametrized by arc-length such that p = y(0) 

and y'(0) = veWp. Then ycW - (DyU D_v).

The rest of this section will be devoted to give a short note about 
support element and its relation with convexity.

In [1], the support and local support elements in Riemannian 
manifold are given as follows.

an
If B is an öpen subset of a complete Riemannian manifold M, tlıen 

öpen half-space Vp of tlıe tangent space Mp at pegB is called a sup- 
port element for B if Vp contains the initial tangent vectors of ali minimal
geodesics from p to poiuts of B. Vp is a local support element for B if
for some öpen neighborhood U of p, Vp is a support element for B fi ü.
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Now ■vKe specialize to talk about support elements of subsets in 
manifolds without conjugate points.

Let us consider Vp to be a half-space of Wp. Using the exponential
map expp: Wp W, we have that T(p) = expp (8Vp) is a geodesie
hypersurface of W at p since 0Vp is an (n-l)-subspace of the linear
space Wp, dim Wp n. As expp is a global diffeomorphism then W-T(p)
has two unbounded components one of them is the image of Vp under 
cxpp.

Let B be an öpen subset of W such that B is eontained in one
component of W-T(p) for some peSB. Using expp i; W Wp we have
that expp ’B is eontained in an öpen half-space, say Vp, of Wp. Con- 
sequently for any arbitrary point xeB the unique eonneeting geodesie
segment [px] from p to X has the property that expp“> (px) c Vp
which ensures that the initial velocity of [px] is eontained in Vp.

From the above argument we obtain the following information about 
support elements in W.

Let B be an öpen subset of W and peSB. B has a support element 
at p if and only if B is eontained wholly in a component of W-T(p) 
for some geodesie hypersurface T(p) at p. B has a local support element
at p if and only if there exists a neighborhood U about p in W such
that B nU is eontained in a component of W-T(p). Moreover, if SB is 
a smooth hypersurface of W then T(p) ■will be tangent to 0B at p. In 
this case T(p) is unique.

In the light of the above mentioned discussion, Proposition (1) 
[1 ] may be restated in W as follows.

Proposition 2.4.

A conneeted öpen subset B of W is convex if and only if B has the
property that at eaeh boundary point peSB there exists a neighborhood
U of p such that B A U is eontained in one component of W-T(p) where 
T(p) is a geodesie hypersurface at p.

3. main BESULTS

Definition 3.1. For a subset Bc:W the point peB is an exposed 
point of B if there exists a unit vector veWp such that

(i) B c Dy (ii) B ti, =. Ip}.
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Definition 3.2. For a subset BcW the point peB is called a local
cxposed point of B if there exists a neighborhood U of W about p
such that B n U has p as an exposed point.

From the above definitions it becomes clear that for a subset 
BcW, no interior point could bc either exposed or local exposed point. 
Each global expo8ed point is local exposed but the conversc is not 

generally truc. One can show that if B is a compact subset of W, then 
B has at İcast two cxposed points [5 ]. Moreover if a subset B c W
has an exposed point psB, then there exists a unit vector veWp such
that bv(x) 0 for ali kgB, x p.

Definition 3.3. Let Bc:W he a subset. A point peW has a foot 
point q in B if 

(i) qGB (ii) d(p, q) = d(p, B)

whe,^ d(p,B) denotes the Hausdorff distance from p to B.

A point peB is a foot of itself in B. For a compact subset BcW a 
point peB has a foot point in B [12 ]. For other properties of foot points
see 14].

In this seetion we establish -as main results- the following two

theorems 3.4 and 3..5 which relate convexity of subsets of W with 
hoth local and global exposed points of the same subset.

Theorem 3.4. Let Bc-W be a connected öpen subset with smooth
boundary 0B. Assume that each boundary point is a local exposed point 

of B, then B is a strictly convex body of W.

Proof; Let us consider an arbitrary point pe^B. Let y; [0, co) -> W 
be the interior geodesic ray parametrized by arc-length such that y(0) 
= p and Y is starting perpendicular to öB. Let us write y'(0) = v.
As p is a local exposed point of B, then there exists a neighborhood U
about p such that p is an exposed point of B O U. Hence B flUczDv
and (B fi Ü) fl Hy {p} (see Fig. (1)). Using Corollary 2.4 we have

that B n U is contained in one component of W-T(p) where T(p) is the 

geodesic hypersurface of W at p tangent to öB at p. Hence B flU has 
a support element at p which is a local support element of B at p. Apply- 
ing Proposition 2.4 and taking into account that p is an arbitrary

point of 0B we have that B is a convex body of W,
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Pig. (1)

It remains now to show that B is strictly convex.

Assume in contrary that B is convex but not strictly convex.
Consequently, there exists a geodesic segment [xy]c;8B joining some 
pair of points x, ye^B. Without loss of generality assume that the point
p mentioned above is the mid-point on [xy] between x and y. Let
qe(B nU) n [xy] and q p (see Fig. (1)). Since p is a loca( exposed

point of B, then the geodesic ray pq satisfies q6 pq fi Dy, i.e pq n
Dv 7^ 0 contradicting Lemma 2.3, and the proof of Theorem 3.4 
is now completed.

İt is worth mentioning that the above Theorem 3.4 could be prov- 
ed through showing that B is the intersection of a family of closed 

horodiscs in W.

Theorem 3.5. LetBcWbean öpen bounded subset with smootb 
boundary ^B. Assume that each boundary point is a global exposed 

point of B, Then B is a strictly convex body of W.

Proof: The crucial point in the proof is to show that B is a connec- 

ted subset of W. Assume in contrary that B is disconnected and assume 
without loss of generality that B = Bj IJ Bj where Bj and Bj are 

disjoint öpen bounded subsets of W. Consider an arbitrary point peBp
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Since B2 is compact and p ^62, then there exists a point qeB2 which
is a foot point of p in B2. The geodesic segment [pq] meets SB2 ort- 
hogonally (transversally) at q and so there exists a point, say m, in
B2 such that [pq ] [pm], i.e q lies hettveen p and m on the geodesic

segment [pm] (see Fig. (2)). Let veWq be the velocity of [pm] at q 
and assume that v is a unit vector. Considering the closed horodiscs
Dy and D_v we have that for the points p, meB,

Fig. (2)

bv(m) : 

b_v(m)

0,
: o,

l’v(p) 

b-v(p)

c

0
0

which means that qeĞ)B is not an exposed point of B contradicting the 
assumption of the theorem. Hence B is connected.

Since each boundary point peSB is an exposed point of B, then 
p is a local exposed point of B. Now we can repeat the same disscussion 
mentioned in the proof of Theorem 3.4 to show that B is a strictly 

convex body of W.

Remarks 3.6. (a) Neither the converse of Theorem 3.4 nor that 
of Theorem 3.5 is generally true. We give here only an exâmple in the 
2-dimensional hyperbolic space H2 in its half-space model to ensure 
our claim concerning Theorem 3.4.

Let H2 be the subset {(x, y): y
metric [11]. Let B c H2 be the öpen subset

0} e E2 under the hyperbolİG

B = B (p, a + S) n H2
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where B (p, a -p 8) is an Euclidean öpen bali centered at p = (0, a-8)
a 0, with radius a + 8 for suffieiently small S 0. We can see
easily that B is a strietly convex body in H2 while the point (0, 2a)
is not a local exposed point of B. The closed horodises Dy and D_y for
the unit vector veH2(o,2a)
is an Euclidean circle S (q, a) where q

are indicated in Fig. (3). Notice that H.

strâight line y
(0, a) while H_yis the Euclidean

2a. (b) In hyperbolic space H", we can define two
different types of expased points in regard to horospheres or totally 
geodesie hypersurfaces. In the last case when adopting the totally 
geodesie hypersurfaces idea, we can prove that Theorems 3.4 and 
3.5 and their converses are valid.

a 
(o. to }

(o.») 
(OjO-s,

H

Fig»,(5)

c) We can study exposed points of subsets in sphere S“ as a manifold 
with foeal (or conjugate) points in terms of totally geodesie hypersur- 
faceş. Gut points (or antipodal points) should be taken into account 
in this case.
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