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ABSTRACT

Submanifolds with parallel second fundamental form are defined as extrinsic analogue
of locally symmetric manifolds [6, 7]. It follows that all of them are locally invariant under
the reflection in the normal space of an arbitrary point. These type of submanifolds are also
éalled symimetric submanifolds [7]. Examples are symmetric R—spacés’.

Submanifolds with pointwise planar normal sections (P2-PNS) are introduced in {3, 4, 5].
Tt has shown that spherical submanifolds have P2-PNS property if and only if they must be
parellel submanifolds.

In [1] the present author and A. West showed that non-parallel submanifold M has
P2-PNS property if and only if It is a hypersurface.

In this article we prove that if M is a symmetric R-space then it must be the orbit of the
element A such that ad (A))® = ad( A). We also show that the imbeddings of the symmetric
R-spaces of the form f: M = K/ Ko —— P by f({k])= Ad (k) A have P2-PNS,

1. INTRODUCTION

Let M be a smooth m-dimensional submanifold in (m + d)-dimensi-
onal Euclidean space R™+%, For x € M and a non-zero vector X in TxM
we define the (d -4- 1)-dimensional affine subspace ¢ (x, X) of R™+d by
E(x, X) = {x + Span {X, Ny(M)}}
in a neighbourhood of x. The intersection of M n E (x, X) is a regular
curve v: (-¢,g) —> M. We suppose the parameter te (¢, c) is a mul-
tiple of the arc-length such that y (O) = x and 'Y (0) = X. Each choice
of X € T(M) yields a different curve which is called the normal section
of M at x the direction of X where XeTy(M) [4]. For such a nermal
section we can write v (t) = x + Mt) X + N(t) where N(t) is the
normal part of v (t).
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The submanifold M is said to have pointwise 2-planar normal
sections (P2—PNS) if each normal section y the higher order derivatives

'.y(t), Y (t), Y (t) are linearly dependent as vectors in RMm+d,

Submanifolds with pointwise 2-planar normal sections have been
well studied in the case when M is spherical that is; M—S—R™+d,

2. BASIC THEOREM

Let M be an m-dimensional submanifold in (m 4 d)-dimensional
Euclidean space R™+4, Tet 7 and D denote the covariant derivatives
of M and R™+4, respectively, Thus Dy is just the directional derivative
in the direction X in R™+4, Then for tangent vector fields X, Y and
Z over M we have

DxY =v.Y + h (X, Y)
where h is the second fundamental form of M [3]. We define_vgh
as usual by
T x(b(Y, Z)) = (Vxh) (Y, 2)) + b (VxY, Z) ) + h (Y, VxZ)).
Then we have the Gauss and codazzi equtions
’ h (X, Y)) =h (Y, X)
and
(7 xh) (Y, Z)) = (Tyh) (X, 2)) = (T.h) (X, X)) = (Th) (£ Y))
= (Vyh) (Z. X)) (Vh) (Y, X))
If Vh = O then M is said to have parallel second fundamental
form.
Let us write
H({X) =h (X, X)
VH (X) = (Vxh) (Y, Z))
go that H, VH: T (M) —— N (M) are fibre maps whose restriction to

each fibre Tx(M) is a homogeneous polynomial map. H is of degree
2 and V7 H is of degree 3 [1].

Proposition 2.1. M has P2-PNS if and only if for each x ¢ M and
each X e Tx(M) the vectors H(X) and 7 H(X) in Nx(M) are linearly
dependent. s B
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Proof: See [1].

Theorem 2.2. Let M be an m—dimensional submanifold of Rm+d,
Then M has P2-PNS if and only if

|H|*VH = (H, v H).
Proof: See [1].

3. SYMMETRIC R-SPACES

Let g be a semi-simple lie algebra over R and let k be a maximal
compact subalgebra of g i.e. a subalgebra of g corresponding to a maximal
compact subgroup of the adjoint group g. Let g, be the complex1f1cat10n
of g [2]. Let G; be the adjoint group g.; that is

Ge = Ad (gc) = exp (ad (g¢)) <= GL (gc)-

Then, és is well-known, there exist a uniquely determined compact
form g, of g, such that g N g, =k, and that letting P denote the ort-
hogonal complement of k in g with respcet to the killing form [10],
we have

g=k+ P

w =k +iP
such that _

[k, k]l <k, [P,P] <k, [k, Pl< P.

Let hy be a maximal abelian subalgebra of P; it can be extended to

a Cartan subalgebra h of g; i.e. 2 maximal subalgebra h of g such that
the adjoint representation of any H € h is semi simple. Then we have

h =hgn hy
hy =hnk
hy =hn P.

Let h, be the complexification of h and let
gc =he + 2 gy (where acr)
o
be the corresponding decomposition of g,, where r denotes the root

system of g, with respect to h,. Let further h, be the subspace of h,
over R consisting of all H e h; such that «(H) is real for all « € r; then
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h, =ihy 0 hy

becomes a real Euclidean space with respect to the Killing form, so
that we can consider r as a subset of h, (i.e. identify aer with the uni-
quely determined element H, of h, such that

(Hy, H) = o (H)
for all Heh,, <,> denotes the Killing form) ([10].
Let K be connected subgroup of G, generated by k and let
: P =P5+m
lje"‘/ ;;apf)ﬁiéal deédmposition for the Lie algebi‘a of K For O: = KQEM
identify T, (M) [6].
Define
7 Ko = {keK; Ad (k) A = A}, where O 3= AeP
and form the differentiable mamfold M: = K/K,.
We can defme an embeddlng ‘
f: M: K/ K, Pby f([k]) =Ad(k) A,O#£ AP (3.1)
into the Euclidean space with metric given by the Killing form of g.
The differential of f at [e] (e is the identity of g) is given by
£f.X =ad (X) A for X € m. (3.2)
Definition 3.1. Let M: K/ K, be a differentiable manifold defi-

ned. as before. The Riemannian metric 1nduced on M turns M into a
Riemannian symmetric space. If

ad (A) =ad (A)
then M is called symmetric R-space, and { its standard imbedding [7].
So ad (A)’ = ad (/) means there exists an element O £ A € P

such that ad ( A) has eigen values 0, -1, 1 and g admits a decomposition
into eigen spaces - -

g =8 + & + g4

For any X, Yem we can define the second fundamental form
h of M: K / K by

h (X, S()“._~f*k(§():f* (¥) A where A: = £(0).  (3.3)
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By (3.1) and (3.3) we have
h(X,Y) =ad (X) ad (Y} A
. =[X, [Y, AT ]
Differentiating this at A we have
— . . . J-
(Vzh) (X, Y) = {ad (Z) ad (X) ad (Y) A} (34)
This means that for any X e m
ad (X) A =[X, A] =X, ‘ (3.5)
ad (X) ad (X) A = [X, [X, A]] =h (X, X), (3.6)
{ad (X)ad (Y) A{ =[X, [X; ATT 1L = (AM0) (X, Y) -(3.7)
We have the following; 7 ‘
Proposition 3.2. Let f: M: K/K,-— P be the embedding as
before and M be a symmetric R-space. Then h (X, X) and

(Axh) (X, X) are linearly dependent if and only if [X, [X, A]) ]
and [X, [X, [X, A} ] ]4 are linearly dependent.

Proposition 3.3. If ad (A)3 =ad (A) then for any positive
system of generators for the roots «;, oy,..., oy with respect to A.
There is a unique j such that ¢j(A) = 1 and other og(A) = 0,
1 <s <1, 545

Proof: Let X, be a root for a positive root «. Then

[Ho, A] =2 (L) Xy
Since the- eigenvalues of ad ( A) are -1, 0, 1 we have
a(A) =< A, Hy > =-1,00r1

for every root « € r. Since ai( A) = 0 for all simple roots a4, i =1, 2,
..., I we have « (A) = 0 or 1 for every positive root a.

By Kobayashi-Nagano’s Lemma [8] there is a unique «; such
that «; (A) 7 0, and for such an o; there is a highest root § = X moy
such that «; (A) =1 and m;(A) =1 and m; = 1.

Definition 3.4. f: M -——> R™t4 js an (extrinsic) symmetric sub-
manifold if for every x € M there is an isometry i of M into itself
such that i (x) = x and foi = sy of, where sx is a reflection at the
normal space through f (x) normal to f, (Tx(M) ), and reflects

f(x) + £, (Tx(M)) at £(x) [7].
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Proposition 3.5. Extrinsic symmetric submanifolds have P2-PNS.

Proof: Let M be a symmetric submanifold and f: M —— |Rm+d
be an isometric immersion. For each xeM let sy denote the reflection
at the normal space Nx(M) of M at x.

Let y be a normal section of M at point x = y (0) in the direction
of X =+ (0) € Ty(M). We have
¥ (0) =h (X, X)
T (0L = (Vxh) (X, X).
So by Blomstrom [2] we have
(sx),(V xh) (X, X) = (V xh) (X, X).
On the other hand, since s is affine
(52)4(V xh) (X, X) = (V (sx),xh) ((5x).X. (8x),X)-
= (% —xh) (-X, -X) = (6 xh) (X, X)

Hence (Vv xh) (X, X) = O at the point x. So by Theorem 2.1 we get
the result... o

Proposition 3.6. Standart imbedded symmetric - R-spaces -are
extrinsically symmetric submanifolds.

Proof: See [6)].

Theorem 3.7. If M is a symmetric R—space then M is the orbit
of an element A such that (ad (A))3 =ad (A).

Proof: Let g be the semi-simple Lie algebra
g =8 1 8 T 81
where:
(g 88] < B 8 ;
for a, § € Z such that gy = {0} for p # {0}, F 1.
, g =k P .
k=ky+ m

where
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k= {Xeg: p (X) =X}
p= {Xeg o (X) =-X}
ko =kngo
m =k n(g.; D g)-
Let K = Ady(k) = {exp ad (k)| < GL(p)
and “set . S _
Ko =& {keK; k(A) = A}

Then K, is a closed subgroup of K. Let K(A) be the K-orbit space at
/. Then by Naitoh [9], K(A) is diffeomorphic to the homoge-
neous space K/ K

. The tangent space T, (K( A)) is identified with [m, Al

Since K acts isometrically for <,>p the orbit space K( A) w1th
the metric induced from <,> is a symmetric space.

. Remark 3.8. In [6] Ferus has also proved that if a spherical
submamfold has P2-PNS or rather has parallel second fundamental
form h. Then it is extrinsically symmetric space.

Cerollary 3.9, The imbeddings of the symmetnc R-spaces -de-
fined as before have P2-PNS.

" Proof: Let M: = K| K, be symmetric R——space and v be a normal
section of M at point x =+ (0) in the direction of 7(0) = X. Then by
Definition 3.1 we have

ad (X)3(4) = ([X, [.X, A]]) =[X, Al

Combining this with (3.5), (3.7) we have (y xh) (X, X) = O. So by
Theorem 2.2. M has P2-PNS.

OZET

Paralel ikinci temel forma sahip altmanifoldlar ilk defa Ferus
tarafindan simflandirilmig olup bunlara paralel altmanifoldlar da denir.
Simetrik R-uzaylan bu tip altmanifold érnekleridir [6,7].

Noktasal 2—diizlemsel normal kesitlere (P2-PNS) sahip altmani-
foldlarin [3,4,5] de paralel, [1] de ise paralel olmama hali incelenmisgtir.
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Bu ¢ahsmada, verilen bir simetrik R—uzayir M = K/ K|, igin M
nin ad (A))® = ad (A) esitligini saglayan bir A elemanimn yoriingesi
oldugu ve bunlarin f: M = K/ K, -~ P,f ([k]) = Ad (k) A seklin-
deki gommeleri P2-PNS sartim sagladigr gosterilmigtir.
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