Commun. Fac. Sci. Univ. Ank Series A, V. 43. pp. 77-84 (1994)

SYMMETRIC R-SPACES

KADRİ ARSLAN

and the second

(Received March 25, 1994; Revised Sep. 5, 1994; Accepted Sep. 9, 1994)

ABSTRACT

Submanifolds with parallel second fundamental form are defined as extrinsic analogue of locally symmetric manifolds [6, 7]. It follows that all of them are locally invariant under the reflection in the normal space of an arbitrary point. These type of submanifolds are also called symmetric submanifolds [7]. Examples are symmetric R-spaces.

Submanifolds with pointwise planar normal sections (P2-PNS) are introduced in [3, 4, 5]. It has shown that spherical submanifolds have P2-PNS property if and only if they must be parellel submanifolds.

In [1] the present author and A. West showed that non-parallel submanifold M has P2-PNS property if and only if It is a hypersurface.

In this article we prove that if M is a symmetric R-space then it must be the orbit of the element Δ such that $ad(\Delta)$)³ = $ad(\Delta)$. We also show that the imbeddings of the symmetric R-spaces of the form f: $M = K/K_0 \longrightarrow P$ by f([k]) = $Ad(k) \Delta$ have P2-PNS.

1. INTRODUCTION

Let M be a smooth m-dimensional submanifold in (m + d)-dimensional Euclidean space \mathbf{R}^{m+d} . For $\mathbf{x} \in M$ and a non-zero vector X in $\mathbf{T}_{\mathbf{x}}M$ we define the (d + 1)-dimensional affine subspace $\boldsymbol{\xi}$ (\mathbf{x}, \mathbf{X}) of \mathbf{R}^{m+d} by

$$\mathbf{E}(\mathbf{x}, \mathbf{X}) = \{\mathbf{x} + \operatorname{Span} \{\mathbf{X}, \mathbf{N}_{\mathbf{x}}(M)\}\}$$

in a neighbourhood of x. The intersection of $M \cap E(x, X)$ is a regular curve $\gamma: (-\varepsilon, \varepsilon) \longrightarrow M$. We suppose the parameter $t \in (-\varepsilon, \varepsilon)$ is a multiple of the arc-length such that $\gamma(0) = x$ and $\dot{\gamma}(0) = X$. Each choice of $X \in T_x(M)$ yields a different curve which is called the *normal section* of M at x the direction of X where $X \in T_x(M)$ [4]. For such a normal section we can write $\gamma(t) = x + \lambda(t) X + N(t)$ where N(t) is the normal part of $\gamma(t)$.

KADRİ ARSLAN

The submanifold M is said to have *pointwise* 2-planar normal sections (P2-PNS) if each normal section γ the higher order derivatives $\ddot{\gamma}(t), \ddot{\gamma}(t), \ddot{\gamma}(t)$ are linearly dependent as vectors in \mathbf{R}^{m+d} .

Submanifolds with pointwise 2-planar normal sections have been well studied in the case when M is spherical that is; M-S- \mathbf{R}^{m+d} .

2. BASIC THEOREM

Let M be an m-dimensional submanifold in (m + d)-dimensional Euclidean space \mathbb{R}^{m+d} . Let ∇ and D denote the covariant derivatives of M and \mathbb{R}^{m+d} , respectively, Thus D_x is just the directional derivative in the direction X in \mathbb{R}^{m+d} . Then for tangent vector fields X, Y and Z over M we have

$$\mathbf{D}_{\mathbf{X}}\mathbf{Y} = igtarrow \mathbf{x}\mathbf{Y} + \mathbf{h}\left(\mathbf{X}, \mathbf{Y}\right)$$

where h is the second fundamental form of M [3]. We define $\nabla_x h$ as usual by

$$\overline{\bigtriangledown}_{\mathbf{x}}(\mathbf{h}(\mathbf{Y},\mathbf{Z})) = (\overline{\bigtriangledown}_{\mathbf{x}}\mathbf{h})(\mathbf{Y},\mathbf{Z})) + \mathbf{h}(\bigtriangledown_{\mathbf{x}}\mathbf{Y},\mathbf{Z}) + \mathbf{h}(\mathbf{Y},\bigtriangledown_{\mathbf{x}}\mathbf{Z})).$$

Then we have the Gauss and codazzi equiions

$$h(X, Y)) = h(Y, X)$$

and

$$(\overline{\bigtriangledown}_{\mathbf{x}}\mathbf{h}) (\mathbf{Y}, \mathbf{Z})) = (\overline{\bigtriangledown}_{\mathbf{Y}}\mathbf{h}) (\mathbf{X}, \mathbf{Z})) = (\overline{\bigtriangledown}_{\mathbf{z}}\mathbf{h}) (\mathbf{X}, \mathbf{Y})) = (\overline{\bigtriangledown}_{\mathbf{x}}\mathbf{h}) (\mathbf{Z}, \mathbf{Y}))$$
$$= (\overline{\bigtriangledown}_{\mathbf{Y}}\mathbf{h}) (\mathbf{Z}, \mathbf{X})) (\overline{\bigtriangledown}_{\mathbf{z}}\mathbf{h}) (\mathbf{Y}, \mathbf{X}))$$

in the set of the set

If $\overline{\bigtriangledown} \mathbf{h} = \mathbf{O}$ then M is said to have parallel second fundamental form.

Let us write

$$H(X) = h(X, X)$$
$$\nabla H(X) = (\nabla_x h)(Y, Z))$$

so that H, \bigtriangledown H: T (M) \rightarrow N (M) are fibre maps whose restriction to each fibre T_x(M) is a homogeneous polynomial map. H is of degree 2 and \bigtriangledown H is of degree 3 [1].

Proposition 2.1. *M* has P2–PNS if and only if for each $x \in M$ and each $X \in T_x(M)$ the vectors H(X) and $\nabla H(X)$ in $N_x(M)$ are linearly dependent.

Proof: See [1].

Theorem 2.2. Let M be an m-dimensional submanifold of \mathbb{R}^{m+d} . Then M has P2-PNS if and only if

$$\|H\|^2 \bigtriangledown H = (H, \bigtriangledown H).$$

Proof: See [1].

3. SYMMETRIC R-SPACES

Let g be a semi-simple lie algebra over R and let k be a maximal compact subalgebra of g i.e. a subalgebra of g corresponding to a maximal compact subgroup of the adjoint group g. Let g_c be the complexification of g [2]. Let G_c be the adjoint group g_c ; that is

$$G_c = Ad(g_c) = exp(ad(g_c)) \subset GL(g_c).$$

Then, as is well-known, there exist a uniquely determined compact form g_u of g_c such that $g \cap g_u = k$, and that letting P denote the orthogonal complement of k in g with respect to the killing form [10], we have

$$egin{aligned} \mathbf{g} &= m{k} + m{P} \ \mathbf{g}_{\mathrm{u}} &= m{k} + \mathrm{i}m{P} \end{aligned}$$

such that

 $[k, k] \subseteq k, [P, P] \subseteq k, [k, P] \subseteq P.$

Let h_p be a maximal abelian subalgebra of P; it can be extended to a Cartan subalgebra h of g; i.e. a maximal subalgebra h of g such that the adjoint representation of any $H \in h$ is semi simple. Then we have

and the second second second second second second second second second second second second second second secon

$$\mathbf{h} = \mathbf{h}_k \cap \mathbf{h}_p$$

 $\mathbf{h}_k = \mathbf{h} \cap \mathbf{k}$
 $\mathbf{h}_p = \mathbf{h} \cap \mathbf{P}.$

Let h_e be the complexification of h and let

$$g_c = h_c + \sum_{\alpha} g_{\alpha} \text{ (where } \alpha \in r)$$

be the corresponding decomposition of g_c , where r denotes the root system of g_c with respect to h_c . Let further h_c be the subspace of h_c over R consisting of all $H \in h_c$ such that $\alpha(H)$ is real for all $\alpha \in r$; then

$$\mathbf{h}_{\mathbf{0}} = i\mathbf{h}_{\mathbf{k}} \cap \mathbf{h}_{\mathbf{p}}$$

becomes a real Euclidean space with respect to the Killing form, so that we can consider r as a subset of h_0 (i.e. identify $\alpha \in r$ with the uniquely determined element H_a of h_0 such that

$$(H_{\rm a}, H) = \alpha (H)$$

for all $H \in h_0$, <,> denotes the Killing form) ([10].

Let K be connected subgroup of G_c generated by k and let

Consider the constant of
$$m{P}=m{P}_{
m o}+{
m m}$$
 is

be canonical decomposition for the Lie algebra of K. For $O: = K_0 \in M$ identify $T_0(M)$ [6].

Define

 $\mathrm{K}_{\mathrm{o}} = \{k \in \mathrm{K}; \mathrm{Ad}(k) \bigtriangleup = \bigtriangleup\}, \mathrm{where} \mathrm{O} \neq \bigtriangleup \in P$ and form the differentiable manifold $\mathrm{M} := \mathrm{K} / \mathrm{K}_{\mathrm{o}}$.

We can define an embedding

f: M:
$$K / K_0 \rightarrow P$$
 by f ([k]) = Ad(k) \triangle , $0 \neq \triangle \in P$ (3.1)

into the Euclidean space with metric given by the Killing form of g.

The differential of f at [e] (e is the identity of g_e) is given by

$$\mathbf{f}_{\mathbf{*}}\mathbf{X} = \mathrm{ad} (\mathbf{X}) \bigtriangleup \text{ for } \mathbf{X} \in \mathbf{m}.$$

$$(3.2)$$

e da Martine e statut de la Congression

Definition 3.1. Let M: K/K_0 be a differentiable manifold defined as before. The Riemannian metric induced on M turns M into a Riemannian symmetric space. If

ad
$$(\triangle)^3 = ad (\triangle)$$

then M is called symmetric R-space, and f its standard imbedding [7].

So ad $(\triangle)^3 = ad (\triangle)$ means there exists an element $0 \neq \triangle \in P$ such that ad (\triangle) has eigen values 0, -1, 1 and g admits a decomposition into eigen spaces

$$\mathbf{g} = \mathbf{g}_0 + \mathbf{g}_1 + \mathbf{g}_{-1}.$$

For any X, $Y \in m$ we can define the second fundamental form h of M: $K \mid K_0$ by

$$\mathbf{h}(\mathbf{X}, \mathbf{Y}) = \mathbf{f}_{*}(\mathbf{X}) \mathbf{f}_{*}(\mathbf{Y}) \wedge \text{where } h := \mathbf{f}(0).$$
 (3.3)

By (3.1) and (3.3) we have

Differentiating this at riangle we have

$$(\overline{\bigtriangledown}_{z}h)(X, Y) = \{ad(Z) ad(X) ad(Y) \land\}^{\perp}$$
 (3.4)

This means that for any $X \in m$

ad (X) $\triangle = [X, \triangle] = X,$ (3.5)

ad (X) ad (X) $\triangle = [X, [X, \triangle]] = h(X, X),$ (3.6)

 $\{ad (X) ad (Y) \land \{ = [X, [X, \land]] \] \perp = (\land zh) (X, Y). \quad (3.7)$

We have the following;

Proposition 3.2. Let f: $M: K/K_0 \rightarrow P$ be the embedding as before and M be a symmetric R-space. Then h (X, X) and $(\triangle_x h)$ (X, X) are linearly dependent if and only if $[X, [X, \triangle])$] and $[X, [X, [X, \triangle]]] \perp$ are linearly dependent.

Proposition 3.3. If ad $(\triangle)^3 = ad(\triangle)$ then for any positive system of generators for the roots $\alpha_1, \alpha_2, \ldots, \alpha_1$ with respect to \triangle . There is a unique j such that $\alpha_j(\triangle) = 1$ and other $\alpha_s(\triangle) = 0$, $1 \le s \le 1$, $s \ne j$.

Proof: Let X_{α} be a root for a positive root α . Then

$$[H_{\alpha}, \bigtriangleup] = \alpha (\bigtriangleup) X_{\alpha}.$$

Since the eigenvalues of ad (\triangle) are -1, 0, 1 we have

 α (\triangle) = $< \triangle$, $H_a > = -1$, 0 or 1

for every root $\alpha \in \mathbf{r}$. Since $\alpha_i(\triangle) \ge 0$ for all simple roots α_i , $i = 1, 2, \ldots, l$ we have $\alpha(\triangle) = 0$ or 1 for every positive root α .

By Kobayashi-Nagano's Lemma [8] there is a unique α_j such that α_j (\triangle) $\neq 0$, and for such an α_j there is a highest root $\theta = \sum m_i \alpha_i$ such that α_j (\triangle) = 1 and m_j (\triangle) = 1 and $m_j = 1$.

Definition 3.4. f: $M \longrightarrow \mathbf{R}^{m+d}$ is an (extrinsic) symmetric submanifold if for every $\mathbf{x} \in M$ there is an isometry i of M into itself such that $\mathbf{i}(\mathbf{x}) = \mathbf{x}$ and foi $= \mathbf{s}_{\mathbf{x}}$ of, where $\mathbf{s}_{\mathbf{x}}$ is a reflection at the normal space through $\mathbf{f}(\mathbf{x})$ normal to $\mathbf{f}_{*}(\mathbf{T}_{\mathbf{x}}(M))$, and reflects $\mathbf{f}(\mathbf{x}) + \mathbf{f}_{*}(\mathbf{T}_{\mathbf{x}}(M))$ at $\mathbf{f}(\mathbf{x})$ [7].

τ.

KADRİ ARSLAN

Proposition 3.5. Extrinsic symmetric submanifolds have P2-PNS.

Proof: Let M be a symmetric submanifold and $f: M \longrightarrow \mathbb{R}^{m+d}$ be an isometric immersion. For each $x \in M$ let s_x denote the reflection at the normal space $N_x(M)$ of M at x.

Let γ be a normal section of M at point $\mathbf{x} = \gamma(0)$ in the direction of $\mathbf{X} = \dot{\gamma}(0) \in \mathbf{T}_{\mathbf{x}}(M)$. We have

$$\ddot{\gamma}(0) = \mathbf{h} (\mathbf{X}, \mathbf{X})$$
$$\vdots \\ \ddot{\gamma}(0) \perp = (\overline{\nabla}_{\mathbf{x}} \mathbf{h}) (\mathbf{X}, \mathbf{X})$$

So by Blomstrom [2] we have

$$(\mathbf{s}_{\mathbf{x}})_{\mathbf{*}}(\overline{\bigtriangledown}_{\mathbf{x}}\mathbf{h}) (\mathbf{X}, \mathbf{X}) = (\overline{\bigtriangledown}_{\mathbf{x}}\mathbf{h}) (\mathbf{X}, \mathbf{X}).$$

On the other hand, since s_x is affine

$$\begin{split} (\mathbf{s}_{\mathbf{x}})_{\boldsymbol{\ast}}(\overline{\bigtriangledown}\,\mathbf{x}\mathbf{h})\,(\mathbf{X},\,\mathbf{X})\,&=\,(\overline{\bigtriangledown}\,(\mathbf{s}_{\mathbf{x}})_{\boldsymbol{\ast}\mathbf{x}}\mathbf{h})\,((\mathbf{s}_{\mathbf{x}})_{\boldsymbol{\ast}}\mathbf{X}.\,(\mathbf{s}_{\mathbf{x}})_{\boldsymbol{\ast}}\mathbf{X}).\\ &=\,(\overline{\bigtriangledown}_{-\mathbf{x}}\mathbf{h})\,(-\mathbf{X},\,-\mathbf{X})\,=\,(\overline{\bigtriangledown}\,\mathbf{x}\mathbf{h})\,(\mathbf{X},\,\mathbf{X}). \end{split}$$

Hence $(\nabla_x h)(X, X) = 0$ at the point x. So by Theorem 2.1 we get the result...

Proposition 3.6. Standart imbedded symmetric R-spaces are extrinsically symmetric submanifolds.

Proof: See [6]].

Theorem 3.7. If M is a symmetric R-space then M is the orbit of an element \triangle such that $(ad(\triangle))^3 = ad(\triangle)$.

Proof: Let g be the semi-simple Lie algebra

$$\mathbf{g} = \mathbf{g}_0 + \mathbf{g}_1 + \mathbf{g}_{-1}$$

where

$$[g_{\alpha}, g_{\beta}] \subset g_{\alpha + \beta}$$

for $\alpha, \beta \in \mathbb{Z}$ such that $g_{\mu} = \{0\}$ for $\mu \neq \{0\}, \mp 1$.

$$\begin{aligned} k &= \{ \mathbf{X} \in \mathbf{g} : \ \mathbf{\rho} \ (\mathbf{X}) = \mathbf{X} \} \\ p &= \{ \mathbf{X} \in \mathbf{g} : \ \mathbf{\rho} \ (\mathbf{X}) = -\mathbf{X} \} \\ k_0 &= k \cap \mathbf{g}_0 \\ \mathbf{m} &= k \ \cap \ (\mathbf{g}_{-1} \oplus \mathbf{g}_1). \\ \mathbf{Let} \ K &= \mathrm{Ad}_{\mathbf{p}}(k) = \{ \exp \ \mathrm{ad} \ (k) \mid \mathbf{p} \} \ \subset \mathrm{GL} \ (p) \end{aligned}$$

$$K_{\mathbf{o}} = \& \{ \mathbf{k} \in \mathbf{K}; \ \mathbf{k}(\triangle) = \triangle \}.$$

Then K_0 is a closed subgroup of K. Let $K(\triangle)$ be the K-orbit space at \triangle . Then by Naitoh [9], $K(\triangle)$ is diffeomorphic to the homogeneous space K/K_0 .

The tangent space $T_0(K(\triangle))$ is identified with $[m, \triangle]$.

Since K acts isometrically for $<,>_p$ the orbit space $K(\Delta)$ with the metric induced from <,> is a symmetric space.

Remark 3.8. In [6] Ferus has also proved that if a spherical submanifold has P2-PNS or rather has parallel second fundamental form h. Then it is extrinsically symmetric space.

Corollary 3.9. The imbeddings of the symmetric R-spaces defined as before have P2-PNS.

Proof: Let $M := K / K_0$ be symmetric R-space and γ be a normal section of M at point $x = \gamma(0)$ in the direction of $\gamma(0) = X$. Then by Definition 3.1 we have

ad $(X)^{3}(\Delta) = ([X, [X, \Delta]]) = [X, \Delta].$

Combining this with (3.5), (3.7) we have $(\overline{\nabla}_{\mathbf{X}}\mathbf{h})$ (X, X) = 0. So by Theorem 2.2. M has P2-PNS.

ÖZET

Paralel ikinci temel forma sahip altmanifoldlar ilk defa Ferus tarafından sınıflandırılmış olup bunlara paralel altmanifoldlar da denir. Simetrik R-uzayları bu tip altmanifold örnekleridir [6,7].

Noktasal 2-düzlemsel normal kesitlere (P2-PNS) sahip altmanifoldların [3,4,5] de paralel, [1] de ise paralel olmama hali incelenmiştir.

KADRÍ ARSLAN

Bu çalışmada, verilen bir simetrik *R*-uzayı $M = K/K_0$ için Mnin ad (\triangle))³ = ad (\triangle) eşitliğini sağlayan bir \triangle elemanının yörüngesi olduğu ve bunların f: $M = K/K_0 \rightarrow P$, f $([k]) = \text{Ad}(k) \triangle$ şeklindeki gömmeleri P2-PNS şartını sağladığı gösterilmiştir.

REFERENCES

- ARSLAN, K. and WEST, A., Non-spherical Submanifolds with Pointwise 2-planar Normal Sections". To appear in Bull. London Math. Soc.
- BLOMSTROM, C., "Symmetric Immersions in PseudoRiemannian Space Forms". Lecture Notes in Maths. 1156, 30-5, (1885).
- [3] CHEN, B.Y., Geometry of Submanifolfs. Dekker, 1973.
- [4] -----., "Submanifolds with Planar normal Sections". Soochow J. Math. 7, 19-24, (1981).
- [5] ______, "Differential Geometry of Submanifolds and with Planar Normal Sections". Ann. Math. Pure. App. 130, 59-66, (1982).
- [6] FERUS, D., "Immersions with Parallel Second Fundamental Form". Math. Z. 140, 87-93, (1974).
- [7] -----, "Symmetric Submanifolds of Euclidean Space", Math. Ann. 247, 81-93, (1980).
- [8] KOBAYASHI, S., and NAGANO, K., "On Filtered Lie Algebras and Geometric structures I", Math. and Mec. 13, 875-907, (1964).
- [9] NAITOH, H., "Parallel Submanifolds of Complex Space Forms II" Nagoya Math. J., 91, 119-149, 1983.
- [10] STAKE, I., "On Representation and Complexifications of Symmetric Riemannian Spaces". Ann. Math. 71, 77-110, (1960).