
Commun. F«;. Sci. ünîv. Ank. Series A, 
V. 43. pp. 67-76 (1994

IMMERSIONS OF LORENTZİAN SUBMANIPOLDS İNTO R ” WITH
POINTWISE 2- PLANAR SECTIONS AND ON THE CIRCLES AND 
PSEUDO SPHERES IN LORENTZIAN GEOMETRY

C. MÜRATHAN —E. ÖZDAMAR

(Received Dec. 14, 1993; Accepted Sep. 9, 1994)

ABSTRACT

We planned this paper into two main sections. In the first section, we gjve an analog 
for the Lorentzian case of some characterizations given in [2 ]. There is no difference between 
the characterizations in both cases of inunersions with (pointwise) 2-planar normal sections 
of Riemannian and Lorentzian manifolds into R™ and R,”*, respectively, but the ptoofs.

In the second part of paper, we deal with the Tlıeorem. 3.2 given in [1 ] and show that
there must be some extra hypothesis to get the characterizations given as Theorems 2.1 and 
2.2 in the present paper.

INTRODUCTION

We have taken the references [1], [2] and [4] as a base even 
uotations, used here.

Let Rf be standart semi-Riemannian manifold that j denotes

the index of Rj™. y and y stand for the connections on Rj“ and Mı®, 
respectively, where Mı® c Rj™ and Mı® is a submanifold of Rj“ and 
has index i. The second fundamental form and shape operatör A of 
Mı® satisfy following equations;

VxY =VxY + h(X, Y) (0-1)

Vx^ =-A!;X + D^!: (0.2)
for every vector fields X, Y tauget to Mj® and normal to Mı®, that 
is, X, Y e y (Mı®) Ç •/ e (M)ı®.b, .^here D denotes the normal connection
on Mı®. If g is the semi-Riemannian metric 
the metric on Rj"^ then we have

g(A^X,Y) =g(h(X,Y), !:).

on Mi’i induced from

(0.3)

We denote mean curvature vector of M® by H. 

If the equation
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h (X, Y) g (X, Y) H (0.4)

satisfied for every X, Y e / (Mın) then Mj" is called totally umbilic
submanifold. Van der Waerden Bortolotti conneetion 
denbted by v-

on Mi“ will be

Let t be a ünite tangent vector to M at the point p. we define
E (p, t) as the affine subspace of Rj“^ passes through p and associated
with the vector subspace spanned by t and (TpMi“)-*- and denoted by 

E (p, t) = p + Sp {t, (TpMin)J-}.

The seetion curve Mi° A E (p, t) will denoted by ns (M, p, t) and
called normal seetion curve determined by t. For ns (M, p, t) there
are two important possibilities those are;

1) ns (M, p, t) wUl be 2—planar curve of Rj™.

2- ns (M, p, t) has 2-planar arc of Rj™ near p.

If the case 1) holds for every point p and for ali tangent vectors 
t then wc say Mı“ has 2-planar normal sections and if the case 2) holds 
for every point p and for ali tangent vectors t then we say Mı“ has po- 
intwise 2-planar normal sections.

Let Y ke the arc-length parametrization of tlıe curve ns (M, p,t). 
If M has (even pöintwise) 2—planar norrnal sections then we have

y'(O)AY^'(O)AY'"(O) O; (y(O) P)

[2], wbere A denotes the exterior product.

Given a curve a.. By kj(s) we denote the j-th curvature of a (s)
as in [1 ]. If kj(s) 0 for j 2 and if principal vector field Y and
binormal vector field Z are space like and if a is time like then we have 
the following Frenet forınulae along a;

— Ta(s)

Vi’T kjY

V-rY = k2T + k2Z

V^jZ = - k2Y

where y? denotes the covariant differentiation in Mj (see [!])• If a is 
space-like and Y is time-like then
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a<(s) = .T5t^s,

Vt'^ k2Y

VjY vr + kaZ 

VrZ=k2Y.

Finally, by a Carton frame {T, Y, Z) of a null curve a we mean a fa- 
mily of veetor fields T, Y, Z along « satisfying the following çonditions

a'(s) = ' 

g(T,Y) 

VtT = '

T, g (T; T) g(Y, Y)=0

-1, g (T, Z) = g (Y, Z) = 0, g (Z, Z) = 1

kıZ, VtY kjZ, yzıZ = kjT + kjY

Especially if kj and kj are positive constants along a then we cali the
eurve a a Cartan framed null eurve with eonstant curvatures [1 ].

Finally we recall two fundamental theorems as follöws :

Theorem. A: Let f ; Mr“ —* R”, be an isometric immersion of a
connected pseudo Riemannian manifold, n > 2. If for every non-null 
geodesie e of M, foe is a plane eurve in Rg®, then L is eonstant for ali 
unit vectors X e TM and we have the following cases:

0; Each foc is a part of an Şf Rj2 or an Sjl c Rj2^ each.
of radius (1 / \/L).

o: Each foc is a part of an H2 c Rj2 or an HI2 <= R2^» each
of radius (-l/.,ç/L). c

L = 0: Each foc is either a line segment or a curve in a degenerate
plane R2q, or R 2 1>1

where L = <h (X, X), h (X, X) [3].

L

E

Theorem. R: If the curve s —
fies the following third order differential equation.

y(s) time-like circle then y satis-

VxVxX - g (vxX, VxX) X = o (0.5)

where X (y (s)) y'(s) is the velocity vector of y, [1 ].

1. IMMERSIONS WITH (POINTWISE) PLANAR NORMAL 
SECTIONS OF LORENTZİAN SURFACES

The facts of being planar in Lorentzian spaee Rj®^ alike in the
case of Euelidean spaces, that is, a curve, time-like or space-like, is
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planar m-dimensional standart Lorentzian space, iff k2 = 0 
where k2 is the second curvature function of the curve. In addition 
we conciude that if p is a Cartan framed null curve in Lorentzian sur-
faces Mj in E3 and a planar curve then p is
if “kj = 0 and k2 = 0

a geodesic in Mp Conversly,
or

vectors p (ş)-p(O) and P'(d)
’kj = 0 and for a fixed point fi (0), the

are linearly dependent” then P is planar.

6a'

Let M®, (n > 2), be an n-dimensional Lorentzian submanifold of 
the Lorentzian space R®+™, (m > 1). If the normal seetion curve 
Y = ns (M, p, t) is space-like or time-like then yZjT = 0 and if y is null 
then YtT = Ât; (X 0) where; a. (0) p, y'(s) = T, y'(0) = teTpM.
If Y is Cartan framed null curve then ^,T =0.

Following eharaeterization of Lorentzian submanifolds with normal 
sections is an easy analog of the Riemannian case.

Theorem 1.1. Let M be a Lorentzian submanifold of the Lorent
zian space Rı"+P, (p > 1, n > 2). Then, M has pointwise planar normali 
sections iff

(VtM (t» t) k (t, t) = 0. (1-1)

Theorem 1.2. Let M® be an n-dimensional Lorentzian submani
fold of Rj®+1 (n > 2). If ali null curves in M® Cartan framed then for 
aU p e M® we have that.

“Vph^ 0 M” has pointwise 2-planar normal sections at
p and the point p is a vertex point for ali normal seetion curves pass 
through p”.

Of course, we have to point out one thing about the proof which
takes place for sufficiency of the theorem.

Since M®j has pointwise 2-planar normal sections, then

(Vtk) (t, t) A h (t, t) = 0

that gives us (^th) (T, T) = h (t, t). On the other hand if the point 
p is a vertex point so 

d2k 
ds (o) = 0

where k is the first curvature function of the normal seetion curve. 
Thus;
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or

d2k 
ds (o) g ((vth) (T, T), h (t, t)) = 0

g (C h (t, t), h (t, t)) = 0
or

î: g (h (t, t), h (t, t)) = 0

If = 0 then (^th) (t, t) =0. If 7^; 0 then define 

U = {t e TpM 1 h(t, t) =0}

but int (U) 0 so

(vth) (T, T) = Dth (T, T) - 2h (vtT, T)

(1.2)

that is

(Vth) (t, t) = 0.

Following theorem has the i 
we just express it here.

same proof of Theorem. 2 in [2 ] and

Theorem 1.3i Let M"j be an n-dimensional Lorentzian submani
fold of Lorentzian space (n > 2, m > 1). Then

(^th) (t, t) o for every t in TpM iff ^h = 01”

Corollary: Let M"j (n > 2) be an n-dimensional Lorentzian sub
manifold of the Lorentzian space Rj“+ı and assume that ali null curves
in MjD are Cartan framed. Then the following are equivalent

i) (vth) (t, t) = 0 for ali te TpM

ii) Vp^ = 0
İÜ) M has pointwise 2-planar normal sections and p is a vertex 

point for ali normal section curves that pass through p.

Now ■we give the following definition;

Definition 1.1. Let M^j (n > 2) be an n-dimensional Lorentzian 
submanifold of the Lorentzian space Rj®+1. If y(s) = ns (M, p, t) is a 
null curve and assume that y(s) is not Cartan framed then the number 
X (X 0) which is defined by

VtT = Xt, (y'(0) = t)

will be called planar normal section curvature of for the sake of simp- 
licity P.N.S curvature of y • Furthermore, the critical points of the 
function
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A; I- R, A(s) = g y"(s))
■will be called vertex points of 1 •

It is clear that, if y is not a null curve then the above definition 
coincides with the well known definition of vertex points and the cur- 
vature.

Theorem 1.4. Let M“j be an n-dimensional Lorentzian submani-
fold of the Lorentzian space Rı“+® 1). Let Y be the null(n > 2, m
normal seetion curve ns (M, p, t) such that y is not Cartan framed and 
has P.N.S. curvature X. Assume that;

V,VtT = Xıt, Xı 0, y'(s) = T 

and h (T, T) is eonstant along y then y(0) = p ’s a vertex point, furt- 
hermore

(VıM (L t) A h (t, t) = 0.

Proofs

Since

A(s) =g(Y"(s), y"(s))
= g(VTT, vtT) + g(h(T, T), h(T, T))

then

A'(s)
dA 
"dT (s) = 2ÂiX g(t, t) = 0

so the point p Y(O) İs a vertex point of y. On the other hand ;

(Vth) (T, T) = Dth (T, T) - 2h (t, vtT) = - 2Xh (t, t) 
so

(Vjı) ((T, T) A h (t, t) = -2Xh (t, t) A 11 (t, t) = (1 

2. A CHARACTERIZATION FOR SEMI-SPHERES IN Rı“

We belive that Theorem. 3.2 in [1] is false because of the method 
used for the proof which is based on “changing Y into -Y", where Y 
is the second Frenet vector of the curve. Since if one changes Y into 
-Y then the curve that has -Y as the second Frenet vector is not the
same curve any more which has Y as the second Frenet vector. Indeed, 
for the curve a which is as before we havc

•t-
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(Vx(S)Y(s))s_0 = (l/r) Y

and

Vx(s)Y(s) — k Yg / (2.1)
Vx(s)Y(s) — k Xg '

where k is a positive constant and Xg is space-like and first Frenet 
vector of the curve. But (X, -YJ does not satisfy the equations in (2.1). 
In fact, if

Vx(s)X(s) — k Yg

; (k > 0 and k is constant)

Vx(s)Y(g) — k Xg 

tlıeu

k (-Yg) = -57x(s)Xs

or

Vx(s)Y(s) — k Yg

tlıus

Vx(s)(-Y(s)) =--Vx(s)Y(s) -k Xg

that is

Vx(s)(-Y(s)) k Xs

tvhich ıncans that the equations in (2.1) does not hold for (X, -Y}.

Because of the above reason, we give the Theorem. 3.2 in [1] is 
false and we assert the following two theorems instead.

On the other hand, by using the bilinearity of g togetber with 
the eguations (0.1), (0.2) and (1.3) we obtain;

g (VxX, VxX) = g (vxX, VxX) + g (H, H) 

Thus, (2.3), (2.7) and (2.8) imply that

(2.7)

VxVxX - g (vxX, VxX) X = o 

that is Y is a time-like circle in Rj“+P. Since has parallei mean cur
vature vector field, we have
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D Jı (X, X) = DxH = O 

thus

(Vth) (X, X) = Dth (X, X) - 2h (t, vtX) = 0

and as a consequence of that we get

(^th) (t, t) A h (t, t) = 0

where denotes the Van der Waer(]cn-Bortolotti conneetion (see 
[2]). So M“2 has pointwise 2-planar normal sections because of The
orem A.

Proof of Theorem 2.2.

Hypothesis ii) together with Theorem. B implies that Mj“ has 
2-pIanar normal sections of the same curvature. Thus, Theorem. C 
holds for M“j. Because of that, every geodesic y in M"j with initial value 
y'(0) = X is an arc of an S * c Rj2 and each of radius is constant and 
has the value of

1 
' llh(x,x)iı ■

vrhere R’ and Rj2 stands for the planes that passes through y(0) and 
lies in Ty(q)M“j. This arc is the solution curve of the following equations

VxX = !! h (X, X) il Y
(2.1)

VxY ||h(X,X) IIX

with the initial values that

Xp = X

Yp =y
where x, y are orthouormal tangent vectors. Furthermore,

Y =-
h (X, X) 

||h(X, X) II

and that Yy(„) is uniquely determined and independent of the chosen 
X since im (h) =1.

Thus the curvature çenter

c =y(0) + 1
II h (x, x) 11 Yy(„)



IMMERSIONS OF LORENTZİAN SÜBMANIFOLDS 75

of Y is independent of the chosen x, that is e is eonstant. What wc get 
is that the geodesics pass through the point y(0) = p ile on the pseudo

1-sphere whose çenter is c and radius is
îl h (x, x)

Tlıus the point

y(0) p has a neighborhood in M"j that lies on a pseudosphere so
M"j is totally umbilic and has parallel mean curvature vector field.

Reniark:

Theorem. 4.2 and Theorem. 5.3 in [1 ] was proved by using the
method just deseribed at the beginning of this seetion when analyzing
the proof of Theorem. 3.3 in [1 ] So we think that those theorems stili
öpen problems to be solved In addition, Theorem 4.1. given in [6] 
is false. The reason follows.

If we set {X, Y) and {X, Y) as the Frenet frames of circles Cj 
and C2, respectively on the condition that

Cı(o) = p

c'ı (o) = u

(Vc' ®'ı) (o) = (k 0 and eonstant)

and

C2(o) =p

0'2(0) = u

(Vc',02) (o) = -kv; (k > 0 and eonstant)

as in [6]. For both cases we have

(V„B) (X, X) + 3k B (u, v) = 0

(Vu®) (X’ X) - 3k B (u, v) = 0.

But we can’t have

( V„B) (X, X) = 0

(1)

(2)

and

B (u, v) = 0

from (1) and (2), since B (X, X) B (X, X).
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