IMMERSIONS OF LORENTZIAN SUBMANIFOLDS INTO $R_{1}{ }^{m}$ WITH POINTWISE 2- PLANAR SECTIONS AND ON THE CIRCLES AND PSEUDO SPHERES IN LORENTZIAN GEOMETRY

C. MURATHAN - E. OZDAMAR

(Received Dec. 14, 1993; Accepted Sep. 9, 1994)

Abstract

We planned this paper into two main sections. In the first section, we give an analog for the Lorentzian case of some characterizations given in [2]. There is no difference between the characterizations in both cases of immersions with (pointwise) 2-planar normal sections of Riemannian and Lorentzian manifolds into \mathbf{R}^{m} and $\mathbf{R}_{1}{ }^{m}$, respectively, but the proofs.

In the second part of paper, we deal with the Theorem. 3.2 given in [1] and show that there must be some extra hypothesis to get the characterizations given as Theorems 2.1 and 2.2 in the present paper.

INTRODUCTION

We have taken the references [1], [2] and [4] as a base even notations, used here.

Let $\mathbf{R}_{\mathbf{j}}{ }^{m}$ be standart semi-Riemannian manifold that \mathbf{j} denotes the index of $\mathbf{R}_{\mathbf{j}}{ }^{\mathrm{m}} \cdot \tilde{\nabla}$ and ∇ stand for the connections on $\mathbf{R}_{\mathbf{j}}{ }^{\mathrm{m}}$ and $\mathbf{M}_{\mathrm{i}}{ }^{\mathrm{n}}$, respectively, where $M_{i}{ }^{n} \subset \mathbf{R}_{j}{ }^{m}$ and $M_{i}{ }^{n}$ is a submanifold of $\mathbf{R}_{j}{ }^{m}$ and has index i. The second fundamental form and shape operator A of $M_{i}{ }^{n}$ satisfy following equations;

$$
\begin{align*}
& \tilde{\nabla}_{\mathbf{x}} \mathbf{Y}=\nabla_{\mathbf{x}} \mathbf{Y}+\mathbf{h}(\mathbf{X}, \mathbf{Y}) \tag{0.1}\\
& \tilde{\nabla}_{\mathbf{x}} \zeta=-\mathbf{A}_{\zeta} \mathbf{X}+\mathbf{D}_{\mathbf{x}} \zeta \tag{0.2}
\end{align*}
$$

for every vector fields X, Y tanget to $M_{1}{ }^{n}$ and normal ζ to $M_{i}{ }^{n}$, that is, $X, Y \in \chi\left(M_{i}{ }^{n}\right) \zeta \chi \in(M)_{i}{ }^{n \perp}$, where D denotes the normal connection on $M_{i} n$. If g is the semi-Riemannian metric on $M_{i} n$ induced from the metric on $R_{j}{ }^{m}$ then we have

$$
\begin{equation*}
\mathbf{g}\left(\mathrm{A}_{\zeta} \mathrm{X}, \mathbf{Y}\right)=\mathrm{g}(\mathbf{h}(\mathbf{X}, \mathbf{Y}), \zeta) . \tag{0.3}
\end{equation*}
$$

We denote mean curvature vector of M^{n} by H.
If the equation

$$
\begin{equation*}
\mathrm{h}(\mathrm{X}, \mathrm{Y})=\mathrm{g}(\mathrm{X}, \mathrm{Y}) \mathrm{H} \tag{0.4}
\end{equation*}
$$

satisfied for every $\mathrm{X}, \mathrm{Y} \in \chi\left(\mathrm{M}_{\mathrm{i}}{ }^{\mathrm{n}}\right)$ then $\mathrm{M}_{\mathrm{i}}{ }^{\mathrm{n}}$ is called totally umbilic submanifold. Van der Waerden Bortolotti connection on $\mathrm{M}_{\mathbf{i}}{ }^{\mathrm{n}}$ will be denoted by $\bar{\nabla}$.

Let t be a unite tangent vector to M at the point p. we define $\mathrm{E}(\mathrm{p}, \mathrm{t})$ as the affine subspace of $\mathbf{R}_{\mathrm{j}}{ }^{\mathrm{m}}$ passes through p and associated with the vector subspace spanned by t and $\left(T_{p} M_{i}{ }^{n}\right) \perp$ and denoted by

$$
E(p, t)=p+S_{p}\left\{t,\left(T_{p} M_{i}{ }^{n}\right) \perp\right\} .
$$

The section curve $M_{i}{ }^{n} \cap E(p, t)$ will denoted by ns (M, p, t) and called normal section curve determined by t. For $n s(M, p, t)$ there are two important possibilities those are;

1) ns ($M, \mathrm{p}, \mathrm{t}$) will be 2-planar curve of $\mathbf{R}_{\mathrm{j}}{ }^{\mathrm{m}}$.

2- ns (M, p, t) has 2-planar are of $\mathbf{R}_{\mathbf{3}}^{\mathrm{m}}$ near p .
If the case 1) holds for every point p and for all tangent vectors: t then we say $M_{i}{ }^{n}$ has 2-planar normal sections and if the case 2) holds for every point p and for all tangent vectors t then we say $M_{i}{ }^{n}$ has pointwise 2-planar normal sections.

Let γ be the arc-length parametrization of the curve $n s(M, p, t)$. If M has (even pointwise) 2 -planar normal sections then we have

$$
\gamma^{\prime}(0) \Lambda \gamma^{\prime \prime}(0) \Lambda \gamma^{\prime \prime \prime}(0)=0 ;(\gamma(0)=p)
$$

[2], where Λ denotes the exterior prodact.
Given a curve α. By $\mathrm{k}_{\mathrm{j}}(\mathrm{s})$ we denote the j -th curvature of $\alpha(\mathrm{s})$ as in [1]. If $\mathrm{k}_{\mathrm{j}}(\mathrm{s})=0$ for $\mathrm{j}>2$ and if principal vector field Y and binormal vector field Z are space like and if α is time like then we have the following Frenet formulae along α :

$$
\begin{aligned}
& \alpha^{\prime}(\mathrm{s})=\mathrm{T}_{\alpha(\mathrm{s})} \\
& \nabla_{\mathrm{r}} \mathrm{~T}=\mathrm{k}_{2} \mathrm{Y} \\
& { }_{{ }_{\mathrm{r}}} \mathrm{Y}=\mathrm{k}_{2} \mathbf{T}+\mathrm{k}_{2} \mathrm{Z} \\
& \nabla_{\mathrm{T}} \mathrm{Z}=-\mathrm{k}_{2} \mathrm{Y}
\end{aligned}
$$

where ∇ denotes the covariant differentiation in M_{1} (see [1]). If α is space-like and Y is time-like then

$$
\begin{aligned}
& \alpha^{\prime}(\mathrm{s})=\mathrm{T}_{\chi_{1}(\mathrm{~s})} \\
& \nabla_{\mathrm{T}} \mathbf{T}=\mathbf{k}_{2} \mathbf{Y} \\
& \nabla_{\mathrm{T}} \mathbf{Y}=\mathbf{k}_{2} \mathbf{T}+\mathbf{k}_{2} \mathrm{Z} \\
& \nabla_{\mathrm{T}} \mathrm{Z}=\mathbf{k}_{2} \mathbf{Y}
\end{aligned}
$$

Finally, by a Carton frame $\{T, Y, Z\}$ of a null curve α we mean a family of vector fields T, Y, Z along α satisfying the following conditions

$$
\begin{aligned}
& \alpha^{\prime}(\mathrm{s})=\mathrm{T}, \mathrm{~g}(\mathrm{~T}, \mathrm{~T})=\mathrm{g}(\mathrm{Y}, \mathrm{Y})=\mathbf{0} \\
& \mathrm{g}(\mathrm{~T}, \mathrm{Y})=-\mathbf{l}, \mathrm{g}(\mathbf{T}, \mathrm{Z})=\mathrm{g}(\mathrm{Y}, \mathrm{Z})=0, \mathrm{~g}(\mathrm{Z}, \mathrm{Z})=\mathbf{1} \\
& \nabla_{\mathrm{T}} \mathbf{T}=\mathrm{k}_{1} \mathrm{Z}, \nabla_{\mathrm{T}} \mathbf{Y}=\mathbf{k}_{2} \mathrm{Z}, \nabla_{\mathrm{T}} \mathbf{Z}=\mathbf{k}_{2} \mathbf{T}+\mathbf{k}_{1} \mathbf{Y}
\end{aligned}
$$

Especially if k_{1} and k_{2} are positive constants along α then we call the curve α a Cartan framed null curve with constant curvatures [1].

Finally we recall two fundamental theorems as follows:
Theorem. A: Let $f: M_{r}{ }^{n} \rightarrow \mathbf{R}^{n_{s}}$ be an isometric immersion of a connected pseudo Riemannian manifold, $\mathbf{n} \geq 2$. If for every non-null geodesic \mathbf{c} of M , foc is a plane curve in $\mathbf{R}_{\mathrm{s}}{ }^{n}$, then L is constant for all unit vectors $X \in T M$ and we have the following cases:
$\mathrm{L}>0$: Each foc is a part of an $\mathrm{S} 1 \subset \mathbf{R}_{1}{ }^{2}$ or an $\mathrm{S}_{1}{ }^{1} \subset \mathbf{R}_{1^{2}}$, each of radius $(1 / \sqrt{\mathrm{L}})$.
$\mathrm{L}<0$: Each foc is a part of an $\mathrm{H}_{2} \subset \mathbf{R}_{1}{ }^{2}$ or an $\mathbf{H}_{2} \subset \mathbf{R}_{2}{ }^{2}$, each of radius $(-1 / \sqrt{L})$.
$L=0:$ Each foc is either a line segment or a curve in a degenerate plane $\mathbf{R} 2_{0,1}$ or $\mathbf{R}_{1}{ }_{1,1}$
where $L=<h(X, X), h(X, X)>[3]$.
Theorem. B: If the curve $s \rightarrow \gamma(s)$ time-like circle then γ satisfies the following third order differential equation,

$$
\begin{equation*}
\nabla \mathrm{x} \nabla_{\mathrm{x}} \mathrm{X}-\mathrm{g}\left(\nabla_{\mathrm{x}} \mathbf{X}, \nabla_{\mathrm{x}} \mathrm{X}\right) \mathbf{X}=0 \tag{0.5}
\end{equation*}
$$

where $X(\gamma(s))=\gamma^{\prime}(s)$ is the velocity vector of $\gamma,[1]$.

1. IMMERSIONS WITH (POINTWISE) PLANAR NORMAL SECTIONS OF LORENTZIAN SURFACES

The facts of being planar in Lorentzian space $\mathbf{R}_{1}{ }^{m}$ alike in the case of Euclidean spaces, that is, a curve, time-like or space-like, is
planar $\mathbf{R}_{1}{ }^{m}$, m-dimensional standart Lorentzian space, iff $\mathbf{k}_{2}=0$ where k_{2} is the second curvature function of the curve. In addition we conclude that if β is a Cartan framed null curve in Lorentzian surfaces M_{1} in E^{3} and a planar curve then β is a geodesic in M_{1}. Conversly, if " $\mathbf{k}_{\mathbf{1}}=0$ and $\mathrm{k}_{\mathbf{2}}=0$ " or " $\mathrm{k}_{1}=0$ and for a fixed point $\beta(0)$, the vectors $\beta(s)-\beta(0)$ and $\beta^{\prime}(0)$ are linearly dependent" then β is planar.

Let \mathbf{M}^{n}, ($\mathrm{n} \geq 2$), be an n -dimensional Lorentzian submanifold of the Lorentzian space $R^{n+m},(m \geq 1)$. If the normal section curve $\gamma=\mathrm{ns}(\mathrm{M}, \mathrm{p}, \mathrm{t})$ is space-like or time-like then $\nabla_{\mathrm{t}} \mathrm{T}=0$ and if γ is null then $\nabla_{\mathfrak{t}} \mathrm{T}=\lambda \mathrm{t} ;(\lambda \neq 0)$ where; $\alpha(0)=\mathbf{p}, \gamma^{\prime}(\mathrm{s})=\mathrm{T}, \gamma^{\prime}(0)=\mathbf{t} \in \mathrm{T}_{\mathrm{p}} \mathrm{M}$. If γ is Cartan framed null curve then $\nabla_{\mathfrak{t}} T=0$.

Following characterization of Lorentzian submanifolds with normal sections is an easy analog of the Riemannian case.

Theorem 1.1. Let M be a Lorentzian submanifold of the Lorentzian space $\mathbf{R}_{1}{ }^{n+p},(p \geq 1, n \geq 2)$. Then, M has pointwise planar normall sections iff

$$
\begin{equation*}
\left(\bar{\nabla}_{\mathrm{t}} \mathrm{~h}\right)(\mathrm{t}, \mathrm{t}) \Lambda \mathbf{h}(\mathrm{t}, \mathrm{t})=0 . \tag{1.1}
\end{equation*}
$$

Theorem 1.2. Let M^{n} be an n-dimensional Lorentzian submanifold of $\mathbf{R}_{1}{ }^{n+1}(n \geq 2)$. If all null curves in M^{n} Cartan framed then for all $p \in M^{n}$ we have that.
$" \widetilde{\nabla}_{\mathrm{p}} \mathrm{h} \equiv 0 \Leftrightarrow \mathrm{M}^{\mathrm{n}}$ has pointwise 2-planar normal sections at p and the point p is a vertex point for all normal section curves pass through p ".

Of course, we have to point out one thing about the proof which takes place for sufficiency of the theorem.

Since Mn_{1} has pointwise 2-planar normal sections, then

$$
\left(\bar{\nabla}_{\mathbf{t}} \mathbf{h}\right)(\mathrm{t}, \mathrm{t}) \Lambda \mathrm{h}(\mathrm{t}, \mathrm{t})=0
$$

that gives us $\left(\bar{\nabla}^{\mathrm{t}} \mathrm{h}\right)(\mathrm{T}, \mathrm{T})=\zeta \mathrm{h}(\mathrm{t}, \mathrm{t})$. On the other hand if the point p is a vertex point so

$$
\frac{d^{2} k}{d s}(0)=0
$$

where k is the first curvature function of the normal section curve. Thus;

$$
\frac{\mathrm{d}^{2} \mathrm{k}}{\mathrm{ds}}(\mathrm{o})=\mathrm{g}((\bar{\nabla} \mathrm{t} \mathbf{h})(\mathrm{T}, \mathrm{~T}), \mathrm{h}(\mathrm{t}, \mathrm{t}))=0
$$

or

$$
\mathrm{g}(\zeta \mathrm{~h}(\mathrm{t}, \mathrm{t}), \mathrm{h}(\mathrm{t}, \mathrm{t}))=0
$$

or

$$
\begin{equation*}
\zeta \mathrm{g}(\mathrm{~h}(\mathrm{t}, \mathrm{t}), \mathrm{h}(\mathrm{t}, \mathrm{t}))=0 \tag{1.2}
\end{equation*}
$$

If $\zeta=0$ then $(\bar{\nabla} \mathbf{t})(\mathbf{t}, \mathbf{t})=\mathbf{0}$. If $\zeta \neq 0$ then define

$$
\mathbf{U}=\left\{\mathbf{t} \in \mathbf{T}_{\mathbf{p}} \mathbf{M} \mid \mathbf{h}(\mathbf{t}, \mathbf{t})=0\right\}
$$

but int (U) $\neq \varnothing$ so
$(\bar{\nabla} \mathrm{t} h)(\mathrm{T}, \mathrm{T})=\mathrm{D}_{\mathrm{t}} \mathrm{h}(\mathrm{T}, \mathrm{T})-2 \mathrm{~h}\left(\nabla_{\mathrm{t}} \mathrm{T}, \mathrm{T}\right)$
that is

$$
(\bar{\nabla} \mathrm{t} h)(\mathrm{t}, \mathrm{t})=0 .
$$

Following theorem has the same proof of Theorem. 2 in [2] and we just express it here.

Theorem 1.3. Let $M_{1}{ }_{1}$ be an n-dimensional Lorentzian submanifold of Lorentzian space $\mathbf{R}_{1}{ }^{n+m}(n \geq 2, m \geq 1)$. Then

$$
"\left(\bar{\nabla}^{\mathrm{t}} \mathrm{~h}\right)(\mathrm{t}, \mathrm{t})=0 \text { for every } \mathrm{t} \text { in } \mathbf{T}_{\mathrm{p}} \mathrm{M} \text { iff } \bar{\nabla}^{\mathrm{h}} \equiv 0 "
$$

Corollary: Let $\mathrm{Mn}_{1}(\mathrm{n} \geq 2)$ be an n -dimensional Lorentzian submanifold of the Lorentzian space $\mathbf{R}_{1}{ }^{\mathrm{n}+1}$ and assume that all null curves in $M_{1}{ }^{n}$ are Cartan framed. Then the following are equivalent
i) $(\overline{\bar{\nabla}} \mathrm{th})(\mathrm{t}, \mathrm{t})=0$ for all $\mathrm{t} \in \mathrm{T}_{\mathrm{p}} \mathrm{M}$
ii) $\bar{\nabla}^{p h} \equiv 0$
iii) M has pointwise 2-planar normal sections and p is a vertex point for all normal section curves that pass through p.

Now we give the following definition;
Definition 1.1. Let $\mathrm{Mn}_{1}(\mathbf{n} \geq 2)$ be an n-dimensional Lorentzian submanifold of the Lorentzian space $\mathbf{R}_{1}{ }^{\mathbf{n}+1}$. If $\gamma(\mathrm{s})=\mathbf{n s}(\mathbf{M}, \mathbf{p}, \mathbf{t})$ is a null curve and assume that $\gamma(s)$ is not Cartan framed then the number $\lambda(\lambda \neq 0)$ which is defined by

$$
\nabla \mathrm{t} \mathbf{T}=\lambda \mathrm{t},\left(\gamma^{\prime}(0)=\mathrm{t}\right)
$$

will be called planar normal section curvature of for the sake of simplicity P.N.S curvature of γ. Furthermore, the critical points of the function

$$
\mathrm{A}: \mathrm{I} \rightarrow \mathrm{R}, \mathrm{~A}(\mathrm{~s})=\mathrm{g}\left(\gamma^{\prime \prime}(\mathrm{s}), \gamma^{\prime \prime}(\mathrm{s})\right)
$$

will be called vertex points of γ.
It is clear that, if γ is not a null curve then the above definition coincides with the well known definition of vertex points and the curvature.

Theorem 1.4. Let $\mathrm{M}^{\mathrm{n}}{ }_{1}$ be an n-dimensional Lorentzian submanifold of the Lorentzian space $\mathbf{R}_{1}{ }^{\mathbf{n}+\mathrm{ml}}(\mathbf{n} \geq 2, \mathrm{~m} \geq \mathbf{l})$. Let γ be the null normal section curve ns (M, p, t) such that γ is not Cartan framed and has P.N.S. curvature λ. Assume that;

$$
\nabla_{\mathrm{t}} \nabla \mathrm{~T} \mathrm{~T}=\lambda_{1} \mathrm{t}, \lambda_{1} \neq 0, \gamma^{\prime}(\mathrm{s})=\mathrm{T}
$$

and $h(T, T)$ is constant along γ then $\gamma(0)=p$ is a vertex point, furthermore

$$
\left(\bar{\nabla}_{\mathbf{t}} \mathrm{h}\right)(\mathrm{t}, \mathrm{t}) \Lambda \mathrm{h}(\mathrm{t}, \mathrm{t})=0 .
$$

Proof:

Since

$$
\begin{aligned}
\mathrm{A}(\mathrm{~s}) & =\mathrm{g}\left(\gamma^{\prime \prime}(\mathrm{s}), \gamma^{\prime \prime}(\mathrm{s})\right) \\
& =\mathrm{g}\left(\nabla \mathrm{~T} T, \nabla \mathrm{~T}^{\mathrm{T}}\right)+\mathrm{g}(\mathrm{~h}(\mathrm{~T}, \mathrm{~T}), \mathrm{h}(\mathrm{~T}, \mathrm{~T}))
\end{aligned}
$$

then

$$
A^{\prime}(s)=\frac{d A}{d s}(s)=2 \lambda_{1} \lambda g(t, t)=0
$$

so the point $p=\gamma(0)$ is a vertex point of γ. On the other hand

$$
(\bar{\nabla}, \mathbf{h})(\mathbf{T}, \mathbf{T})=\mathrm{D}_{\mathrm{t}} \mathrm{~h}(\mathrm{~T}, \mathbf{T})-2 \mathbf{h}\left(\mathbf{t}, \nabla_{\mathrm{t}} \mathbf{T}\right)=-2 \lambda \mathrm{~h}(\mathbf{t}, \mathrm{t})
$$

so

$$
\left(\bar{\nabla}_{\mathrm{t}} \mathrm{~h}\right)((\mathrm{T}, \mathrm{~T}) \Lambda \mathrm{h}(\mathrm{t}, \mathrm{t})=-2 \lambda \mathrm{~h}(\mathrm{t}, \mathrm{t}) \Lambda \mathrm{h}(\mathrm{t}, \mathrm{t})=0
$$

2. A CHARACTERIZATION FOR SEMI-SPHERES IN $\mathbf{R}_{1}{ }^{\text {m }}$

We belive that Theorem. 3.2 in [1] is false because of the method used for the proof which is based on "changing Y into $-\mathrm{Y}^{\prime}$ ", where Y is the second Frenet vector of the curve. Since if one changes Y into $-Y$ then the curve that has $-Y$ as the second Frenet vector is not the same curve any more which has Y as the second Frenet vector. Indeed, for the curve α which is as before we have

$$
\left(\nabla x(s) X_{(s)}\right)_{s=0}=(1 / r) Y
$$

and

$$
\left.\begin{array}{l}
\nabla \mathrm{x}(\mathrm{~s}) \mathrm{X}_{(\mathrm{s})}=\mathrm{k} \mathrm{Y}_{\mathrm{s}} \tag{2.1}\\
\nabla \mathrm{x}(\mathrm{~s}) \\
\mathrm{Y}_{(\mathrm{s})}=\mathrm{k} \mathrm{X}_{\mathrm{s}}
\end{array}\right\}
$$

where k is a positive constant and X_{s} is space-like and first Frenct vector of the curve. But $\{\mathrm{X},-\mathrm{Y}\}$ does not satisfy the equations in (2.1). In fact, if

$$
\begin{aligned}
& \nabla X_{(s)} X_{(s)}=k Y_{s} \\
& \nabla \mathrm{X}_{(\mathrm{s})} Y_{(\mathrm{s})}=\mathrm{k} \mathrm{X}_{\mathrm{s}}
\end{aligned} \quad ;(\mathrm{k}>0 \text { and } \mathrm{k} \text { is constant })
$$

then

$$
\mathrm{k}\left(-\mathrm{Y}_{\mathrm{s}}\right)=-\nabla \mathrm{x}(\mathrm{~s}) \mathrm{X}_{\mathrm{s}}
$$

or

$$
\nabla_{x(5)} Y_{(5)}=k Y_{s}
$$

thus

$$
\nabla \mathbf{X}(\mathrm{s})\left(-\mathrm{Y}_{(\mathrm{s})}\right)=-\nabla \mathrm{X}(\mathrm{~s}) \mathrm{Y}_{(\mathrm{s})}=-\mathrm{k} \mathrm{X}_{\mathrm{s}}
$$

that is

$$
\nabla \mathrm{x}(\mathrm{~s})\left(-\mathrm{Y}_{(\mathrm{s})}\right) \neq \mathrm{k} \mathrm{X}_{\mathrm{s}}
$$

which means that the equations in (2.1) does not hold for $\{\mathbf{X},-\mathbf{Y}\}$.
Because of the above reason, we give the Theorem. 3.2 in [1] is false and we assert the following two theorems instead.

On the other hand, by using the bilinearity of g together with the equations (0.1), (0.2) and (1.3) we obtain;

$$
\begin{equation*}
\mathrm{g}\left(\tilde{\nabla_{\mathrm{x}}} \mathrm{X}, \tilde{\nabla_{\mathrm{x}}} \mathrm{X}\right)=\mathrm{g}\left(\nabla_{\mathrm{x}} \mathrm{X}, \nabla_{\mathrm{x}} \mathrm{X}\right)+\mathrm{g}(\mathrm{H}, \mathrm{H}) \tag{2.7}
\end{equation*}
$$

Thus, (2.3), (2.7) and (2.8) imply that

$$
\tilde{\nabla} \tilde{\nabla}_{\mathrm{V}} \mathrm{X}-\mathrm{g}(\tilde{\nabla} \mathrm{x} \mathrm{X}, \tilde{\nabla} \mathrm{x} X) \mathrm{X}=0
$$

that is γ is a time-like circle in $\mathbf{R}_{1}{ }^{\mathbf{n}+\mathrm{p}}$. Since $\mathbf{M n}_{1}$ has parallel mean curvature vector field, we have

$$
\mathrm{D}_{\mathrm{x}} \mathrm{~h}(\mathrm{X}, \mathrm{X})=\mathrm{D}_{\mathrm{x}} \mathrm{H}=0
$$

thus

$$
(\bar{\nabla} t h)(X, X)=D_{\mathfrak{t}} h(X, X)-2 h(t, \nabla t X)=0
$$

and as a consequence of that we get

$$
(\bar{\nabla} t h)(t, t) \Lambda h(t, t)=0
$$

where $\bar{\nabla}$ denotes the Van der Waerden-Bortoloti connection (see [2]). So Mn_{2} has pointwise 2-planar normal sections because of Theorem A.

Proof of Theorem 2.2.

Hypothesis ii) together with Theorem. B implies that $M_{1}{ }^{n}$ has 2-planar normal sections of the same curvature. Thus, Theorem. C holds for Mn_{1}. Because of that, every geodesic γ in Mn_{1} with initial value $\gamma^{\prime}(0)=x$ is an arc of an $S^{1} \subset \mathbf{R}_{1}{ }^{2}$ and each of radius is constant and has the value of

$$
\frac{1}{\|\mathbf{h}(\mathbf{X}, \mathbf{X})\|}
$$

where \mathbf{R}^{2} and $\mathbf{R}_{1}{ }^{2}$ stands for the planes that passes through $\gamma(0)$ and lies in $\mathrm{T}_{\gamma(0)} \cdot \mathbf{M n}_{1}$. This arc is the solution curve of the following equations

$$
\left.\begin{array}{l}
\tilde{\nabla}_{\mathbf{x}} \mathbf{X}=\|\mathbf{h}(\mathbf{X}, \mathbf{X})\| \mathbf{Y} \tag{2.1}\\
\tilde{\nabla}_{\mathbf{x}} \mathbf{Y}=\|\mathbf{h}(\mathbf{X}, \mathbf{X})\| \mathbf{X}
\end{array}\right\}
$$

with the initial values that

$$
\begin{aligned}
& X_{p}=\mathrm{x} \\
& \mathrm{Y}_{\mathrm{p}}=\mathrm{y}
\end{aligned}
$$

where x, y are orthonormal tangent vectors. Furthermore,

$$
Y=-\frac{\mathbf{h}(\mathbf{X}, \mathbf{X})}{\|\mathbf{h}(\mathbf{X}, \mathbf{X})\|}
$$

and that $Y_{\gamma(o)}$ is uniquely determined and independent of the chosen x since $\mathrm{im}(\mathrm{h})=1$.

Thus the curvature center

$$
\mathbf{C}=\gamma(0)+\frac{1}{\|\mathrm{~h}(\mathrm{x}, \mathrm{x})\|} \mathbf{Y}_{\gamma(0)}
$$

of γ is independent of the chosen x, that is c is constant. What we get is that the geodesics pass through the point $\gamma(0)=\mathbf{p}$ ile on the pseudo - sphere whose center is c and radius is $\frac{1}{\|h(x, x)\|}$. Thus the point $\gamma(0)=p$ has a neighborhood in M^{n}, that lies on a pseudosphere so M_{1} is totally umbilic and has parallel mean curvature vector field.

Remark:

Theorem. 4.2 and Theorem. 5.3 in [1] was proved by using the method just described at the beginning of this section when analyzing the proof of Theorem. 3.3 in [1] So we think that those theorems still open problems to be solved In addition, Theorem 4.1. given in [6] is false. The reason follows.

If we set $\{X, Y\}$ and $\{\tilde{X}, \tilde{Y}\}$ as the Frenet frames of circles c_{1} and c_{2}, respectively on the condition that

$$
\begin{aligned}
& \mathbf{c}_{1}(\mathrm{o})=\mathbf{p} \\
& \mathbf{c}_{1}^{\prime}(\mathrm{o})=\mathbf{u} \\
& \left(\nabla_{\mathbf{c}_{\mathbf{1}}^{\prime}} \mathbf{c}^{\prime}{ }_{1}\right)(\mathrm{o})=\mathbf{k v} ;(\mathbf{k}>0 \text { and constant })
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathbf{c}_{2}(\mathrm{o})=\mathrm{p} \\
& \mathbf{c}_{2}^{\prime}(\mathrm{o})=\mathrm{u} \\
& \left(\nabla_{\mathbf{c}^{\prime}} \mathbf{c}_{2}\right)(\mathrm{o})=-\mathrm{kv} ;(\mathrm{k}>0 \text { and constant })
\end{aligned}
$$

as in [6]. For both cases we have

$$
\begin{align*}
& \left(\bar{\nabla}_{\mathbf{u}} B\right)(X, X)+3 k B(u, v)=0 \tag{1}\\
& \left(\bar{\nabla}_{\mathbf{u}} B\right)(X, X)-3 k B(u, v)=0 \tag{2}
\end{align*}
$$

But we can't have

$$
\left(\widetilde{\nabla}_{\mathbf{u}} \mathrm{B}\right)(\mathrm{X}, \mathrm{X})=0
$$

and

$$
\mathbf{B}(\mathrm{u}, \mathrm{v})=0
$$

from (1) and (2), since $B(\tilde{X}, \tilde{X}) \neq B(X, X)$.

REFERENCES

[1] IKAWA, T., On curves and submanifolds in an indefinite-Riemannian Manifold. Tsukuba. J. Math. Vol. 9. No. 2 (1985). 353-371.
[2] CEEN. B., Submanifolds with planar normal sections. Soochow Journal of Mathematics. Volume. 7. December 1981. 19-24.
[3] BLOMSTROM, C., Planar geodesic immersions in Pseudo-Euclidean Space. Math. Ann., 274, 585-598. (1986).
[4] J. DEPREZ., P. VERHEYEN., Immersions with circular normal sections of produc immersions. Geometriae Dedicata. 20 (1986), 335-344.
[5] MURATHAN, C., OZDAMAR, E., On Circles and Spheres in Geometry. Communications, Fac. Sci. 1 'Univ. d’ Ankara, seri Al, Vol. (41) 1992.
[6] N. ABE., Y. NAKANISHI., and S. YAMAGUCHI., Circles and Spheres in Pseado-Riemannian Geometry. Aequationes Mathematicae 39 (1990) 134-145.
[7] KIM. YOUNG HO., Surfaces in Pseudo-Educlidean Space With Planar Normal Sections. Journal of Geometry. Vol. 35 (1989, 120-131.

