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ABSTRACT

We planned this paper into two main sections. In the first section, we give an analog
for the Lorentzian case of some characterizations given in [2]. There is no difference between
the characterizations in both cases of immersions with (pointwise) 2-planar normal sections
of Riemannian and Lorentzian manifolds into R™ and R ™, respectively, but the proofs.

In the second part of paper, we deal with the Theorem. 3.2 given in [1] and show that
there must be some extra hypothesis to get the characterizations given as Theorems 2.1 and
2.2 in the present paper.

INTRODUCTION

We have taken the references [1], [2] and [4] as a base even
notations, used here,

Let R;™ be standart semi-Riemannian manifold that j denotes

the index of R;™. ; and y stand for the connections on Rj™ and M;®,
respectively, where M;» < Ry™ and M;® is a submanifold of R;™ and
has index i. The second fundamental form and shape operator A of
M;» satisfy following equations;
vxY =vxY + h(X,Y) (0.1)
vkl = - AX + DL (0.2)
for every vector fields X, Y tanget to M;® and normal { to M;?, that

is, X, Y € 3 (M2) 3 e (M);®L, where D denotes the normal connection
on Mn. If g is the semi-Riemannian metric on M;? induced from
the metric on Rj™ then we have

g(AX,Y) =g (h(X,Y), ). (0.3)
We denote mean curvature vector of M2 by H,

If the equation
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h(X,Y) =g(X,Y)H (0.4)

satisfied for every X, Y & y (M;?) then M;® is called totally umbilic
submanifold. Van der Waerden Bortolotti connectlon on M;n will be
denoted by V. :

Let t be a unite tangent vector to M at the polint p. we define
E (p, t) as the affine subspace of Ry™ passes through p and associated
with the vector subspace spanned by t and (TpM;t)+ and denoted by

E(p,t) =p -+ Sp {t, (TyMpm)L}-

The section curve M2 N E (p, t) will denoted by ns (M, p, t) and
called normal section curve determined by t. For ns (M, p, t) there
are two ~important poss1b1htles those are;

1) ns (M, P t) will be 2-planar curve of Rj™.
2— ns (M, p, t) has 2-planar arc of R;™ near p.

If the case 1) holds for every point p and for all tangent vectors:
t then we say M;2 has 2—planar normal sections and if the case 2) holds
for every point p and for all tangent vectors t then we say M has po-
intwise 2-planar normal sections.

Let vy be the arc-length parametrization of the curve ns (M, p,t).
If M has (even pointwise) 2—planar. normal sections then we have

- 7'(0) Ay"(0) Ay"(0) = 0; (y(0) =p)
[2], where A denotes the exterior prodact.

Given a curve o. By kj(s) we denote the j—th curvature of « (s)
as in [1]. If ki(s) = 0 for j > 2 and if principal vector field Y and
binormal vector field Z are space like and if « is time like then we have
the following Frenet formulae along «:

Ca(s) = Tagy
v.T =kY
vaY = k,T + kyZ
vl =-kY

where y denotes the covariant differentiation in M; (see [1]). If « is
space—like and Y is time-like then
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a'(8) = Ty,
v, T =k,Y
voY = kT & koZ
viZ = kY.

Finally, by a Carton frame {T, Y, Z} of a null curve « we mean a fa-
mily of vector fields T, Y, Z along « satisfying the following conditions

() =T, g(T,T) =g(Y,Y) =0
g(T.Y) =-1, g(T.Z) =g(Y,2) =0, g(Z Z) =1
vil =kZ, v;Y =kyZ, yrZ =k,T + kY

Especially if k; and k, are positive constants along « then we call the
curve o a Cartan framed:null curve with constant curvatures {1 ].

Finally we recall: two fundamental theorems as follows:
Theorem. A: Let f: M;» —~ R0, be an isometric immersion ) Of, a\,
connected pseudo Riemannian manifold, n > 2. If for every non-null
geodesic ¢ of M, foc is a plane curve in R¢?, then L is constant for all
unit vectors X ¢ TM and we have the followmg cases '
‘ ‘L > 0: Ea.ch foc is a part of an S! < Ry2 or. an Sll c Rl 5 each
of radius (1/\/L) : '
- L < 0: Each foc is a part of an H2 < R;2 or an Hl, < R,2, each
of radius (-1/4/L). Gt
L = 0: Each foc is either a line segment or a curve in a degenerate
plane R2,, or R2,
where L = <h (X, X), h (X, X)> [3].
Theorem. B: If the curve s — vy(s) time-like circle then vy satis-
fies the following third order differential equation,

VxVxX = g (VxX, vxX) X =0 (0.5)
where X (v (s)) = Y( ) 18 the Velomty vector of «{, [1] o
1. IMMERSIONS WITH (POINTWISE) PLANAR NORMAL
SECTIONS OF LORENTZIAN SURFACES

The facts of being planar in Lorentzian space R;™ alike in the
case of Euclidean spaces, that is, a curve, time-like or space-like, is
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planar R;™, m-dimensional standart Lorentzian space, iff k, =0
where k, is the second curvature function of the curve. In addition
we conclude that if 8 is a Cartan framed null curve in Lorentzian sur-
faces M, in E3 and a planar curve then B is a geodesic in M,. Conversly,
if “k; =0 and k; =0 or “k; = 0 and for a fixed point B (0), the
vectors {8 (s)-f(0) and 3’(0) are linearly dependent” then B is planar.

Let M2, (n > 2), be an n—dimensional Lorentzian submanifold of
the Lorentzian space RP+M, (m > 1). If the normal section curve
v = ns (M, p, t) is space-like or time-like then y,T= 0 and if v is null
then ¢, T =2xt; (A £ 0) where; « (0) =p, y'(s) =T, v(0) = teT,M.
If 4 is Cartan framed null curve then y,T = 0.

Following characterization of Lorentzian submanifolds with normal
sections is an easy analog of the Riemannian case.

Theorem 1.1. Let M be a Lorentzian submanifold of the Lorent-
zian space R\"*P, (p > 1, n > 2). Then, M has pointwise planar normall
sections iff

(V) (t, t) Ah(t, 1) =0. (1.1)

Theorem 1.2. Let M2 be an n-dimensional Lorentzian submani-
fold of ‘Rlnﬂ (n > 2). If all null curves in M? Cartan framed then for
all p e M2 we have that.

© “gph =0 < M" has pointwise 2-planar normal sections at
p and the point p is a vertex point for all normal section curves pass
through p”.

Of course, we have to point out one thing about the proof which
takes place for sufficiency of the theorem.

Since Mn, has pointwise 2—planar normal sections, then
(gyh) (1, t) Ah(t,t) =0
that gives us (yth) (T, T) = T h(t, ). On the other hand if the point

P is a vertex point so
dzk
ds

(o) =0

where k is the first curvature function of the normal section curve.
Thus;
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Tk (o) =g (§ih) (T, T), b (1. 1)) =0

or

| g(Zh(t, 1), h(t 1) =0

or

- Cgh(tt), h(tt) =0 (1.2)

If £ =0 then (yth) (t,t) = 0. If { 7 0 then define
U={teTM | h(t,t) =0}

but int (U) # @ so

(¥4h) (T, T) = D¢h (T, T) - 2h (yT, T)

that is ‘
(Feh) (t. 1) =0, 7

Following theorem has the same proof of Theorem. 2 in [2] -and
we just express it here. '

Theorem 1.3. Let Mn, be an n-dimensional Lorentzian submani-
fold of Lorentzian space Rln+m (n>2,m >1). Then
“(Vth) (t,‘ )”—“ 0 fpr every t in TpM 1ff vh =07

Corollary: Let M2, (n > 2) be an n-dimensional Lorentzian sub-
manifold of the Lorentzian space R;2*1 and assume that all null curves
in M;® are Cartan framed. Then the following are equivalent

i) (yth) (t, t) = 0 for all te TyM ’

ii) yph = 0

iii) M has pointwise 2-planar normal sections and p is a vertex
point for all normal section curves that pass through p.

Now we give the following definition;

Definition 1.1. Let M%; (n > 2) be an n-dimensional Lorentzian
submanifold of the Lorentzian space Rn+1. If y(s) =ns (M, p, t) is a
null curve and assume that y(s) is not Cartan framed then the number
A (A £ 0) which is defined by

vl =n, (y'(0) = 1)

will be called planar normal section curvature of for the sake of simp-
licity P.N.S curvature of +y. Furthermore, the critical points of the
function
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Al R, Al) = g (v7(s), v"(s))
will be called vertex points of +,

It is clear that, if v is not a null curve then the above definition
coincides with the well known definition of vertex points and the cur-
vature.

Theorem 1.4. Let M2, be an n-dimensional Lorentzian submani-
fold of the Lorentzian space R2*™ (n > 2, m > 1). "Let vy be the null
normal section curve ns (M, p, t) such that y is not Cartan framed and
has P.N.S. curvature A. Assume that;

VtVTT =Mt, A £ 0, Y'(s) =T .

and h (T, T) is constant along y then y(0) = p is a vertex point, furt-
hermore

(Vb)) (1, ) Ah(t, 1) =0.
Proof:
“ Since ;
A(s) = g(¥"(5) v"(s))
= g(vrT, vaT) + gh (T, T), h(T, T))

then
Al(s) = ((lii (s) =2nn g(t, t) =0
so the point p = y(0) is a vertex point of y. On the other hand
(vih) (T, T) = Dth (T, T) - 2h (¢, yiT) = - 22h (1, t)
80

(¥h) (T, T) AL (t,t) =-22h (t, t) Ah(t, t) =0

2. A CHARACTERIZATION FOR SEMI-SPHERES IN R™

We belive that Theorem. 3.2 in [1] is false because of the method
used for the proof which is based on “changing Y into -Y’/, where Y
is the second Frenet vector of the curve. Since if one changes Y into
-Y then the curve that has ~Y as the second Frenet vector is not the
same curve any more which has Y as the second Frenet vector. Indeed,
for the curve « which is as before we have
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(VxX))s=o =(1/1) Y
and

Vx(s)X(S) =k Yy 1 @)

Ve Yo =k X, )

where k is a positive constant and X is space-like and first Frenct
vector of the curve. But {X, Y} docs not satisfy the equations in (2.1).
In fact, if

VxeXe =k Ys |
; (k > 0 and k is constant)

Ve Y =k Xg

then
k(-Y5) = -yx@Xs
or
Vxe Y =k Y
thus
Vxe(-Ye) = -vxmYe =k Xs

that is
V(Y ) 7k Xs
which means that the equations in (2.1) does not hold for {X, -Y}.

Because of the above reason, we give the Theorem. 3.2 in [1] is
false and we assert the following two theorems instead.

On the other hand, by using the bilinearity of g together with
the equations (0.1), (0.2) and (1.3) we obtain;
g(9xX, vaX) =g (v:Xo vsX) + g (LH)  (27)
Thus, (2.3), (2.7) and (2.8) imply that
VaVsX - g (vxX, yxX) X =0

that is y is a time-like circle in R;2*P. Since M?, has parallel mean cur-
vature vector ficld, we have '
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Dih(X,X) =DiH =0
thus
(yih) (X, X) =Dh (X, X) - 2h (t, y4X) =0
and as a consequence of that we get
(Yth) (t, ) Ah(t, t) =0
where 77 denotes the Van der Waerden-Bortolotti connection (see

[2]). So Mn, has pointwise 2-planar normal sections because of The-
orem A,

Proof of Theorem 2.2.

Hypothesis ii) together with Theorem. B implies that M® has
2-planar normal sections of the same curvature. Thus, Theorem. C
holds for Mn,. Because of that, every geodesic v in M?| with initial value
Y’(0) = x is an arc of an St < R,2 and each of radius is constant and
has the value of

N S
h (X, X)|

where R2 and R,2 stands for the planes that passes through v(0) and
lies in Ty Mn;. This arc is the solution curve of the following equations

vsX = Ih(X,X) | Y
~ 2.1)
vxY = |h (X, X) | X

with the initial values that

Xp =x
Y, =y
where x, y are orthonormal tangent vectors. Furthermore,
h (X, X)
Y = o o
Ih (X, X)|

and that Yy, is uniquely determined and independent of the chosen
x since im (h) = 1.

Thus the curvature center

1

C=v(0)+ TE&D Yoo



IMMERSIONS OF LORENTZIAN SUBMANIFOLDS 73

of y is independent of the chosen x, that is ¢ is constant. What we get
is that the geodesics pass through the point y(0) = p ile on the pseudo

~sphere whose center is ¢ and radius is . Thus the point

b
I (x %) |

v(0) = p has a neighborhood in Mn, that lies on a pseudosphere so
M=, is totally umbilic -and has parallel mean curvature vector field.

Remark:

Theorem. 4.2 and Theorem. 5.3 in [1] was proved by using the
method just described at the beginning of this section when analyzing
the proof of Theorem. 3.3 in [1] So we think that those theorems still
open problems to be solved In addition, Theorem 4.1. given in [6]
is false. The reason follows.

If we set {X, Y} and {}Ni, Y~'} as the Frenet frames of circles ¢;
and cp, respectively on the condition that

ci{o) =p
¢y (0) =u

(Vc,lc’l) (0) =kv; (k > 0 and constant)

and
ca(0) =
¢’»{(0) =u
(Vc'oCZ) (0) =-kv; (k > 0 and constant)

as in [6]. For both cases we have
(¥.B) (X, X) + 3k B(u, v) =0 1)
(v.B) (X, X) -3k B(u,v) =0, (2)
But we can’t have
(VB) (X, X) =0
and

B(a,v) =0

from (1) and (2), since B (X, X) # B (X, X).
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