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ABSTRACT

In this paper, the relations between the scalar cur~atures of n-dimensional submanifold
(hypersurface) N, with zero curvature immersed in an (n+1) —dimensional submanifold N
with zero curvature in E™ (m>.n--1), have been investigated and some results have been ob-
tained in terms of scalar, Gaussian and measan curvtures of the submanifolds N and N.

INTRODUCTION

We shall assume throughout that all manifolds, maps, vector fields,
etc... are differentiable of class (. ‘

Suppose that N ie an (n-1)-dimensional submanifold of the Eucli-
dean space Em (m>n-+1), and N is an n-dimensional hypersurface-
immersed in an (n--1)-dimensional submanifolds N with constant cur-
vature K. Let p, be a point of N and ! the local ccordinates arcund
p in N such that X;=¢; form an orthonormal basis of Tp, (N) at the
point 1., { be orthonormal normal vector field of N in N, X and Y be
two lincar independent vectors at the point p and vy (X,Y) be the
plane section spanned by X and Y. On the other hand, K(y) is the
constant for all plane sections v in the tangent space Tp(N) at p where
peN, then N is a hypersurface with the constant curvature. The stan-

dard Riemann connection of EM and Riemann connections of N and N
are denoted by

]=), D and D, respectively.
The Weingartea map L of N in N is given by
Dx{ = LX), A X eN, (1.1)

and det L is the Gauss curvature at the point p of the hypersurface N
of N.

Z
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Definition 1.1. Let M be an n-dimensional submanifold of the
Fuclidean space E®, Then
o X(M) X %(M) — LML
m-n
V,2) - «(Y,Z) = = wl(Y,0¥; o (1.2)
j=1 - .
is called second fundamental form of M. Where & denoctes the coeffi-
cients of the second fundemental vector field in the direction of §j,
tllat lg, [EPR . . ) . N -
al(Y,Z) = < «Y, 7), Gy > [1]
To be Y, Z € X(N), Let «(Y,Z) be the second fundamental form of
N in Em, then we have

' j3yz = DyZ + a(Y,7) - ‘ (1.3)
and if «(Y,Z) is the second fundamental form of N in E™, then we have
DvZ = DvZ + ay(Y.Z). (1.4)

If Y and Z are vector fields of N, then we have V o
DyZ = DyZ + ay(Y,Z). e . -(1.5)

Here (1.5) is the Gauss equation of N in N, where ay(Y,Z) is the second
fundamental form N in N.

If we consider (1.5) and

w(Yl) = — < UY)Z > ¢ : (1.6)
we obtain :

DyZ = DyZ — < L(Y),Z > &, - (1.7)
and using (1.7) in'(l.S) we have |

DyZ = DvZ — < L(Y),Z > ¢ + ay(Y,Z). (1.8)

Moreover, if we consider (1.4) and (1.8) then we have

Y,2) = — < LY).Z > & + ay(Y.2). (1.9)

Let X and Y be orthonormal vectors at a point p» and ¥ (X,Y) be
the plane spanned by X and Y. The sectional curvature K(y) for y«(X,Y)
is defined by

or
K(y) = < XRX,)Y) Y =

whare R is the curvature tensor.
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Tt is easy to see that K(y) is independent of the choice of an ortho-
normal basis. So, we may give the following definition.

Definition 1.2. If K(y), is a constant for all plane in the tangent
space T, (M) at p for all points PeM, then M is called a space of constant
curvature {2]. ~

Let M be an n-dimensional manifold immersed in an m-dimensional
Riemann manifold N of constant curvature K, p be a point of M and
X1 the local coordinates around p in M such that X; == &; form an ortho-
normal basis of TH(M) at p and also {x be the orthonormal normal vec-
tor field of M. If we substitute ‘

X X)) = X(XpX)lx = a'ylx
then, we have oj; = a¥j;. Let < « > denote the length of the s¢cond
fundamenral form «, that is

< Oy & > == <a>2:axjio(xji’ .
where axii = gitgls o i

Definition 1.3. If E;, E;,..., E, are local orthonormal vector
fields, then

RX,Y) =

T M=

g (K(E:,X) Y,Ey)

i=1

n
= X k (E,Y,E.X)
i=1
defines a global tensor field R of type (0,2) with local components
Kji = Kyi' = g¥Kyjis.

Moreover, from the tensor field R we can define a global scalar field

e}
I
e

R(E:.E)
1
with local components
r = ginji-
The tensor field R and the function r ave called the Riecei tensor

and scalar  curvature.

From the Gauss equation, we find that the scalar curvature r and
the mean curvature vector H satisfy the following relation.
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r=n2 H|2 — <« >2+ n(@m-1) K. [2]

Theorem 1.1. Let r be the scalar curvature of n-dimensional
submanifold N with zero curvatwie and ¥ be the scalar curvature of
(n+1) - dimensional submanifold N with zero curvature in Em. Then,
the relation between the scalar curvature of N and the scalar curvature
of N is given by

i = (n+1)2 |Hjp—n2 [Hf — 2 :‘%1 < y(end)ulent) >
— < 011(Ca§)911(§,§) > — (H0)27
in Em, where (H%2 = EI} 22 and X = < L{e),c; >.
i-1

Proof: By the hypothesis, we have

Sp{erseps. . enen,y = {} = X(N)
and
Spler.ep....en} = Z(N).

Furthermore, since K=0 for the scalar curvature of M at the point
peM, by hypothesis from the following equation

r=1n? [HZ — < o >»2 + n (n—1) K,

!

we have
r = n2 [H|? — < a >2 (1.10)
If we consider (1.9), we have
- apleney) = — < Lie)e; > { + ay(esey).
From (1.2), it follows that
n
< ap >2 = 2 < apepey), mfene;) >.
i*j=1
Thus,
n n
<op>2= X <aj(enej),xi(ene) >+ X 22, where iy = < L(ei), e; >
%=1 i=1 (1.11)

In the same way, from (1.2), we have
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n+l
< o >2 = r < al(ei,ej), ocl(ei,ej) >
i%j=1

ar

< % > = P> <°‘1(elaej)v ‘xl(ebej) >

+2 3 <ar(en(end)> + <a1(c,c),a1(c;‘c)‘>
i-1 (1.12)

since N and "\I are ma«llfolds wnh Zero curvature in Em and using the
equation (1.10), (1.11) and (1.]‘)) we obtain

f—r = (n}1)2] !IH'2—112 = ([2 — 2 ]é <“1(eiv'§)e°€1(ei;;§) =

=1

— < “l(c C), al(C C) > - (H°) o (113
This: completes the proof. : '
Corollary 1.1. If the scalar curvature of N is zero and if {'is asymp-
totic in N, then

= PR -2 2 < w (@D(ed)>— (H2

_Proof: Since the scalar curvature of N is zero and { is asymptotic
in N the proof is trivial by (1.10) and (1.13).

Corollary 1.2. If the scalar curvature of N is zero, then
: E e . n,. e - - o
= n2HP 2T aed)w(ent) > (HO?
i=1 ‘

Proof: Since the scalar curvature of N. is uzero, the proof is trivial
by (1.10) and (1.13).

Corollary 1.3. Let peN If (e1)p and Cp are conjugate two tangent
vectors and if {j, is asymptotic, then” =~

f—r = (n+1)2[Hp-n2fH|]? — (HO)2

Proof: Since, (e;)p and {, aie conjugate and p is asymptotic,
then the requirement results is obtained.

From definition 1.1 we write
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aq(eieq) = 12 ok (eq,e1) k.
k=1

For LxeX(N)L we have

< aleper), Lk > = ok (eg,e;)
or

m..n

as(ese)) = 151 < ax(epei)slx > Lk , (1.14)

Denotmg the metric connection of the normal bundle Ni in Em by D1,
we write for e; € %(N)

Dey = — A Ck(el) + D4l
or I
< DeiCkvei > =< — Atk(el) -+ D‘- eiCkoei >,
Then we get : .
< ag(e,er),lx > = < Ale(es)y &g >. - . . - (1.15)
Thus from (1.14) and (1.15) we have '
n-n P c. UL
ay(er,e;) = kEI < Alx(er), e; > Gk (1.16)
and
m-—-n
wlepe) = X <Afi(ey).e; > - (1.17)
i=1 :

Using (1.16) and.(1.17) we write for k=1

n m_

? <oc,(ei,ei),oco(ej,e,)>-— > Z <ACk(e1) ei><ACk(ej) €j > (1.18)
i*j= i’j=1 k=1

n n
CODSidel’ing that E ACK(Ei) = E . ai]ej we get

i=1 i%j=

n ]

p) ACk(el)oel > = 2 < aijej,ej >

i=1 i%j=1 S

or
n ‘ n
'21 < Alk(er).e; > = 121 ajiy i-j-
i= -

Hence we have obtained that
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‘n n
tr Aly = 2 a= X < Alk(er).e; > (1.19)
i=1 i=1
or
e n n
tr Ay = jZ aj; = X < Alx(ej),e; > (1.20)
: i =1 j=1
and that
m-n n m-n )
z (tl’ Ack)z = - X 2 < AZk(ei),ei > < Ack(ej),ej > (121)
k=1 =1 k=1

On the other hand we have

M = 5 (o A
and so | -
n2 [Hp = r:zj (tr AZG)2. (1.22)

Then from (1.18), (1.21) and (1.22) we get

n
.21 < apfeper).xx(epe) > = n2 [HI2
%=

This gives for i==j,

n
H=1~h Z oener).
i=1 -
If H=0 at each point of N then N is minimal and so « = 0. From.
(1.9), we write

ai(ese;) = < L(e),er > L

Since the hypersurface N is tot:ﬂy geodesic, L=0 and so «; = 0. Then
from

S n+l R
H=1/n+1 EE x1(ei,ej) we have that H = 0, that is the

i=1
submanifold N is'minimal and also from 21(%.%) = 0, we can say that

{ is an asymptotic direction in N. Therefore vwe have proved the as-
sertion. : '
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~ Application 1.1. Let N be an 3-dimensional submanifold in E™,
‘given by the followibg ‘parametric form -
X = {(a—}—k/\/a) cosu. Cosv, (a+k/\/—2—) cosu. sinv, (a—}-k/\/ES sinu,
k/4/2,0,..., 0)|x; = 0,j = 5,6, ....m, kelR}
and et S2 be a 2-hypersphere in Em, given by the following parametric
form' Y = {(a.cosu. cosv, a. cosu. sinv, a. sinu, 0,...,.0)| y; = 0,j = 4,
5,...,m,a>> 0}, If the scalar curvature of 52 and N, are, respectively,
rp and iy in Em, then o
Ty = 9 fHa |2 — 4[Hp [P — sinu /2(a+k [y/2)? + (HO2.
Indeed, we may write o
y1=x;=e,=={—sinu cosv, —sinu sinv, cosu, 0, ..., 0)

yy=X,=e,=(—sinv, cosv, 0, ..., 0) »

x3=L=(1/4/2 cosu cosv, 1 /\/Ecosu sinv, 1 [4/2 sinu, —1 A/2,0, ...0)
(1.23)

then
Sp {et]pe2ln} = Tsolp),
Sp {eslp = Colplilps2/Pns]psi-- s 8)0xmlp} = T s(p) o
Sp le1]perlmeslp = Lolp} = TRu(@),
Sp (L1190 /o%s]ps - o> 2/0xmIp} = T" St (p)-

From (1.9) and (1.2) we have

ap(eiey) = — < L(es).ej > o + ‘Xa(eiaejt): v

< ap >2 = 2 < opleie), anlene;) > A+ 12 2
1j=1 -

< wg > = < aafeie), o‘a(eivej) >
izj=1

T Me

L + 2;‘ é . <¢a(eiaco)7aa(ei9;0)> +"b,<°€a(z07§o)»¢a(C03C,O).>..'

;I‘he;, from (110), (1.24) and (1.25) we obtain
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2
Iy — Ip = 9”Ha ”2 —4""Hb “2 —2 'xl < Ota(ei7Co)e°€a(eioco) >

—< aal8osCo)sa(loely) > — (HO)2. (1.26)

If we put the values of e;, e; and %, given by (1.23), in (1.26) then we
obtain

By —rp =9 [Hg |2 —4 |Hp |2 — sinu /2 (a+k [4/2)2 + (HO)2.
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