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ABSTRACT

In the present paper we give an analog of the Meusuier’s Theorem for Lorentzian surfaces
İn the Lorentzian space of the dimension 3.

1. INTRODUCTION

By we denote the space R’ endowed with the inner product 
<,> of index 1 and cali it Lorentzian 3-space. In L’ every tangent 
space of a surface can he considered as a subspace of L’ in a canonical 
way. Thus if a surface in has the tangent spaces of index 1 then we 
cali the surface Lorentzian as in [4 ]. In addition, a curve in a Lorent- 
zian surface called time—hke, space—hke 
vector is, [1].

or null whether its velocity

In the Riemannian case, it is well known that ali the curves pass 
through a point, say p, and have common and non asymptotic tan- 
gents at the point p have their curvature centers on a unique sphere 
and also have their curvature circles on another unique sphere. This 
fact known as the Meusnier’s Theorem (see [2 ]). The essential part 
of this work devoted to give an analog of this fact in L\

Let a: I---- > L^ be a unit speed curve in L’ and X = â, where
the notation dot indicates the derivative. If a is a space-like curve 
then there exist unique orthonormal vectors X, Y, Z, and the first 
and the second curvature functions kj, k2 from I to R such that

<X, X> =1, <Y, Y> =-1, <z,z> =1,

<X, Y> = <Y, Z> = <X, Z> = 0,

DxX
DxY 
DxZ

= kjY
= kıX + kjZ
= k2Y

(1-1)

or
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<X, X> =1, <Y, Y> =1, <Z, Z> =-l,
<X, Y> = <Y, T.> = <X, Z> = 0,

DxX 
DxY 
DxZ

= k,Y
= - kıX + k2Z
= k2Y 

(1-2)
}

where Y is timc-liko or space-like. If the curve a is time-like then the 
unique orthonormal frame field {X, Y, Z exists such that

= 1,

DxX = kjY
DxY
DxZ

= kjX + k2Z
= - k2Y

(1-3)

where ^X, Y, Z} called Frenet frame field of a, [3].

We give the notion of curvature çenter as 
is just as in the Euclidean case.

the following which

Definition 1. Let a: I---- > L’ be a non-null curve and {X, Y, Z},
kj are the Frenet frame field on a and the first curvature function of 
a. The point

C(t) (t) +
1 Y

is called the curvature çenter of a. at the point a. (t) and the pseudo
1- sphere centered at the point C (t) that lay on the plane spanned by
X and Y called curvature circle of a. at the point p.

Now, we recall a definition about plane sections, just as in the 
case of E’, [2], as follows;

Definition 2. Let M be a Lorentzian surface in L’ and 11 a plane
which passes tbrough a point peM. If a tangent vector XpeTjj(p) is
in n then the intersection curve M fi 11 is called the section curve de- 
termined by Xp and if the plane 11 is orthogonalto Tjj(p) then the sec­
tion curve determined by Xp is called the normal section curve deter- 
mined by Xp.

Finally,
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Definition 3. Let MeL’ be a Lorentzian surface and Xp İS â

tangent vector to M at the point p. Let us denote a plane through Xp
by 7z and the curvature çenter of the intersection curve of n and M, 
that is M n 7T, by Cj. The curve obtained by translating the curvature 
circle of the intersection curve M fi tt, at the point p, by the vector

CjP called conjugate curvature circle of the intersection curve M Ajî 
at the point P.

2. THE MEUSNIER’S THEOREM FOR LORENTZIAN SÜRFACES

The main theorems are;

Theorem 1. Let M be a Lorentzian surface in L’ and peM, XpeTjj(p).
We assume that XpeTj^(p) is not an asymptotic direction on M then

i) The locus of the curvature centers of ali the non-null section 
curves determined by Xp with space-like second Frenet vectors is a 
pseudosphere

ii) The locus of the fourth vertex point of the parallelogram which 
constructed ■with one diagonal [CCı] and three vertices P, Ç, Cı is a 
pseudo—sphere where Cj and C are the curvature centers of any section 
curve and the normal section curve determined by Xp, respectively.

Theorem 2. Let M be a Lorentzian surface in L’ and peM, 
XpeTjj(p). We assume that XpeTjj(p) is not an asymptotic direction on 
M. Let the points C and Cı denote the curvature centers of the normal 
section curve and a section curve determined by Xp. Then,

i) Ali curvature circles of ali the non-null section curves determi-
ned by Xp with space-like second Frenet vectors lie on 
ere centered at the point C.

a pseudo-sph

ii) Ali the conjugate curvature circles of ali non-nuU section 
curves determined by Xp with time-like second Frenet vectors lie on a 
pseudo-sphere or a pseudo-hyperbolic space and the çenter of the 
pseudo-sphere or the hyperbolic space is the fourth vertex point of 
the parallelogram which is determined by the vertex points, p, G and 
Cj and one diagonal the line segment [CCi],

First of ali we shall give the following Lemma.

Lemma 1. Let h be the second fundamental form of the Lorent­
zian surface M in L’. If Xp is a tangent vector to M and V and kj are
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the second Frenet vector and the first curvature function of the section 
curve determined by Xp, respectively. Then

k2(0) <Vp, Np - h (Xp, Xp) (2.1)

where Np is the unit normal to M at the point p.

Proof is the same as in the Eî, so we don’t give it here, (see, 
[5]).

If ■we consider the curve mentioned in the Lemma. 1. as the nor­
mal section curve determined by Xp then the eguation (2.1) becomes

kN(0) <VpN, Np - h (Xp, Xp)

where we denote the curvature of that normal section curve 
kjşf (0) thus we get

«N by

kN(O)

h (Xp, Xp); VpN = - Np; (that is.

-h (Xp, Xp); VpN = Np; (that is.

is bending away 
from Np) 

(2.2)
X is bending forward Np)

where Vp^ denotes the second Frenet vector of a.

Now we use the term curvature radius which is the reciprocal of 
the curvature. So we conciude the following corollary.

Corollary: Let a: I — M he a curve on the Lorentzian manifold
M and Xp is a non-asymptotic tangent vector to M. If g, g are the 
curvature radii of the normal section curve and a section curve deter­
mined hy Xp, respectively, then

g Ln<V2, N> = when <V2^, N> >0

-g -ky 
ki

when <V2^, N>

g
N

k 1

<V2, N> = —
g

0
N

where V is the second Frenet vector of a and N is the unit normal 
vector field to M and kj, k^ denote the curvatures of a and the normal 
section curve determined by Xp.

Finally we need the following two Lemmas for the proof of the
Theorem 1 and the Theorem 2.

Lenuna 2. Let A, BeL’ and the vector AB is space-like. Then 
the points p on the condition that
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<PA, PB = 0

are lies on a sphere Sj(r), where the radius r is a constant and depends 
on the points A and B.

Proof: We choose an orthonormal basis {cg, Cj, 02} for L’ such 
that Cg is a unit time-like vector. Thus, for any point peL^ we have 
the following coordinate expression

OP = \()f„ + Xıeı + X2e2

and we can identify the point p and the vector OP as well as

'^e‘'o + xıeı + ^2^2

and (xg, Xp ■x.2). Now, take
A — (ag. »2)ap
® — (^0’ ^1’ ^2)

P = (Xo» ^1’ ^2)

so 

<AB, AB> = - (bg - ao}2 + (bj - aı)2 + (b2 - a2)2> 0. (2.3)

If the point p satisfies the condition of the Lemma then; a direct 
computation shows that;

(Xg - (1 /2) (ag+bo))2 + (xı -(1 /2) (aı + bj + (x2-(l /2) {^2 + b2))2 = c 
where
C = (1 / 4) (- (bg - ag)2) + (bı - aı)2 + (b.^ - ^2)2) + (1 / 2) (ag + bgp 

and because of (2.3) the constant c is positive. Thus what we get is
that the point p lies on a

Lemma 3: Let M be a

sphere S j c).

Lorentzian surface in L^. If peM, XpeTjjj(p)
and a is a section curve determined by Xp such that the second Frenet 
vector V2 of a is time-like then the vector PQ is orthogonal to the 
vector PCı, where Cj is the curvature çenter of a at the point p and Q 
is the fourth vertex point of the parallelogram determined by the vertices 
p, Cj and C such that [PQ ] and [CCı ] are diagonal s of the parallelog-
ram and the point C is the curvature çenter of the normal section curve 
determined by Xp at the point p. Furthermore PQ is a space like vector 
(Figüre. !)._>
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Figüre. 1

M

l’roof:

Let k| and denote the first curvature of the section curve x 
and the normal section curve determined by Xp, respectively. So,
in the case of <¥3^, N> 0, we have the following

Ci = p 4 

C = p +

2

1 
kîf Np

where Np is the unit normal to M at the point p (Figüre. 1) (It should 
be noticed that if <¥3^, N> <0 then we have to take Np = - ¥2^ 
that is,

C = P - N, 
k^ p

thus
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and

<PQ, PCi

“ T-+ vr 
Ki Kjf kjf

-j-y <¥2, y2> + -T— -j-— <Np, N2>

since V2 is a time-like curve and

Np, V2> =
kN

1

by the corollary of Lemma. 1 so what we get is that

<PQ, PCı = 0
or

PQ± PCi.

For the second assertion of the Lemma, since PCı is a time-like
—>

vector and
—>

we proved that PV ± PCı as above, so PQ is a space-
like vector that completes the proof.

Proof of the Theorem 1. We will take the figüre. 2 into account
and assume that <¥3^, Np> 0, thus

In the case of <V2^, Np> <0, we have to take the vector PC as
-(1 / k]^) Np. We would not deal with this possibility because, it makes 
no difference between the proofs that involving the signature of the
number <¥2”, Np . So we proceed the proof as follows

i) If N2 is space-like then by the corollary wc obtain

<^^2 - gN Np, gV2> = g2 - ggN {^1 = 0-
On the other hand

CCl = .gV2 -gNNp
so

<PCı, CCi

PCı = ^^2

p •

= 0
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'^7

I

©s

Figüre. 2

V, a r.- e

A

that completes the proof of the assertion i) because of the Lemma. 2 
(see. Fig. 1).

ii ) If the second Frenet vector V2 is time-like then;
—>

PQ = PC + PCi gV2 + gNNp

CQ CP + PQ gVa
and by the corollary we obtain

<gV2 + gN Np, gV2> = - g (g-gN (sİ )
SO = O

<PQ, OC = 0
Avhich completes the proof for the assertion ii) because of the Lemma 2,

Proof of the Theorem 2: Since Cj and C are curvature centers, 
we can write
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1
Ci = p + ^7-^2

^1

and

1 
ku

NpC = p 4

where, kj and kv arc first curvature function of the section and the 
normal section curve determined by Xp. V2 denotes the second Frenet 
vector of the section curve and Np is the unit normal to M at the point p.

On the other hand, Xp is orthogonal to hoth PC and PCı so the 

vector CCı orthogonal to the vectors Xp and PCı (figüre. 3). Thus

CCı orthogonal to the plane spanned by the vectors PCı and Xp at the 
point p.

Figüre. 3

(i) Let Z be a point that lies on the curvature circle at the point

p of the section curve determined by Xp, Since CCı is orthogonal to 

the plane spanned by PCı and Xp and
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ZCj eSp {Xp, PC,}

thus

+zc, zc PCi, PCi CıC, C,C (2.4)

On the other and;

PC = PCi + CiC

and so

+PC, PC PCi, PCi CiC, CiC PCi, CiC+ 2

since; CiC ± PCi thus the right hand side of the above equation is the
same as the right hand side of the eqüation (2.4)

< PC, PC ZC, zc

so

which means that, the point Z lies oü the pseudo-sphere centered at
the point C. Since Z is arbitrary that completes the proof of the 
scrtion; (i).

as-

(ir)'-^e wiU take the figüre. 4 into account so we proceed the proof 
as follows X,

Figüre. 4
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Let Z be a point that lies on the speeial translated curvature circle 
of the section curve at the point p determined by Xp.

By Lemma. 3; PQ is orthogonal to PC;. Since PQ is a vector 

in the plane spanned by Np and V2 then PQ is orthogonal to the 
vectors V2 and Xp so wtî obtain

^), PZ = 0 (2.5)

so we get

+QZ, QZ QP, QP PZ, PZ (2.6)

By the Definition. 3, there exists a point Y 
the point p determined by Xp, such that

on the curvature circle at

thus

YZ = CiP

CıY = PZ. (2.7)

Taking (2.7) into (2.6) we get

+QZ, QZ QP, QP CıY, CıY > (2.8)

and since Y is a point on the curvature circle centered at Cj then

CıY, cIy PCi, PCı >

so by (2.8) we obtain

QZ, QZ QP, QP PCı, PCı (2.9)+
we recall that QP is a space-like, PCı is 
be written as the following form

time-like so (2.9) cana

QZ, QZ = 11 QP !|2- II PCı 112
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which completes the proof of the assertion (ii) since the pointz Z are 
lies on a pseudo-sphere or on a pseudo-hyperholic space according to 
the sign of the number

II QP II 2- II PCi II 2.
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