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ABSTRACT

In 1979, Harman [8] in connection of the study of q-analytic functions [7]., introduced
a discrete analogue z(™ of the classical power function z. This paper deals with a study of
a class of functions called discrete hypergeometric functions defined in (2.2) by using the dis-
crete power function z(™,

1. INTRODUCTION

Harman [7], in 1978, introduced the concept of g-analyticity
of a function by replacing derivatives by gq-difference operators Dg,x
and Dg,y which are defined as follows:

D x [f(z) ] = f(z)(l“_flg‘l;’ y) (1.1)
Doy f@) ] =B e (12)

where f is a diserete function.

The two operators involve a ‘basic triad’ of points denoted by
T(z) = {x.¥) (g% y), (% qy)} @3

Let D be a discrete domain. Then a discrete function f is said to

be ‘q-analytic’ at zeD if
. Do (D] =Dyy [£(3) ] | (14)
- If in addition (1.4) holds for every zeD such that T (z) £ D then
f is said to be ’‘q-analytic’ in D. (1.5)



32 MUMTAZ AHMED KHAN

For simplicity if (1.4) or (1.5) holds, the common operator Dy is
used where

Dg=Dgx=Dgy o R ¥o)

The function z® is of basic importance in complex analysis since
its use in infinite series leads to the Weierstrassian concept of an analy-
tic function. Harman [8] defined, for a nonnegative integer n, a q-
analytic function z(® to denote the discrete analogue of z™), if it satis-
fies the following conditions:

w1 (=g (@-D)
Dy [2™] = - = ‘
@ [ (1-q) o
z© =1 (17)
) 0™ =0,n>0
The -operator Cy, given by
* 1-q)f . .o '
Cy= 2 -a)! iy)i DI 1.8
YT (-9 () Do , (-9)

when applied to the real function x0, yields z™.

In fact, Harman [8] defined z®™ by

@ = Cy (x"); n a non—-negative integér
g (d=a) i
= iv)i Di ) xn . 19)
i=0 (]-_q),] ( Y) STAeX ( ) (

which on simplification, yields

=0

=

2 = X (P, = (iy) : o)

or alternatively,

o n ) -

s = B, x Gy (1.11)
=0 1 o

" To justify that z® is a proper analogue of z, Harman [8] proved

that z(®™ s a g-analytic function and satisfies the three requirements

of (L.7).
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We shall also use the following notations due to Hahn [3]: Let
o r .
f(x) =2 arx (1.12)
=0 B

be a power series in x. Then

f(x=y1) =§; ar (x=)r | (1.13)
L a___'tr'

f( [x-y] ) IEO T (=) : 7 _(1 14’)

where (x-y)q umy Ty [3) ] . (1_15)

For various other. definitions, notations and results used in this
paper one is referred to remarkable books on ¢—Hypergeometric series
by Exton [1], Gasper and Rahman [2] and Slater [13].

2. DISCRETE HYPERGEOMETRIC FUNCTIONS

Using Harman’s discrete analogue z®™ for the classical function
z", we now introduce a discrete analogue ;Ms {(ar); (bs); q, z] of the
g-hypergeometric function ®s@ [(ar); (bg); z].

It is well kndwn that.

—qM! 3
Dy {+®:@ [(ar); (bs); x]} = (1-q¢ 9 b(1 vqb
(I-q) 1-q 1)...(1~q °)

(q)
rPs [1 -+ (ar); 14 (bs)§ X]

and so it seems reasonable to assume that for n, a non—negative integer
a q-analytic function Mg [(ar); (bs); gz] will denote the discrete
analogue of @3 [(ay); (bs); z ] if it satisfies the following conditions:
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— al — ar
O Do tMy [(a0s () g2} = L)
(I-q) (1-q ) ..... (1-q %)
Mg [1 + (ar) 1 + (bs)a q, z ] (2'1)
(ii) The first term of the series is 1.

(iii) Mg [(ar); (bs); q. 0] = 1.

Such a function is obtained by applying the operator Cy defined
in (1.8) to the q-hypergeometric function ®; [(ar); (bs) x], with
real argument x.

In fact, Mg [(a;); (bg); q, 2] is defined by

(q)
Ms [(ar); (bs); g, 2] = Cy @5 [(ar); (bs); x]
0 (q(al‘) )n Z(n)

- 2,: (2.2)

’ (Qn (q(hs))n '

' (ar) no k '
_ 22 (9 " )nxx  (y)

- nz:o kE() (bs) (2:3)

(Dn (D (q otk

The following theorem shows that Mg [(ar); (bs); ¢, z] satisfies
(2.1) and hence can be taken as a discrete analogue -of @s(@ [(ar);

{(bg); 2].

Theorem 1. M [(ar); (hs) q, z] is q-analytic and satisfies the
requirements of (2.1).

Proof:

oo (q(al‘) )nz(n)

Ms [(ar); (bs)s q. 2] =

Il=0

(@n (@),
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(ar) n n n-j i
L D P (j)qx iy) »

®©
= X
=0

" (@a @)

and hence

Dy, x {rMs [(ar); (bs); g5 =] }

(ar) n-j
_ v (g nl( ) g ) nit (i)
1:2‘_«0 (bs) =0 - ) ' I(Y)
(Dalg o
© (ar) Z(n"l)
- (111) n=21 ( . (bg)
(@n-g (@ o
(].“'q‘ 1) ....... (1 q ) M [1 + (ar)' 1+ (bs) q- z]
(1_q)(1-qbl ) -~(1—qu)
similarly,
Do, v {Ms [(ar)s (bs); 9, 2]}
(1-q 1) ....... (1-q r) Mg [1 -+ (ar); 1 + (bs); q.2z].
(l—q)(l"qbl) (- ")
Hénce rMs (ar) (bs)a 9, Z] is q—analytic and satisfies condition
(i) of (2.1).
80

Since z(©® =1 and 0® =0, n > 0, by definition and
Mg [(ar); (bs); 9 z ] satisfies (ii) and (iii) also of (2.I). Thls proves

the theorem.
It is of interest to note the similarity of M [(ar); (bs); q, z] to

the function ;®s@ [(ar); (bs); [x -+ y] ] defined by Jackson [10]

as follows;
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r @@ ([ar); (bs)f x+vy]]

(ar) m n —]1]— n (n-1)
- % % (@ )minx  (y) q
T (O @n @) mn

(ar)
S N0 (x +iy) (x +iqy) ... (x +iq¥-1 y). (24)

The discrete hypergeometric function defined in (2.2} can be written

in either of the following two forms:

(ar), .. \n '
@0 69" oY) & i (b + ms )

» (Dn (q(bS))n

b8

tMs [(ar)s (bs)s g, 2] = "0

n

(2.5)

or alternatively as,

. ® (q(ar) )n Xli ‘ ((I) o
M [(ar); (bs)s g, 2] = £ ——"——— @D [(ar) +n;(bs) +nsiy].
=0 (bs) , ‘
(Dn(d ™ o
(2.6)

From (2.5) and (2.6), we observe that a discrete hypergeometric
function can be regarded as a ‘generating function’ for the g-hyper-

geomotric functions of the form

() | (q) -
r®s  [(ar) + n; (bg) +- n3 x] or @5 [(ar) + n; (bs) + mn; dy]. -

We further observe that for x = 0, My [(ar); (bs); ¢, 2] reduced

(@ q
to ;@ [(ar); (bs); iy ] while for y =0 it becomes @5 [(ar); (bs); x].
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3 PARTICULAR CASES

As particular cases of (2.5) and (2.6), we have the following in-
teresting results:

oMy [—5 —3 4, 2] = eq(x) eq (iy), | (3.1)

2M1 [37'1); [ q9 Z‘]a

_ 1 2 (@ @y
(1-x) n—o at+b-c¢c
a+b-ec (q)l} (q°)n (xq )n
qc—é,' q€ — b; xqd + b-c +n-
2Py [ qc-+n; ]
' ~ ! ‘ (3.2)
| 1+l 2 (y/y/xm
My [—s a5 q, 2] = (@ay (- —= Z
oMy [ 9> 2] = (q)a— ( \/X) o @ o
g a 4 n-1 (2i4/%), (3.3)
Further, surﬁming up the ;g —function by means of known |

summation theorems, we have )
: 1 : iy .

e — Q.. . A
lMO [a’ R z] (1_X)a I(DO [q L [I—an’] ]’ (3 )
My [a; —; q, 2] = ——— ®, [q® xq? iy ], (3.5)
170 v [ U (1-—X)a, 1%1 s Xq*; ”
M, [as—:; q,z] = 1 D, [q?5—; —_— ] ' (3.6)
e iyt T Tyge] T
My [ g 2] — e O [q% iyq®; x ] ' 3.7)
10 2 Yo (l-iy)a, 11 k ?

‘ b-a an a_ q-B: — ivgl-P
q% q-7; —1yq
oM; [a;n; b; q, (q.y)] = —~—.__,(q b)n | 2@ [q1+afb—n; q-1 ]
o (9°)n (3.8)
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$ 4. INTEGRAL REPRESENTATIONS

We also note the following simple integral representations for
oM, [a, b; ¢; q,z] and M, [a, b, c; d, e; g, 2] 2M; [a, b;e; g, 2] '

[y(e) 1 b1 s q.z .
) Feby ¢ Mo 125 i g st ] (1 q)(’4-1)

provided R1 (b) > 0, |x| <1, |y| <1

Uq(d) Tgle)

M sesd, 5 q,z] =
Mz [a, b, 03 ds ¢34 2] = F Ty To{@b) To(emo)

1 1 b

(j)' (j)' t (1-qt)g_n_g vL (1-qV)e_c—y My [as—; 2tv] d (t; q) d (v; q)

(4.2)
provided R1(b) > 0,Rl(¢) > 0, |x| <1, |y| <1l

One can similarly, write down the integral representation for
Mg ~function. '

§ 5. CONTINUOUS DISCRETE HYPERGEOMETRIC FUNCTIONS

Any two discrete hypergeometric functions,
My [(ar); (bs); q, 2] and M [(a’s); (b's); q» 2]

are said to be continuous, when all their parameters are equal except
one pair, and this pair of parameter differs only by unity.

If we use the notations (o, + i), and («r, —i)y to denote
(“1)11 (“Z)n cere (ui-—l)n (ai + ]-)n (ai+l)n e (ocr)n
and '
’ (Q‘I)n (@2)n -+« (@ig)n (@iegn (Xaggdn - - -+ (@)n

respectively, where 1 < i < r, with similar notations for (8s), we have
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Mg [or, 4 1); (BS)Q q, 2]

51
= __l—oci— { M5 [on); (Bs)s @ 2] —q - oM [(20)5 (Bs)s 4> qz 1}, (5:1)
)
Mg [(@rs —1); (Bs)s 9 2]
T n{xi—-1) -
= (I-q )n’:“O q Ms [(ar); (Bs)s 9> g2 ] (5.2)
. Bi = mfy ,
Ms [(ar); Bsr +i)s 2] =(Q-q ) Z q M [(); (Bs)s 9 9"z ]
n=g (5.3)
and
My [(2r); (Bs—i)s g 2]
1 Bi-1
= —_B—:i— Ms [(ar); (Bs)s 95 2 ]-q My [(r)s (Bs)s 4 qz].
j (5.4)
(1-q
REFERENCES

{1] EXTON, H., q-Hypergeometric Functions and Applications. John Wiley and Sons (Hals-
ted Press), New York; Ellis Horwood, Chichester (1983).

[2] GASPER, G. and RAHMAN, M., Basic Hypergeometric Series. Encyclopedia of Mathe-
matics and its Applications, Volume 35. Cambridge University Press (1990).

[3] HAHN, W., Beitrage ziir theorie der Heineschen Reihen, die 24 integrale der hypergco-
metrischen q-differenzengleichung, Das q—Analogen der Laplace Transformation, Math.
Nachr., 2 (1949), pp. 340-379.

[47 HARMAN, C.J., A note on a discrete analytic function. Bull. Austral. Math. Soc., 10 (1974),
pp- 123-134.

[5]1 HARMAN, C.J., A new definition of discrete analytic functions. Bull Austrel. Math. Soc.
10 (1974), pp. 281-291.

[6] HARMAN, C.J., Polynomial in discrete geometric function theory. Ganita, 29 (1978), pp.
93-101.

[7] HARMAN, C.J., Discrete geometric function theory I. Applicable Analysis, 7 (1978), pp.
315-336.

[8]1 HARMAN, C.J., Discrete geometric function theory II. Applicable Analysis, 9 (1979),
pp. 191-203.



40 MUMTAZ AHMED KHAN -
[97 HARMAN, C.]J., Discrete Analysis on a Radical Lattice, J. Math. Anal. and Appl
79 (1981), pp. 323-330.

[10] JACKSON, F.H., On basic double hypergeometric functions. Quart. J. Math. (Oxford ),
15 (1944), pp. 49-61.

[11} KHAN, M.A., Contribution to the theory of Basic Hypcrgeometrlc Series. Ph.D. Thesis,
University of Lucknow (1977).

[12] KHAN, M.A., Transformations of Discrete Hypergeometric Functions. Mathematica
" Balkanica, New Series Vol. 6 (1992), Fase. 3; pp. 199-206.

[13] SLATER, L.J., Generalized hypergeometric functions, Cambridge University Press (1966).





