DISCRETE HYPERGEOMETRIC FUNCTIONS AND THEIR PROPERTIES

 $\mathbf{B}\mathbf{y}$

MUMTAZ AHMAD KHAN

(Received July 13, 1994; Accepted June 17, 1994)

Dept. of Appl. Maths., Z. H. College of Engg. A.M.U., Aligarh, INDIA

ABSTRACT

In 1979, Harman [8] in connection of the study of q-analytic functions [7], introduced a discrete analogue $z^{(n)}$ of the classical power function z^n . This paper deals with a study of a class of functions called discrete hypergeometric functions defined in (2.2) by using the discrete power function $z^{(n)}$.

1. INTRODUCTION

Harman [7], in 1978, introduced the concept of q-analyticity of a function by replacing derivatives by q-difference operators $D_{q,x}$ and $D_{q,y}$ which are defined as follows:

$$D_{q, x} [f(z)] = \frac{f(z) - f(qx, y)}{(1-q) x}$$
 (1.1)

$$D_{q, y} [f(z)] = \frac{f(z) - f(x, qy)}{(1-q) iy}$$
 (1.2)

where f is a discrete function.

The two operators involve a 'basic triad' of points denoted by

$$T(z) = \{(x, y), (qx, y), (x, qy)\}$$
 (1.3)

Let D be a discrete domain. Then a discrete function f is said to be 'q-analytic' at z∈D if

$$D_{q,x} [f(z)] = D_{q,y} [f(z)]$$

$$(1.4)$$

If in addition (1.4) holds for every $z \in D$ such that $T(z) \subseteq D$ then f is said to be 'q-analytic' in D. (1.5)

For simplicity if (1.4) or (1.5) holds, the common operator \mathbf{D}_q is used where

$$D_{q} \equiv D_{q}, x \equiv D_{q}, y \tag{1.6}$$

The function z^n is of basic importance in complex analysis since its use in infinite series leads to the Weierstrassian concept of an analytic function. Harman [8] defined, for a nonnegative integer n, a quantity function $z^{(n)}$ to denote the discrete analogue of $z^{(n)}$, if it satisfies the following conditions:

$$D_{q} [\mathbf{z}^{(n)}] = \frac{(1-q^{n})}{(1-q)} \mathbf{z}^{(n-1)}$$

$$\mathbf{z}^{(o)} = 1$$

$$0^{(n)} = 0, n > 0$$
(1.7)

The operator Cy, given by

$$C_{y} \equiv \sum_{j=0}^{\infty} \frac{(1-q)^{j}}{(1-q)_{j}} (iy)^{j} D_{q,x}^{j}$$
 (1.8)

when applied to the real function xn, yields z(n).

In fact, Harman [8] defined $z^{(n)}$ by

 $z^{(n)} \equiv C_y(x^n)$; n a non-negative integer

$$= \sum_{j=0}^{\infty} \frac{(1-q)^{j}}{(1-q)_{j}} (iy)^{j} D^{j}_{q,x} (x^{n}), \qquad (1.9)$$

which on simplification, yields

$$\mathbf{z}^{(n)} = \sum_{j=0}^{n} {n \choose j}_{q} \mathbf{x}^{n-j} (i\mathbf{y})^{j}$$
 (1.10)

or alternatively,

$$\mathbf{z}^{(n)} = \sum_{j=0}^{n} {n \choose j}_{q} \mathbf{x}^{j} (i\mathbf{y})^{n-j}$$
 (1.11)

To justify that $z^{(n)}$ is a proper analogue of z^n , Harman [8] proved that $z^{(n)}$ is a q-analytic function and satisfies the three requirements of (1.7).

We shall also use the following notations due to Hahn [3]: Let

$$f(x) = \sum_{r=0}^{\infty} a_r x^r$$
 (1.12)

be a power series in x. Then

$$f([x-y]) = \sum_{r=0}^{\infty} a_r (x-y)_r$$
 (1.13)

$$f\left(\frac{t}{[x-y]}\right) = \sum_{r=0}^{\infty} a_r \frac{t^r}{(x-y)_r}$$
 (1.14)

where
$$(x-y)_{\alpha} = x^{\alpha} \frac{\pi}{\pi} \left[\frac{1-(y/x) q^n}{1-(y/x) q^{\alpha+n}} \right]$$
 (1.15)

For various other definitions, notations and results used in this paper one is referred to remarkable books on q-Hypergeometric series by Exton [1], Gasper and Rahman [2] and Slater [13].

2. DISCRETE HYPERGEOMETRIC FUNCTIONS

Using Harman's discrete analogue $z^{(n)}$ for the classical function z^n , we now introduce a discrete analogue ${}_rM_s$ [(a_r); (b_s); q, z] of the q-hypergeometric function ${}_r\Phi_s{}^{(q)}$ [(a_r); (b_s); z].

It is well known that

$$\begin{array}{lll} D_q \ \{ \, _r \Phi_s{}^{(q)} \, [(a_r); \ (b_s); \ x \,] \} & = \, \frac{ \, (1 - q^{a_1}) \, \dots \dots (1 - q^{a_r} \,) \, }{ \, (1 - q) \, (1 - q^{b_1}) \dots (1 - q^{b_s} \,) \, } \end{array}$$

$$_{r}^{(q)}\Phi_{s}^{(r)}$$
 [1 + (a_r); 1 + (b_s); x]

and so it seems reasonable to assume that for n, a non-negative integer a q-analytic function ${}_rM_s$ [(a_r); (b_s); q, z] will denote the discrete analogue of ${}_r\Phi_s{}^{(q)}$ [(a_r); (b_s); z] if it satisfies the following conditions:

$$\begin{array}{lll} \text{(i)} & D_{q} \ \{_{r}M_{s} \ [(a_{r}); \, (b_{s}); \, q, \, z \,]\} & = & \dfrac{(1-q^{a_{1}}) \ \ldots \ldots (1-q^{a_{r}})}{(1-q) \, (1-q^{b_{1}}) \ \ldots \ldots (1-q^{b_{s}})} \end{array}$$

$$_{r}M_{s}$$
 [1 + (a_r); 1 + (b_s); q, z], (2.1)

(ii) The first term of the series is 1.

(iii)
$${}_{r}M_{s}[(a_{r});(b_{s});q,0] = 1.$$

Such a function is obtained by applying the operator C_y defined in (1.8) to the q-hypergeometric function ${}_r\Phi_s$ [(a_r); (b_s); x], with real argument x.

In fact, $_rM_s$ [(a_r); (b_s); q, z] is defined by

$${}_{\mathbf{r}}\mathbf{M}_{\mathbf{s}} [(\mathbf{a}_{\mathbf{r}}); (\mathbf{b}_{\mathbf{s}}); \mathbf{q}, \mathbf{z}] \equiv \mathbf{C}_{\mathbf{y}} \quad \left\{ {}_{\mathbf{r}}\Phi_{\mathbf{s}}^{(\mathbf{q})} [(\mathbf{a}_{\mathbf{r}}); (\mathbf{b}_{\mathbf{s}}); \mathbf{x}] \right\} \\
 = \sum_{\mathbf{n}=0}^{\infty} \frac{(\mathbf{q}^{(\mathbf{a}_{\mathbf{r}})})_{\mathbf{n}} \mathbf{z}^{(\mathbf{n})}}{(\mathbf{q})_{\mathbf{n}} (\mathbf{q}^{(\mathbf{b}_{\mathbf{s}})})_{\mathbf{n}}}$$
(2.2)

$$= \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{(q^{(a_r)})_{n+k} x^{n} (iy)^{k}}{(q)_n (q)_k (q^{(a_r)})_{n+k}}$$
(2.3)

The following theorem shows that $_{r}M_{s}$ [(a_r); (b_s); q, z] satisfies (2.1) and hence can be taken as a discrete analogue of $_{r}\Phi_{s}^{(q)}$ [(a_r); (b_s); z].

Theorem 1. rMs [(ar); (bs); q, z] is q-analytic and satisfies the requirements of (2.1).

Proof:

$$_{r}M_{s}$$
 [(a_r); (b_s); q, z] = $\sum_{n=0}^{\infty}$ $\frac{(q^{(a_{r})})_{n}z^{(n)}}{(q)_{n} (q^{(b_{s})})_{n}}$

$$= \sum_{n=0}^{\infty} \quad \frac{(q^{\left(a_{r}\right)}\,)_{n}}{(q)_{n}\,(q^{\left(b_{s}\right)}\,)_{n}} \,\,\sum_{j=0}^{n} \,\,\left(\begin{smallmatrix}n\\j\end{smallmatrix}\right)_{q} \,x^{n-j} \,\,\left(iy\right)\;,$$

and hence

$$D_{q, x} \{ {}_{r}M_{s} [(a_{r}); (b_{s}); q, z] \}$$

$$= \sum\limits_{n=0}^{\infty} \ \frac{(q^{(a_r)})_n}{(b_s)} \sum\limits_{j=0}^{n-1} \left(\begin{smallmatrix} n\\ j \end{smallmatrix}\right)_q \ \frac{(1-q^{n-j})}{(1-q)} \ x^{n-j-1} \, (iy)^j$$

$$= \frac{1}{(1-q)} \sum_{n=1}^{\infty} \frac{(q^{(a_r)})_n z^{(n-1)}}{(q)_{n-1} (q^{(b_s)})_n}$$

similarly,

$$D_q, y \{ rM_s [(a_r); (b_s); q, z] \}$$

$$= \frac{(1-q^{a_1}) \cdot \ldots \cdot (1-q^{a_r})}{(1-q)(1-q^{b_1}) \cdot \cdot \cdot (1-q^{b_s})} \, _rM_s \, [1 + (a_r); 1 + (b_s); q, z].$$

Hence $_{r}M_{s}$ [(a_r); (b_s); q, z] is q-analytic and satisfies condition (i) of (2.1).

Since $z^{(0)}=1$ and $0^{(n)}=0$, n>0, by definition and so ${}_rM_s$ [(a_r); (b_s); q, z] satisfies (ii) and (iii) also of (2.1). This proves the theorem.

It is of interest to note the similarity of ${}_{r}M_{s}$ [(a_r); (b_s); q, z] to the function ${}_{r}\Phi_{s}{}^{(q)}$ [(a_r); (b_s); [x + y]] defined by Jackson [10] as follows:

$$_{r}\Phi_{s}^{(q)}([a_{r});(b_{s});[x+y]]$$

$$=\sum_{m=0}^{\infty}\sum_{n=0}^{\infty}\frac{\left(q^{\left(a_{r}\right)}\right)_{m+n}\frac{m}{x}\frac{1}{\left(iy\right)}\frac{n}{q}\frac{1}{n}n\left(n-1\right)}{\left(q\right)_{m}\left(q\right)_{n}\left(q^{\left(b_{s}\right)}\right)_{m+n}}$$

$$= \sum_{N=0}^{\infty} \frac{(q^{(a_r)})_N}{(q)_N (q^{(b_s)})_N} (x + iy) (x + iqy) \dots (x + iq^{N-1} y). \quad (2.4)$$

The discrete hypergeometric function defined in (2.2) can be written in either of the following two forms:

$${}_{r}M_{s}\left[(a_{r});(b_{s});q,z\right] = \sum_{n=0}^{\infty} \frac{(q^{(a_{r})})_{n}(iy)^{n}}{(q)_{n}(q^{(b_{s})})_{n}} {}_{r}\Phi_{s}^{(q)}\left[(a_{r}) + n;(b_{s}) + n;x\right]$$

$$(2.5)$$

or alternatively as,

$${}_{r}M_{s}\left[(a_{r});\,(b_{s});\,q,\,z\,\right] \;=\! \sum\limits_{n=0}^{\infty} \;\; \frac{(q^{(a_{r})})_{n}\;x^{n}}{(q)_{n}\,(q^{(b_{s})}_{})_{n}} \;\; {}_{r}\Phi_{s}^{\left(q\right)}[(a_{r})+n;(b_{s})+n;iy\,]. \eqno(2.6)$$

From (2.5) and (2.6), we observe that a discrete hypergeometric function can be regarded as a 'generating function' for the q-hypergeomotric functions of the form

$$(q) (q) (q) r \Phi_s [(a_r) + n; (b_s) + n; x] \text{ or } r \Phi_s [(a_r) + n; (b_s) + n; iy].$$

We further observe that for x = 0, $_rM_s$ [(a_r); (b_s); q, z] reduced

(q) to
$$_{r}\Phi_{s}$$
 [(a_r); (b_s); iy] while for y = 0 it becomes $_{r}\Phi_{s}$ [(a_r); (b_s); x].

3 PARTICULAR CASES

As particular cases of (2.5) and (2.6), we have the following interesting results:

$${}_{0}\mathbf{M}_{0} \ [-; \ -; \ \mathbf{q}, \ \mathbf{z} \] \ = e_{\mathbf{q}}(\mathbf{x}) \ e_{\mathbf{q}} \ (i\mathbf{y}), \tag{3.1}$$

$${}_{2}\mathbf{M}_{1} \ [\mathbf{a}, \mathbf{b}; \mathbf{c}; \ \mathbf{q}, \ \mathbf{z} \],$$

$$= \frac{1}{\frac{(1-x)}{a+b-c}} \sum_{n=0}^{\infty} \frac{(q^{a})_{n} (q^{b})_{n} (iy)^{n}}{a+b-c}$$

$$(q)_{n} (q^{c})_{n} (xq)_{n}$$

$$_{2}\Phi_{1}$$
 [$_{qc-n; qc-n; xqa}^{qc-b; xqa+b-c+n}$], (3.2)

$${}_{0}M_{1} \left[-; a; q, z \right] = (q)_{a-1} \left(-\frac{1}{\sqrt{x}} \right)^{a-1} \sum_{n=0}^{\infty} \frac{(y/\sqrt{x})^{n}}{(q)_{n}}$$

$$q^{j} a + n-1 \left(2i \sqrt{x} \right), \tag{3.3}$$

Further, summing up the $_r\Phi_s$ -function by means of known summation theorems, we have

$$_{1}M_{0} \ [a; -; q, z] = \frac{1}{(1-x)_{a}} _{1}\Phi_{0} \ [q^{a}; -; \frac{iy}{[1-xq^{a}]}], \eqno(3.4)$$

$$_{1}M_{0}$$
 [a; -; q, z] = $\frac{1}{(1-x)_{a}}$ $_{1}\Phi_{1}$ [q^a; xq^a; iy], (3.5)

$$_{1}M_{0}[a;-;q,z] = \frac{1}{(1-iy)_{a}} _{1}\Phi_{0}[q^{a};-;\frac{x}{[1-iyq^{a}]}],$$
 (3.6)

$$_{1}M_{0} [a; -; q, z] = \frac{1}{(1-iy)_{a}} _{1}\Phi_{1} [q^{a}; iyq^{a}; x]$$
 (3.7)

$$_{2}M_{1}\left[a,-n;b;q,\left(q,y\right)\right]=\begin{array}{c} \frac{(q^{b-a})_{n}\;q^{an}}{(q^{b})_{n}}\;_{2}\Phi_{1}\;\;\left[q^{a},q^{-n};-iyq^{1-b}\right] \\ (3.8)$$

∮ 4. INTEGRAL REPRESENTATIONS

We also note the following simple integral representations for ${}_{2}M_{1}$ [a, b; c; q, z] and ${}_{3}M_{2}$ [a, b, c; d, e; g, z] ${}_{2}M_{1}$ [a, b; c; q, z]

$$= \ \frac{\Gamma_q(c)}{\Gamma_q(b) \ \Gamma_q(c-b)} \ \int\limits_0^1 t^{b-1} \ (1-qt) \ _{c-b-1} \ _1M_0 \ [a;\, -;\, q,\, zt\,] \ d \ (t;\, q), \eqno(4.1)$$

provided R1 (b) > 0, |x| < 1, |y| < 1

$$_{3}M_{2}\;[a,\,b,\,c;\,d,\,e;\,q,\,z\,]\,=\frac{\Gamma_{q}(d)\;\;\Gamma_{q}(e)}{\Gamma_{q}(b)\;\;\Gamma_{q}(c)\;\;\Gamma_{q}(d-b)\;\;\Gamma_{q}(e-c)}\;\;x$$

$$\int_{0}^{1} \int_{0}^{1} t^{b-1} (1-qt)_{d-b-1} v^{c-1} (1-qv)_{e-c-1} M_{0} [a;-; ztv] d (t; q) d (v; q)$$

$$(4.2)$$

provided R1 (b)
$$> 0$$
, R1 (c) > 0 , $|x| < 1$, $|y| < 1$.

One can similarly, write down the integral representation for ${}_{r}M_{s}$ -function.

∮ 5. CONTINUOUS DISCRETE HYPERGEOMETRIC FUNCTIONS

Any two discrete hypergeometric functions,

$$_{r}M_{s}$$
 [(a_r); (b_s); q, z] and $_{r}M_{s}$ [(a'_r); (b'_s); q, z]

are said to be continuous, when all their parameters are equal except one pair, and this pair of parameter differs only by unity.

If we use the notations $(\alpha_r, +i)_n$ and $(\alpha_r, -i)_n$ to denote

$$(\alpha_1)_n (\alpha_2)_n \ldots (\alpha_{i-1})_n (\alpha_i + 1)_n (\alpha_{i+1})_n \ldots (\alpha_r)_n$$

and

$$(\alpha_1)_n (\alpha_2)_n \ldots (\alpha_{i-1})_n (\alpha_{i+1})_n (\alpha_{i+1})_n \ldots (\alpha_r)_n$$

respectively, where $1 \le i \le r$, with similar notations for (β_s), we have

$$r M_{s} [\alpha_{r}, + i); (\beta_{s}); q, z] = \frac{1}{\alpha_{i}} \{ r M_{s} [\alpha_{r}); (\beta_{s}); q, z] - q^{\alpha_{i}} r M_{s} [(\alpha_{r}); (\beta_{s}); q, qz] \}, (5.1)$$

$$_{r}M_{s}$$
 [(α_{r} , -i); (β_{s}); q, z]

$$= (1-q^{\alpha_{i}-1}) \sum_{n=0}^{\infty} q^{n(\alpha_{i}-1)} rM_{s} [(\alpha_{r}); (\beta_{s}); q, q^{n}z], \qquad (5.2)$$

$${}_{r}M_{s}\,\left[(\alpha_{r});(\beta_{s},\,+\,j);\,q,\,z\,\right] \,= (1-q^{\beta_{j}})\,\sum_{n=0}^{\infty}\,\,q^{n}\beta_{j}\,\,\\ q^{n}\,\,r\,M_{s}\,\left[(\alpha_{r});(\beta_{s});\,q,\,q^{n}z\,\right], \eqno(5.3)$$

and

$$_{\mathrm{r}}M_{\mathrm{s}}$$
 [($lpha_{\mathrm{r}}$); (eta_{s} -j); q, z]
$$eta_{\mathrm{j}}$$
-1

$$= \frac{1}{\beta_{j}-1 \choose (1-q)} {}_{r}M_{s} [(\alpha_{r}); (\beta_{s}); q, z] - q^{\beta_{j}-1} {}_{r}M_{s} [(\alpha_{r}); (\beta_{s}); q, qz].$$
(5.4)

REFERENCES

- EXTON, H., q-Hypergeometric Functions and Applications. John Wiley and Sons (Halsted Press), New York; Ellis Horwood, Chichester (1983).
- [2] GASPER, G. and RAHMAN, M., Basic Hypergeometric Series. Encyclopedia of Mathematics and its Applications, Volume 35. Cambridge University Press (1990).
- [3] HAHN, W., Beitrage z
 ür theorie der Heineschen Reihen, die 24 integrale der hypergeometrischen q-differenzengleichung, Das q-Analogen der Laplace Transformation, Math. Nachr., 2 (1949), pp. 340-379.
- [4] HARMAN, C.J., A note on a discrete analytic function. Bull. Austral. Math. Soc., 10 (1974), pp. 123-134.
- [5] HARMAN, C.J., A new definition of discrete analytic functions. Bull Austral. Math. Soc. 10 (1974), pp. 281-291.
- [6] HARMAN, C.J., Polynomial in discrete geometric function theory. Ganita, 29 (1978), pp. 93-101.
- [7] HARMAN, C.J., Discrete geometric function theory I. Applicable Analysis, 7 (1978), pp. 315-336.
- [8] HARMAN, C.J., Discrete geometric function theory II. Applicable Analysis, 9 (1979), pp. 191-203.

- [9] HARMAN, C.J., Discrete Analysis on a Radical Lattice, J. Math. Anal. and Appl. 79 (1981), pp. 323-330.
- [10] JACKSON, F.H., On basic double hypergeometric functions. Quart. J. Math. (Oxford), 15 (1944), pp. 49-61.
- [11] KHAN, M.A., Contribution to the theory of Basic Hypergeometric Series. Ph.D. Thesis, University of Lucknow (1977).
- [12] KHAN, M.A., Transformations of Discrete Hypergeometric Functions. Mathematica Balkanica, New Series Vol. 6 (1992), Fase. 3, pp. 199-206.
- [13] SLATER, L.J., Generalized hypergeometric functions, Cambridge University Press (1966).