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1. INTRODUCTION

Hecke groups H()) are the discrete subgroups of PSL(2, R) (ihe
group of orientation preserving isometries of the upper half plane U)
generated by two linear fractional transformations

R(z) =-1/z and T (z) =2z + A

where AeR, A >2 or A =kq =2co0s (7] q), qeN, q > 3. These values
of )\ are the only ones that give discrete groups, by a theorem of E.
Hecke. We are going to be interested in the latter case 2 =Aq. The
clement S = RT is then elliptic of order q.

It is well-known that H (3y) is the free product of two cyclic groups
of orders 2 and q, i.e.

H (h) = Gy * Cq
so that the signature of H (3q) is (O; 2, q, o).
Most important and worked Hecke group is the modular group

I' =H (A;) = H(1). Its underlying field is Q, i.e. all coefficients are
rational integers.

Next two important Hecke groups are those for q =4 and 6.
In these cases Ay =+/2 and 4/3, therefore underlying fields are quad-
ratic extensions of Q by 4/2 dnd /3, respectively. Here we only dis-
cuss the case q =4 (q =6 is similar).

H (3,) is the only Hecke group, apart from I' dnd H (%;), whose
elements are completely known. Indeed it consists of the set of all
matrices of the following two types:

* This work is produced from the author’s PhD Thesis.
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(ii) [ ac\/i d\};Z ] : 2ad-be =1.

Those of type (i) are called even while the others are called odd.

6)) ; ad—2be =1,

The set of all even elements form a normal subgroup, He(y/2),
of index 2 in H (4/2), called the even subgroup. It is the free product
of the infinite cyclic group Z with a finite cyclic group of order 2. Indeed,
being odd elements, R and S both go to 2-cycles under the homomorp-
hism

H(v/2) — H (/2| Hly/) = G

R—— (12
S — (12
T — (1) @

so by a theorem of D. Singerman [Si], the signature of Hy (4/2) is
(0; 2, oo, ). If we choose I, R as a Schreier transversal for
H (1/2) [He (1/2) then by the Reidemeister-Schreier method, He(v/2)
has the parabolic generators T and U = SR with their product TU
being the elliptic generator of order 2.

H (4/2) is quite important amongs the normal subgroups of
H (4/2). It is one of the three normal subgroups with cyclic quotient
C;, and contains infinitely many normal subgroups of H (4/2).

H (4/2) and H (4/3) are the anly Hecke groups commensurable
with the modular group I'. Although a conjugate of H(4/2) and T’
have a common subgroup, no common normal subgroup in both of
them exists. To see this let us suppose there exists a normal subgroup
N in I' and H (1/2)" where H (1/2)" denotes the conjugation by M.
Let v (N) be the normalizer of N in PSL (2, |R). Now H (,/2)" contains
the element S¥ of order 4 and SMeI'. But  (N) contains [' and SM.
As 7(N) is also Fuchsian, this contradicts maximality of I' (see [1]).

Here we are going to discuss some mnormal subgroups of H (1/2).
They seem to be more numerous than normal subgroups of T'. Our
main concern will be genus 0 and geneus 1 subgroups, congruence sub-
groups and some relations with the regular maps.
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Being a free product of two cyclic groups of orders 2 and 4, by
the Kurosh subgroup theorem, H (y/2) has two kinds of subgroups
those which are free and those with torsion (being free product of
Cy ’s, Cy's and Z’s).

2. NORMAL SUBGROUPS OF GENUS O IN H(v/2)

Let N be such a subgroup. H(4/2)/ N is a group of automorph-
isms of U/ N ~ Sphere (U =UyQU {}), so it must be isomorphic
to a finite subgroup of SO(3), which is going to be a finite triangle group.
These are known as A5 (2,3,5), S,2(2,3,4), A,=(2,3,3),
Dy ~(2,2,n) and Cy = (1, n, n). ,

- Let’s first map H (4/2) onto a cyclic group Cp. Since S must go
to n—cycles, n must divide 4. Therefore n =1, 2 or 4. Here N has the
signature (0; 2M, 4/n, o) and therefore is isomorphic to the free
product of C,n and n C,’s. It shall be denoted by Yn(4/2).

Secondly, by mapping onto the dihedral group D, 2 (2, n, 2)
we similarly obtain a subgroup with signature (O; 4/ n(2), co®) where
n|4. We’ll denote this one by Sy(4/2). Note that S;(1/2) and Sy(4/2)
contain elements of finite order while S,(4/2) is free of rank 3.

Thirdly, if we map onto S, ~ (2, 4, 3), we obtain a normal sub-
group with signature (0; c0(®) denoted by T(4/2). It is isomorphic to
a free group of rank 7.

We have already got 7 normal subgroups of genus 0. Apart from
these, there is an infinite family of such subgroups, obtained by map-
ping onto Dy ~ (2, 2, n), neN. The obtained subgroup has signature
(0; 2™, o0, ) and will be denoted by Wn(\/ 2). Each of these con-
tains infinitely many others of the same kind since Wn(1/2) > Wni(1/2),
keN. Note that W (4/2) = He(1/2) and also that Wy(1/2) = Sy(+/2)-

Theorem 1. All normal subgroups of genus 0 in H (y/2) are

H /2, Va2, Yiby2), Sy, Sy, Ty and Waly2) for
neiN.

Therefore unlike odd q case (particularly modular ‘group), we have
infinitely many normal subgroups of genus 0.

3. FREE NORMAL SUBGROUPS OF H(y/2)

We first have
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Lemma 1. The only normal subgroups of H(4/2) containing elements

of 1f\'Iinite order are H(y/2), Yx(1/2), Y,4/2), Si(n/2) an Wy(1/2),
neN.

Note that unlike odd q case (particularly modular group), H(4/2)
has infinitely many normal subgroups with elements of finite order.
As a result we have.

Corollary 1. Let N be a normal subgroup of positive genus in

H(4/2). Then N is torsion—free.

Corollary 1 does not have a converse, i.e. there are free normal
subgroups of H(4/2) with genus 0.

Theorem 2. Let N be a non-trivial normal subgroup of H(4/2)
different from H(y/2), Y2(4/2), Y,(1/2), S»(1/2) and Wy(4/2), neN.
Then N is free.

It is well-known that a free normal subgroup N of H(y/2) will
have rank r =2g 4- t—1, where t is the parabolic class number of N.
Also if [H(4/2): N] =y, then 4|y as R goes to u/2 2-cycles and S
goes to u/4 4—cycles. By the Riemann—-Hurwitz formula the genus
g of N is

n-—4
8n

g=1+u

Therefore for g 5% 1, H(4/2) can only have finitely many normal free
subgroups of genus g. For g =1, using regular maps of type {4, 4},
we shall prove that H(y/2) has infinitely many such subgroups, as the
last equation suggests.

4. NORMAL SUBGROUPS OF GENUS 1 IN H(y/2)

Rosenberger and Kern—Isberner have discussed these subgroups
in [6]. Here we consider them briefly using their connection with
the regular maps.

Let N be a normal subgroup of genus 1 in H(4/2). We know that
N is free of rank r =t + 1, of level 4 and therefore of index p divisible
by 4, in H(y/2). It is shown that each normal subgroup corresponds
to a regular map the same genus (see [5]). As N has genus 1, the
corresponding regular map M must be of type {4,4} since S¢ =1.
These are classified as {4, 4} 1,53 1, s€ NU {0} . M has t vertices, 2t edges
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and t faces where t =12 + s2. Each {4, 4}, will give us a normal
subgroup N with index p =4 (r2 + s2) in H(y/2), since | Aut M| =
4 (r2 4 s2). Hence we have

Theorem 3. H (4/2) has infinitely many normal subgroups of
genus 1.

Now p =4 (r2 4 s2) = 4t implying that t =r2 4 s2.

Let u be given (equivalently t be given). We want to find the
number N,(p) of normal subgroups of H (4/2) with g =1 and index .

The number of solutions of t =r2 + s2 is always divisible by
4. This is because all the pairs (r, s), (-1, —s), (-1, s) and (r, -s) give
the same t. Therefore we have

Theorem 4. The number of normal subgroups of genus 1 with
a given index p =4t in H (4/2) is

Nyu) =1/4. {(r, s)eZ2|r2 4 82 =1t}.

Rosenberger & Kern—Isberner proved this result using the mul-
tiplicativity of N,(u). The first few values of N (u) are as follows:

v 4 8 12 16 20 24 28 32 36 40
Nw|TT o1 2z 00 1 1 2

5. NORMAL SUBGROUPS OF GENUS g>2 AND REGULAR MAPS

We have already seen that for each g > 2, H (1/2) has only fini-
tely many normal subgroups with genus g. Therefore corresponding
regular maps will also be finitely many. Those with genus 2 < g <7
are given in [2], [3] and [4].

Note that since q =4, the only non-degenerate regular maps,
we can have, are those of type {2, n} or {4, n}. The former ones will
correspond to Wp(4/2) and having g =0, will be regular n—gons on
the sphere. Here we shall be interested in the latter type. Hence all
regular maps will have type {4,4}. We will denote the corresponding
normal subgroup by [4, n]. Here n is the level of the subgroup.

6. PRINCIPAL CONGRUENCE SUBGROUPS OF H (4/2)

An important class of normal subgroups in H (4/2) are the principal
congruence subgroups. For modular group I', these are the groups
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~ Let now p be prime. The principal congruence subgroup I'p(1/2)
of level p is defined by
( Ia by/27
? M= ’
c4/2 d

Note that by the definition

I'p(v2) <0 He(y/2).
If 2 is a square mod p (i.e. p = 4 1 mod 8), then 4/2eGFE(p).
Otherwise 4/2 lies in GF(p2) (quadratic extension of GF(p)). Then we
have finite groups Hp(1/2) << PSL (2, p) or PSL (2, p'), and a homo

morphism

eH (4/2): M = F I modp

o

0: H (1/2) — Hy(/2).
- Let Kj(4/2): = Ker 0. Obviously

PD(\/Z) ﬁ KD(\/Z) :

It is not always the case that K(1/2) = I'y(1/2), e.g. if p =17, then 2
is a squarve modulo 7. We know that F7(\/§) < He(\/i) Now the
odd element

vz T
7 53

as 4/2 =3 in GF(7), and therefore K,(4/2) contains an element which
is not in I;(4/2). That is, the two congruence subgroups do not coin-
cide for p = 7. Since M = I mod 7, T',(/2) is a normal subgroup of
K7(\/2) with index 2. . . » o . i

M =

In general if 2 is a squarc mod p, we have

HEYED
N

B0
o]
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By [7]. we find
H (v/2)] Ky (v/2) =~ PSL (2, p)

and therefore
L1(v2)/Ty(v/2) = C; X PSL (2, p).
If 2 is not a square mod p, then Ky(4/2) = I'y(1/2) and we have
H (\‘/ 2)
He(1/2)
5| .
Kp(v/2) = I'p(v/2).
Therefore by [7],
H(1/2)/ Tp(/2) = PGL (2, p).

PSL(2,p) f p= +1 mod §,
Theorem 5. H (1/2) [Ky(+/2) = S PGL (2, p) if p= &+ 3 mod 8,
("¢, if p=2,
C, x PSL(2,p) if p= 4+ 1 med 8,
H(y/2)/Tyv/3) = ) BGL (2, p) if p= + 3 mod 8,
) if p=2.

Therefore if p is an odd prime, then both congruence subgroups

are free, while for p =2, Ky(1/2) = He(1/2) and I';(1/2) = W (1/2).
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