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1. INTRODUCTION

Hecke groups H(Z) are the discrete subgroups of PSL(2, R) (the 
group of orientation preserving isometries of the upper half plane U) 
generated by two linear fractional transformations

R (z) == - 1 / z and T (z) = z + X

where XeR, X > 2 or X = Xq = 2cos (tt j q), qeN, q > 3^. These values 
of X are the only ones that give discrete groups, by a theorem of E.
Hecke. We are going to be interested in the latter case /. = The 
element S = RT is then elliptic of order q.

It is well-known that H (Xq) is the free product of two cyclic groups 
of orders 2 and q, i.e.

H (Xq) S C2 *
so that the signature of H (Zq) is (O; 2, q, oo).

Most important and worked Hecke group is the modular group 
r = H (Â3) = H (1). Its underiying field is Q, i.e. ali coefficients are 
rational integers.

Next two important Hecke groups are those for q = 4 and 6. 
In these cases Xq = 'v/S and -y/S, therefore underiying fields are quad-
ratic extensions of Q by dnd respectively. Here -we 
cuss the case q = 4 (q = 6 is similar).

only dis-

H (Â4) is the only Hecke group, apart from P dnd H (Â(j), whose 
elements are completely known. Indeed it consists of the set of ali 
matrices of the following two types;
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(i)
bA/2

(b)

cy^2 d

ay'2 b

; ad-2bc = 1,

dy/2
; 2ad-bc =1.

a

Those of type (i) are called even while the others are called odd.

The set of ali even elements form a normal subgroup, Hg(-\/2),
of index 2 in H ('\/2), called the even subgroup. It is the free produet
of the infinite cyclic group Z with a finite cyclic group of order 2. Indeed, 
being odd elements, R and S both go to 2-cycles under the homomorp- 
hism

H (V2) —> H (V5) I He(V2) C2,
i.e.

•» (1 2)
> (1 2)
-> (1) (2),

so by a theorem of D. Singerman [Si], the signature of Hg (y/2) is
(0; 2, 00, 00). If we choose I, R as a Schreier transversal for
H (-\/2) /Hg (-y/S) then by the Reidemeister-Schreier method, He('Y/2) 
has the parabolle generators T and U = SR with their produet TU 
being the elhptic generator of order 2.

Hg (y/2) İs quite important amongs the normal subgroups of 
H (y/S). It is one of the three normal subgroups with cyclic guotient 
C2, and contains infinitely many normal subgroups of H (-\/2).

H(V2) and H (^3) are the anly Hecke groups commensurable
witb the modular group P. Although a conjugate of H (\/2) and P
have a common subgroup, 
them exists. To see tlıis let

no common normal subgroup in both of
us suppose there exists a normal subgroup

N in P and H ('^2)“ where H ('^2)^ denotes the conjugation by M. 
Let 7] (N) be the normalizer of N in PSL (2, |R). Now H contains 
the element of order 4 and S''*eP. But t) (N) contains P and S^. 
As 7î(N) is also Fuchsian, this contradicts mavimality of P (see [1 ]).

Here we are going to discuss some normal subgroups of H ("y/S). 
They seem to be more numerous than normal subgroups of P. Our 
main conceın will be genus 0 and geneus 1 subgroups, congruence sub­
groups and some relations with the regular maps.

R
S
T
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Being a free product of two cyclic groups of orders 2 and 4, by 
the Kurogh subgroup theorem, H (y^2) has two kinds of subgroups 
those which are free and those with torsion (being free product of 
Ç2 's, 64'8 and Z's).

2 . NORMAL SUBGROUPS OF GENUS O in H(V2)

Let N be such a subgroup. H(y'2) / N is a group of automorph- 
isms of U / N Sphere (U =UuQU {00})? so it must be isomorphic 
to a finite subgroup of SO(3), which is going to be a finite triangle group.
These are known as A5s(2, 3, 5), S4£(2, 3, 4), A4 = (2, 3, 3), 
Dn = (2, 2, n) and Cn S (1, n, n). 

Let’s first map H (^/S) onto a cyclic group Cn. Since S must go
to n-cycles, n must divide 4. Therefore n = 1, 2 or 4. Here N has the 
signature (0; 2(“), 4 / n, 00) and therefore is isomorphic to the free
product of 64/11 and n €2’8. It shall be denoted by Yn(-\/2).

Secondly, by mapping onto the dihedral group Dn s (2, n, 2)
we similarly obtain a subgroup with signature (0; 4/n(2), 00W) where 
n 1 4. We’ll denote this one by Sn('\/2). Note that Sj(-\/2) and S2(-\/2) 
contain elements of finite order while 82(^2) is free of rank 3.

Thirdly, if we map onto S4 (2, 4, 3), we obtain a normal sub- 
group with signature (o; 00<8)) denoted by T(-y/2). It is isomorphic to 
a free group of rank 7.

We have already got 7 normal subgroups of gehüs 0. Apart from 
these, there is an infinite family of such subgroups, obtained by map­
ping onto Dn (2, 2, n), neN. The obtained subgroup has signature 
(0; 2(“), 00, 00) and will be denoted by Wn('\/2). Eaeh of these eon- 
tains infinitely many others of the same kind since Wn(-\/2) [>Wni£(-\/2), 
keN. Note that Wj('y/2) = Hg(-Y/2) and also that '^2(^/2) = S2('i^2).

Theorem 1. Ali normal subgroups of genus 0 in H (-^/S) are
H (V2), ¥2(^2), ¥4(^2), Sı(V2), 84(^2), T(V2) and Wn(V2) for 
neN.

Therefore ünlike odd q case (particularly modular group), we have 
infinitely many normal subgroups of genus 0.

3. FREE NORMAL SUBGROUPS OF H(V5)

We first have
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Lemma 1. The only normal subgroups of H(-y/2) containing elements 
of finite order are H(y^2), Y2(-\/2), Y4(-y^2), Sı('\/2) an 
neN.

W„(V2),

Note that unhke odd q case (particularly modular group), H('\/2)
has infinitely many normal subgroups with elements of finite order. 
As a result we ha ve.

Corollary 1. Let N be a normal subgroup of positive genus in
H(V2). Then N is torsion—free.

Corollary 1 does not have a converse, i.e. there are free normal 
subgroups of H(^2) with genus 0.

Theorem 2. Let N be a non-trivial normal subgroup of H('^2) 
different from H(-y/2), Y2(-\/2), ¥4(^'2), S2('\/2) and Wn('\/2), neN. 
Then N is free.

It is well-known that a free normal subgroup N of H(-\/2) will
have rank r = 2g t-1, where t is the parabolle class number of N. 
Also if [H(-\/2): N ] = p., then 4 | p. as R goes to yı.1 2 2-cycles and S 
goes to p / 4 4-cycles. By the Riemann-Hurwitz formula the genus 
g of N is

g = 1 + [X
n - 4

8n

Therefore for g 1, H('y/2) can only have finitely many normal free
subgroups of genus g. For g =1, using regular maps of type {4, 4}, 
we shall prove that H(-\/2) has infinitely many such subgroups, as the 
last equation suggests.

4. NORMAL SUBGROUPS OF GENUS 1 IN H(V2)

Rosenberger and Kern-Isberner have discussed these subgroups
in [6 ]. Here we consider them briefly using their connection with 
the regular maps.

Let N be a normal subgroup of genus 1 in H(-y/2). We know that 
N is free of rank r = t -|- 1, of level 4 and therefore of index p divisible 
by 4, in H(-y/2). It is shown that each normal subgroup corresponds 
to a regular map the same genus (see [5 ]). As N has genus 1, the 
corresponding regular map M must be of type {4, 4) since S** = I.
These are classified as {4, 4) r,s; r, s e N U -jO). M has t vertices, 2t edges
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and t faces where t = r2 -|- s2. Each {4, 4} r,s a normalwill give us
subgroup N with index = 4 (r?- + s2) in H('^2), since | Aut M ] = 
4 (r2 s2). Hence we have

Theorem 3. H (-\/2) has infinitely many normal subgroups of 
genus 1.

Now p, = 4 (r2 s2) — 4t impiying that t = r2 + s2.

Let p, be given (equivalently t be given). We want to find the 
number N4(p) of normal subgroups of H ('\/2) with g = 1 and index p.

The number of Solutions of t = r2 + s2 is altvays divisîble by 
4. This is because ali the pairs (r, s), (-r, —s}, (-r, s) and (r, -s) give 
the same t. Therefore we have

Theorem 4. The number of normal subgroups of genus 1 with 
a given index p = 4t in H (-^2) is

=1/4. {(r, s)eZ2 | r2 + s2 = t).

Rosenberger & Kern-Isberner proved this result using the mul- 
tiplicativity of N4(p). The first few values of N^/p) are as follows:

4 8 12 16 20 24 28 32 36 40
N^Cîz) 1 1 0 1 2 0 0 1 1 2

5. NORMAL SUBGROUPS OF GENUS g>2 AND REGULAR MAPS

We have already seen that for each g > 2, H (-\/2) has only fini- 
tely many normal subgroups with genus g. Therefore corresponding 
regular maps will also be finitely many. Those with genus 2 < g < 7 
are given in [2], [3] and [4].

Note that since q = 4, the only non-degenerate regular maps, 
we can have, are those of type {2, nj- or {4, n}. The former ones will 
correspond to Wıı(-\/2) and having g = 0, will be regular n-gons on 
the sphere. Here we shall be interested in the latter type. Hence ali 
regular maps wiU have type {4, 4}. We wiU denote the corresponding 
normal subgroup by [4, n]. Here n is the level of the subgroup.

6. PRINCIPAL CONGRUENCE SUBGROUPS OF H (y/2)

An important class of normal subgroups in H (-\/2) are the principal 
congruence subgroups. For modular group F, these are the groups
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a b- b" ““1a 0^
Hu) = mod n LeP:

0e d d 1c

Let now p be prime. The principal congruence subgroup rp(^2) 
of level p is defined by

M
bVZ

c V2
6H(-y/2): m = I modp ta

d

Note that by the definition 

rp(V2) < He(V2).
If 2 is a square mod p (i.e. p = 2; 1 mod 8), then -Y/2eGF(p). 

Otherwise ^2 lies in GF(p2) (quadratic extension of GF(p)). Then we 
have finite groups ,IIp('y/2) < PSL 1^2, p) 
morphism

or PSL (2, p'), and a homo

9: H (^2) —> Hp(V2).

Let Kp(V2): Ker 0. Obviously

rp(V2) < Kp(V2).

It is not aİAvays the case thât Kp(y'2) = rp(-\/2), e.g- if p = 7, then 2
is a square modulo 7. We know that r7('\/2) 21 He (y^2). Now the 
odd element

M =
■5V2

5^2,
e K,(V2)

7

as -^^2 = 3 in GF(7), and tiıerefore K7('y/2} contains an element -»lıich
is not in F7(-\/2). That is, the two congruence subgroups do not coin- 
cide for p = 7. Since M = I mod 7, r7(^/2) is a normal subgroup of 
K-,(<^2) tvith index 2, .........

In general if 2 is a squarc mod p, we have

H
1
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By [7], we find

H(a/2)/Kp(V2) s PSL (2, p)

and therefore

îl{^2)ir^{y/2) C2 X PSL(2,p).

If 2 is not a square mod p, then Kp('Y/2) = rp('\/2) and we have 

H(V2)

Kp(V2)

He(V2)
I
PpCVS)-

Therefore by [7],

H(V2)/rp(V2) PGL (2,p).

Theorem 5. H (-y/2) l^p{\/2) ~
PSL (2, p) if p = zt 1 mod 8, 
PGL (2, p) if p = zb 3 mod 8,

if p = 2,p2

ıi(V2)/rp(V2) =
C2 X PSL (2, p) if p = Jz 1 mod 8,
PGL (2, p) 

D4
if p = zt 3 mod 8, 
if p = 2.

Therefore if p is an odd prime, then both congruence subgroups
are free, while for p 2, K2(V5) =He(V5) and r2(V2) = W4(V2).
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