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SUMMARY

In this paper, we investigated the sectional curvatures of the submanifolds which are 
totally real in S’.

INTRODUCTION

A 6 dimensional sphere S6 does not admit any Kaehler structure. 
However a natural almost complex structure J can be defined 
on S6. This structure on S6 is nearly Kaehler, that is, it satisfies 
(V XJ) (X) = 0, where \7 is the Riemannian connection on Sö and J is
the almost complex structure of S 6 [5]. 

There are two types of submanifolds on S6, those which are almost
complex and those whiçh are totally real. A. Riemann manifold M 
isometrically immersed in S6, is caUed a totally real submanifold of
S6 if J (TM) c; T-*-]VI where T-*-M is th® normal bundle of M in S®,
then we have n = dim M < 3. In this paper we investigated the sec-
tional curvatures of the submanifolds which are totally real in S6.

1. PRELIMINARIES

Let UM = {X e TM; j| X || = I { be the unit tangent bundle 
of M. If M is two dimensional, consider the function f; UM R defined
by f(v)= h (V,V), J V> wbich is clearly smooth, where h is the 2 nd
fundamental form tensor of M. Suppose that f is not constant. The unit 
tangent bundle UM being compact, f attains its maximum at a tangent
vector, say Cj. Then it is well known that h (cj, Cj), Jy = 0,
for y e UM and y ± «1 [3]-

Put h (cj, ej) = a Jcj, where a is a smooth function on M. Choose 
e2 such that (cj, 03} is a local orthonormal frame of M. Then we have 
the following expressions [1].
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(*) h (63, 63) = a J 63, h (62, 62) = b j 63 -i- c J 62,11 (63, 62) =bje2 
where b, e are smooth functions on M.

Now assume that M is three dimensional. Let x e M and let us 
construct an orthonormal hasis of TxM in the following way [2 ]. Con-
sider the function fj: UM - R defined by fj (v) }1(V, V), J V
If f3 attains an absolute maximum in u then h (u, u), J w = 0,
for w orthogonal to u. Choose Cj to be an absolute maximum of fj.
Then we consider the restriction of fj to {v e UMp | V, Cı = 0}-
We will denote this restrietion of f3 by f2. If £2 is identically zero, we 
choose 62 as an eigenvector of , where Ajg, is the shape operatör 
with respect to Jej. If f2 is not identically zero, we take 62 as an abso
lute inakimüriı of f2. Finally, we choose 63 such that G (63, 62) =103. 
Then, the second fundamental form can be written as

h (ep ej = a J Cj
h (e2, Oj) = b J cj + c J 62
11 (63, 03)

11 (op 02) 

h (ep 63)

-(a -{7 b) J 63 - o J 62
11 J 02 + d J 63
-(a + b) J ^3 dj e2

h (e2, Cy) = dJ 62 - c J ej.

where-a > d > 0 and b, c € R.

At tbis jjoinf we may express the following lemma which was 
proved in [2 ].

Lemma. If M is a 3 -dimensional eoınpact totally real submanifold 
of S6, then for each point p of M, there exists an 
{ep 62, 63 { of TpM such that either

(i) h (cp 63) = h (62, 62) = h (cj, 63) =0,

orthonormal hasis

h (cp 62) h (cp C2) h («2, 63) = 0,

or .. ........

(ü) h (cı, 63) = { ■y/5 /2) J e1’ h (cı, 62) = (-y/5/ 4) J 02,

h (62, 02) = (-^^5/4)1 63 4-’(-y/10/4) J e2, h (ej, 63) = (-y/S / 4)Je3
1^ (03,03) =(^5/4) J ei - (a/411/4) J e2, h (e2, = (-y/IO/4) J Cj,

or
(İÜ) h- (eı, 63) = J

11 (62, 62) = (-^514)3

11 63) = (-V5/4) J

ep 11 (op 02) == (-V^/4) J e.'3’

ep

ep

h (ep 62) = (-'\/5/4) J 62, 

h (62, 63) =0.
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The lenght of the second fundamental form of M at point x is defined by

II bx ||2 — S II hx (cj, ej ||2. (1-1)

If P is a plane seetion of M at x, i.e. a two dimensional sübspace 
of TxM, then denote by K(P) the sectional cnrvature of M at P and 
by h İp the symmetric bilinear form from PxP to TJ-M obtained by 
restricting hx to PxP. Let cı, 62 be any orthonormal hasis of P. Then 
the Gauss eurvature otjuatiou ean be written as

K(P) = 1 + h (ep e,), h (02, 62) - II h (61, 62) ||2. (1-2)

and the length of h |p is || h |p ||2 S il 
l<ıj<2

11(61, ej) ||2.

İl 11 İp l|2 II -11 (e 1’ ®1) İP + 2 II 11(61, ®2) İP + II h (62, 62) i|2 (1-3)

2 . RELATIONS EETWEEN SECTİONAL CURVATURES

Now, we may prove the following theorems providing some rela- 
tions about the sectional curvatures of totally real submanifold M in Sö.

Theorem 1. Let M he an 2 or 3 dimensional totally real submani
fold of S6. If P is a plane seetion of M, then K(P) < 1 -)- (1 / 2) j| h İp jj? 
< l + (l/2) ||h ||2.

Proof; If M is 2 dimensional, then the sectional eurvature K(P) 
coincides with the Gaussian eurvature of M at P. For 2 dimensional 
case, it was proved by S. Deshmukh in [1] that the Gaussian eurvature 
of M iş 1, that is, M is totally geodesic. in this case, since h lp also coin
cides with hx, we easily have 1 < 1 + (1/ 2) ]|h |p ||2 = 1 -j-.{1 / 2) || h |p. 
Now, let us give the proof of theorem for the case of dimension 3.

Let 62 be an orthonormal hasis of P, We will eonsider three 
eases in the Leınma. Case (i). Fronı (1.2.) and (1.3.) we get

J h^ İ12 = 0, II h İP 112 = o and so K(P) = E;

Gase (ii). From (1.2.) and (1.3.) we get

K(P) =1 + (V5/2) Jej, {-^5/4) Je2d-(V10/4) Je2:>

-|i<-V5/4) Je2||2 =1/16 

and

i|iı||2 = s ||hx(eı,ej) ||2 =95/16, h |p ||2 =45 /16 

and so
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1 / 16 < 1 + 45 / 32 < 1 4- 95 / 32, which proves the assertion.

Case (İÜ). From (1.2) and (1.3) we get

K(P) = 1 + 
1/16 

and

-||(-V5/4) Je^p(VS/2) Jeı, (V5/4) Jcı

||h ||2 = V50/16, ||h|p||2 =35/16 

and so

1/16 < 1 4- 35/ 32 < 1 4- 30/ 32, which proves the assertion.

Theorem 2. If M is a totally real minimal surface of S6. Then, we 
have

K(P) =l-(l/2)||h ||2 <1.

Proof: If M is a minimal surface, then mean curvature vector of 
M is zero so from (*) we get h (e2, e?) ==-a J Cj. Using this in (1.2) 
and (1.3) it follows that

K(P) = 1 -4 

and

ajcj, -ajcj bje2, bje2 = 1 - (a2-Hb2 )

h ||2 = 2 (a2 + b2)

and so

K(P) =l-(l/2) II h 1Î2 < 1.

Remark lo Theorem 2. In three dimensional case Theorem 2 is
justified for the only case (i) and the other cases do not occur.

Theorem 3. If M is a totally real and also totally umbilic sub-
manifold of S6, then, wehave K(P) = 1.

Proof: If M is three dimensional, then only the case (i) occurs, so
the proof for this case is clear. If M is a totally real and also totally
umbilic surface, then by definition we 
= h (e2, 02). From (*), it follows that

write h (e2, 62) = 0 and h (e^ej
= b = c =0, which imply

(®1’ ®ı) = 11 (®25 ®2) = 11 (®i5 62) = 0- Thus, from (1.2) 
K(P) = 1.

we have
a
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