Commun. Fac. Sci. Univ. Ank. Series A. V. 43. pp. 85-97 (1994)

ON A CLASS OF MEROMORPHIC STARLIKE FUNCTIONS WITH POSITIVE COEFFICIENTS

SHIV KUMAR PAL

Dept. of Maths., Janta College Bakewar, Etawah, India.

(Received Apr. 20, 1994; Accepted Oct. 12, 1994).

Let
$$T_m(A, B, z_0)$$
 denote the class of functions $f(z) = \frac{a}{z} +$

 $\sum\limits_{n=1}^\infty a_n z^n$ (a ≥ 1 , $a_n \geq 0$) regular and univalent in the disc U'=

 $\{z: 0 < |z| < 1\}$, satisfying

$$-z \cdot \frac{f'\left(z\right)}{f\left(z\right)} \; = \; \frac{1 + Aw\left(z\right)}{1 + Bw\left(z\right)} \; , \; \text{for} \; \; z \in U', \; \text{and} \; \;$$

 $w \in E$ (where E is the class of analytic functions w with w(0) = 0 and

$$\mid w\left(z\right) \mid \leq 1), \text{ where } -1 \leq A < B \leq 1, 0 \leq B \leq 1 \text{ and } f'\left(z_{0}\right) = -\frac{1}{z^{2}_{0}}$$

 $(0 < z_0 < 1)$. In this paper, sharp coefficient estimates for the class $T_M(A, B, z_0)$ have been studied Radius of meromorphic convexity, integral transform of functions in $T_M(A, B, z_0)$ have been obtained. It is also proved that the class $T_M(A, B, z_0)$ is closed under convex linear combination. In the last part, the convolution problem of these functions have been studied.

1. INTRODUCTION

Let Σ denote the class of functions of the form

$$\mathbf{h}(\mathbf{z}) = \frac{1}{\mathbf{z}} + \sum_{n=1}^{\infty} \mathbf{a}_n \mathbf{z}^n \tag{1.1}$$

which are regular in $U' = \{z : 0 < |z| < 1\}$ having a simple pole at the origin. Let Σ_s denote the class of functions in Σ which are univalent in U and $\Sigma^*(\rho)$ be the subclass of functions f(z) in Σ satisfying the condition

$$\operatorname{Re}\left\{-\mathbf{z} \mid \frac{\mathbf{f}'(\mathbf{z})}{\mathbf{f}(\mathbf{z})}\right\} < \rho. \tag{1.2}$$

Functions in $\Sigma^*(\rho)$ are called meromorphically starlike functions of order ρ .

The class $\Sigma^*(\varrho)$ have been extensively studied by Pommerenke [5], Clunie [1], Kaczmarski [3], Royster [6] and others.

Let Σ_{M} denote the subclass of functions in Σ_{s} of the form f(z) =

$$\frac{1}{z} + \sum_{n=1}^{\infty} \ a_n \ z^n \ with \ a_n \geq 0 \ and \ let \ \Sigma^*_M \ (\rho) = \Sigma_M \ \cap \ \Sigma^*(\rho).$$

Juneja and Reddy [2] have obtained certain interesting results for functions in $\Sigma^*_{M}(\rho)$. Since much work has not been done for meromorphic univalent functions, we introduce following class of functions:

Let T_M denote the class of functions $f\left(z\right)=\frac{a}{z}+\sum\limits_{n=1}^{\infty}~a_n~z^n$

(a \geq 1, a_n \geq 0) (The a \geq 1 is necessary, see Nehari [4, Ex. 8, p. 238]) regular and univalent in the disc $U' = \{z: 0 < |z| < 1\}$. Let $T_M(A, B)$ denote the subclass of functions in T_M satisfying the condition

$$-\frac{z f'(z)}{f(z)} \alpha \frac{1+Az}{1+Bz}, z \in U'$$

where α denote subordination and A and B are fixed numbers $-1 \le A$ $< B \le 1, \ 0 \le B \le 1.$ Then by definition of subordination

$$-z \frac{f'(z)}{f(z)} = \frac{1 + A w(z)}{1 + B w(z)}, \text{ for some } z \in U', w \in E \quad (1.3)$$

where E is the class of analytic functions w with w(0) = 0 and $|w(z)| \le 1$. Also $T_M(A, B, z_0)$ denote the subclass of functions in $T_M(A, B)$

satisfying
$$f'(z_0) = -\frac{1}{z_0^2}$$
 (where $0 < z_0 < 1$).

In this chapter, we obtain sharp coefficient estimates for the class T_M (A, B, z_0). Radius of meromorphic convexity, integral transform of functions in T_M (A, B, z_0) have been studied. It is also shown that the class T_M (A, B, z_0) is closed under convex linear combination. In the last part, the convolution problem of these functions have been studied.

2. MAIN RESULTS

In this section we prove our main results.

Theorem 2.1. Let $f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n$ be regular in and belongs to T_M (A, B) if and only if

$$\sum_{n=1}^{\infty} \{n (1+B) + A + 1\} a_n \le B-A. \tag{2.1}$$

Proof: Consider the expression

$$H(f, f') = |z f'(z) + f(z)| - |B z f'(z) + A f(z)|.$$
 (2.2)

Replacing f and f' by their series expansions we have, four 0 < |z|= r < 1,

$$H(f,f') = \left| \sum_{n=1}^{\infty} (n+1) a_n z^n \right| - \left| (A-B) \frac{1}{z} + \sum_{n=1}^{\infty} (A+Bn) a_n z^n \right|$$

$$\leq \sum_{n=1}^{\infty} (n+1) a_n r^n - (B-A) \frac{1}{r} + \sum_{n=1}^{\infty} (A+Bn) a_n r^n,$$

or

$$r H(f, f') \leq \sum_{n=1}^{\infty} \{n (1 + B) + A + 1\} a_n r^{n+1} - (B-A).$$

Since this holds for all r, 0 < r < 1, making $r \rightarrow 1$, we have

$$H(f, f') \le \sum_{n=1}^{\infty} \{n(1+B) + A + 1\} a_n - (B-A) \le 0,$$
 (2.3)

in view of (2.1). From (2.2), we thus have

$$\left| \begin{array}{c} \mathbf{z} \quad \frac{\mathbf{f}'\left(\mathbf{z}\right)}{\mathbf{f}\left(\mathbf{z}\right)} + 1 \\ \\ \mathbf{B} \ \mathbf{z} \quad \frac{\mathbf{f}'\left(\mathbf{z}\right)}{\mathbf{f}\left(\mathbf{z}\right)} + \mathbf{A} \end{array} \right| \leq 1.$$
 Hence $\mathbf{f} \in \mathbf{T}_{\mathbf{M}}$ (A, B).

Conversely, let
$$f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n$$
 and

$$\begin{vmatrix} \mathbf{z} & \frac{\mathbf{f}'(\mathbf{z})}{\mathbf{f}(\mathbf{z})} + 1 \\ \mathbf{B} \mathbf{z} & \frac{\mathbf{f}'(\mathbf{z})}{\mathbf{f}(\mathbf{z})} + \mathbf{A} \end{vmatrix} \leq 1$$

$$\left| \frac{\sum\limits_{n=1}^{\infty} (n+1) a_n z^n}{(A-B) \frac{1}{z} + \sum\limits_{n=1}^{\infty} (A+Bn) a_n z^n} \right| \leq 1$$

or

$$\left| \begin{array}{c} \sum\limits_{n=1}^{\infty} \; (n\,+\,1)\; a_n\; z^{n+1} \\ \\ (B\!-\!A) - \sum\limits_{n=1}^{\infty} \; (A\,+\,Bn)\; a_n\; z^{n+1} \end{array} \right| \leq 1$$

Since $(z) \le |z|$ and the stable sector z

$$\operatorname{Re} \ \left\{ \begin{array}{l} \sum\limits_{n=1}^{\infty} \ (n+1) \ a_n \ z^{n+1} \\ \hline (B-A) - \sum\limits_{n=1}^{\infty} \ (A \ + \ Bn) \ a_n \ z^{n+1} \end{array} \right\} \le 1$$

choosing z = r with 0 < r < 1, we get

$$\frac{\sum_{n=1}^{\infty} (n+1) a_n r^{n+1}}{(B-A) - \sum_{n=1}^{\infty} (A + Bn) a_n r^{n+1}} \leq 1.$$
 (2.4)

Let
$$S(r) = (B-A) - \sum_{n=1}^{\infty} (A + Bn) a_n r^{n+1}$$
.

 $S(r) \neq 0$ for 0 < r < 1, S(r) > 0 for sufficiently small values of r and S(r) is continuous for 0 < r < 1. Hence S(r) can not be negative for any value of r such that 0 < r < 1. Upon clearing the denominator in (2.4) and letting $r \to 1$ we get

$$\sum\limits_{n=1}^{\infty} (n+1) a_n \leq (B-A) - \sum\limits_{n=1}^{\infty} (n+1) a_n$$

 \mathbf{or}

$$\sum_{n=1}^{\infty} \{n (1+B) + A + 1\} a_n \leq (B-A).$$

Hence the Theorem.

Theorem 2.2. Let $f(z) = \frac{a}{z} + \sum_{n=1}^{\infty} a_n z^n$. If f is regular in

200

U' and satisfies f' (z) = $-\frac{1}{z^2_0}$, then $f \in T_M(A, B, z_0)$ if and only if

$$\sum_{n=1}^{\infty} \left[\left\{ n \, (1+B) + A + 1 \right\} - n \, (B-A) \, z_{0}^{n-1} \right] \, a_{n} \leq (B-A), \, a_{n} \geq 0. \, (2.5)$$

The result is sharp.

Proof: From Theorem 4.2.1, we know that a function $g(z)=\frac{1}{z}+\sum\limits_{n=1}^{\infty}b_n\,z^n$ regular in U' satisfies

$$\left| \begin{array}{c|c} \mathbf{z} & \underline{\mathbf{g'}\left(\mathbf{z}\right)} & +1 \\ \hline \mathbf{B} & \mathbf{z} & \underline{\mathbf{g'}\left(\mathbf{z}\right)} & +\mathbf{A} \end{array} \right| < 1, \ \mathbf{z} \in \mathbf{U},$$

if and only if

$$\sum_{n=1}^{\infty} \{ n (1 + B) + A + 1 \} \ b_n \le (B-A).$$

Applying that result to the function g(z) = f(z)/a, we find that f satisfies (1.1) if and only if

$$\sum_{n=1}^{\infty} \{n (1 + B) + A + 1\} \ a_n \le (B-A) \ a. \tag{2.6}$$

Since $f'(z_0) = -\frac{1}{z_0^2}$, we also have from the representation of f(z)

that

$$a=1+\mathop{\textstyle\sum}\limits_{n=1}^{\infty}\ n\ a_n\ {z_0}^{n+1}.$$

Putting this value of a in the inequality (2.6), we have the required result.

For attaining the equality in (2.5), we choose the function

$$f(z) = \frac{\{n(1+B)+1+A\} \frac{1}{z} + (B-A)z^{n}}{\{n(1+B)+1+A\} - n(B-A)z_{0}^{n+1}}.$$
 (2.7)

From (2.7), we have

$$a_n = \frac{B-A}{\{n(1+B)+1+A\}-n(B-A) z_0^{n+1}}$$
,

or

[
$$\{n(1+B) + 1 + A\} - n(B-A) z_0^{n+1} \}$$
 $a_n = (B-A),$

and

$$\begin{array}{l} \mathbf{a} \; = \; 1 \; + \; \sum\limits_{\mathbf{n}=1}^{\infty} \; \mathbf{n} \; \mathbf{a}_{\mathbf{n}} \; \mathbf{z}_{\mathbf{0}}^{\,\mathbf{n}+1} \\ \\ = \; 1 \; + \; \frac{\mathbf{n} \; (\mathbf{B}-\mathbf{A}) \; \mathbf{z}_{\mathbf{0}}^{\,\mathbf{n}+1}}{\{\mathbf{n} \; (\mathbf{1} \; + \; \mathbf{B}) \; + \; \mathbf{1} \; + \; \mathbf{A}\} \; - \; \mathbf{n} \; (\mathbf{B}-\mathbf{A}) \; \mathbf{z}_{\mathbf{0}}^{\,\mathbf{n}+1}} \\ \\ = \; \frac{\{\mathbf{n} \; (\mathbf{1} \; + \; \mathbf{B}) \; + \; \mathbf{1} \; + \; \mathbf{A}\}}{\{\mathbf{n} \; (\mathbf{1} \; + \; \mathbf{B}) \; + \; \mathbf{1} \; + \; \mathbf{A} - \{\; \mathbf{n} \; (\mathbf{B}-\mathbf{A}) \; \mathbf{z}_{\mathbf{0}}^{\,\mathbf{n}+1} \; \} } \; > \; 1. \end{array}$$

Theorem 2.3. If $f \in T_M(A, B, z_0)$, then f is meromorphically convex of order δ $(0 \le \delta < 1)$ in the disc |z| < R, where

$$R = \underset{n>1}{\text{Inf.}} \left[\frac{(1-\delta) \left\{ n (1+B) + 1 + A \right\}}{n (n+2-\delta) (B-A)} \right]^{\frac{1}{(n+1)}}$$

This result is sharp for each n for functions of the form (2.7).

Proof: In order to establish the required result, it suffices to show that

$$\left| \begin{array}{cc} 2 + \left| \begin{array}{c} \mathbf{z} \ \mathbf{f''(z)} \\ \hline \mathbf{f'(z)} \end{array} \right| \leq 1 - \delta$$

or

$$\left| \begin{array}{c} f'\left(\mathbf{z}\right) + \left[\mathbf{z}f'\left(\mathbf{z}\right)
ight]' \\ \hline f'\left(\mathbf{z}\right) \end{array}
ight| \leq 1 - \delta$$

and

$$\left| \begin{array}{c} f'\left(z
ight) + \left[zf'\left(z
ight)
ight]' \\ f'\left(z
ight) \end{array}
ight| = rac{\sum\limits_{n=1}^{\infty} rac{n\left(n+1
ight)}{a} \, a_n \mid z \mid^{n+1}}{1 - \sum\limits_{n=1}^{\infty} rac{n}{a} \, a_n \mid z \mid^{n+1}} \, .$$

This will be bounded by (1-8) if

$$\sum_{n=1}^{\infty} n (n + 2-\delta) a_n \mid z \mid^{n+1} \leq a (1-\delta).$$

Since $a = 1 + \sum_{n=1}^{\infty} n a_n z_0^{n+1}$, the above inequality can be written

as

$$\sum_{n=1}^{\infty} \frac{n \left[(n+2-\delta) \mid z \mid^{n+1} - (1-\delta) z_0^{n+1} \right]}{(1-\delta)} a_n \leq 1.$$
 (2.8)

Also by Theorem 2.2, we have

$$\sum_{n=1}^{\infty} \frac{\left\{ n \, (1+B) + 1 + A \right\} - n \, (B-A) \, z_0^{n+1}}{(B-A)} \ a_n \leq 1.$$

Hence (2.8) will be satisfied if

$$\frac{\mathbf{n} \left[(\mathbf{n} + 2 - \delta) \mid \mathbf{z} \mid^{\mathbf{n} + 1} - (1 - \delta) \mid \mathbf{z}_0^{\mathbf{n} + 1} \mid}{(1 - \delta)} \le$$

$$\frac{\{n\ (1+B)+1+A\}-n\ (B-A)\ z_0^{n+1}}{(B-A)}\ ,\ \text{for each}\ n\ =1,\ 2,\ \dots$$

$$\left| \left| \left| z \right| \right| < \left[rac{\left(1 - \delta \left\{ n \left(1 + B \right) + 1 + A
ight\}
ight.}{n \left(n + 2 - \delta
ight) \left(B - A
ight)}
ight]^{-1/(n+1)},$$

for each $n = 1, 2, \ldots$

This completes the proof of theorem. Sharpness follows if we take the same extremal function for which Theorem 2.2 is sharp.

Theorem 2.4. If $f \in T_M(A, B, z_0)$, then the integral transform

$$F\left(z\right) = c \ \int_{0}^{1} \!\! u^{c} \ f\left(uz\right) \ du, \ for \ 0 < c < \infty, \label{eq:formula}$$

is in $T_M(A', B', z_0)$, where

$$\frac{1+\,B'}{\,B'-A'}\,\leq\,\frac{\,(A+\,B+\,2)\,\,(c\,+\,2)\,+\,(B\!-\!A)\,\,c\,\,}{2c\,\,(B\!-\!A)}\,-\,\frac{z_0^2}{c}\,\,.$$

The result is sharp for the function

$$f(z) = \frac{(A + B + 2) \frac{1}{z} + (B-A) z}{(A + B + 2) - (B-A) z_0^2}.$$

Proof: Let
$$f(z) = \frac{a}{z} + \sum_{n=1}^{\infty} a_n z^n \in T_M(A, B, z_0),$$

then

$$F(z) = c \int_0^1 u^c \left[\frac{a}{uz} + \sum_{n=1}^{\infty} a_n (u^n z^n) \right] du$$

$$= c \int_0^1 \left[u^{c-1} \cdot \frac{a}{z} + \sum_{n=1}^{\infty} a_n (u^{n+c} z^n) \right] du$$

$$= c \left[\frac{u^c}{c} \cdot \frac{a}{z} + \sum_{n=1}^{\infty} a_n \frac{u^{n+c+1}}{(n+c+1)} z^n \right]_0^1$$

$$= c \left[\frac{a}{cz} + \sum_{n=1}^{\infty} \frac{a_n z^n}{(n+c+1)} \right]$$

$$= \frac{a}{z} + \sum_{n=1}^{\infty} \frac{c}{n+c+1} a_n z^n.$$

It is sufficient to show that

$$\sum_{n=1}^{\infty} \frac{\left[\left\{ n \, (1+B') + 1 + A' \right\} - n \, (B'-A') \, z_0^{\, n+1} \, \right] \, c}{(B'-A') \, (n+c+1)} \, a_n \leq 1. \eqno(2.9)$$

Since $f \in T_M(A, B, z_0)$ implies that

$$\sum\limits_{n=1}^{\infty} \quad rac{\left\{ n \left(1+B
ight) + 1+A
ight\} - n \left(B-A
ight) {z_0}^{n+1}}{\left(B-A
ight)} \; a_n \leq 1,$$

(2.9) will be satisfied if

$$\frac{\left[\left\{ n\,(1+B')+1+A'\right\} - n\,(B'-A')\,z_{0}^{n+1}\,\right]\,c}{(B'-A')\,(n+c+1)}$$

$$\leq \frac{\{n (1 + B) + 1 + A\} - n (B-A) z_0^{n+1}}{(B-A)}$$

for each n.

$$\frac{n (1 + B') + 1 + A'}{(B'-A')} \leq \frac{\{n (1 + B) + 1 + A\} (n + c + 1)}{c (B-A)}$$

$$- \frac{n (n + 1)}{c} z_0^{n+1}$$

$$\frac{1+B'}{B'-A'} \leq \frac{\{n\,(1+B)+1+A\}\,\,(n+c+1)+(B-A)\,\,c}{(n+1)\,\,(B-A)\,\,c} - \frac{n}{c}\,\,z_0^{n+1}.$$
(2.10)

The right hand side of (2.10) is an increasing function of n, therefore putting n = 1 in (2.10) we get:

$$\frac{1+B'}{B'-A'} \leq \frac{(A+B+2)(c+2)+(B-A)c}{2c(B-A)} - \frac{z_0^2}{c}.$$

Hence the theorem.

Theorem 2.5. Let γ be a real number such that $\gamma>1.$ If $f\in T_M(A,\,B,\,z_0),$ then the function F defined by

$$F(z) = \frac{(\gamma-1)}{z^{\gamma}} \int_{0}^{z} t^{\gamma-1} f(t) dt$$

also belongs to $T_M(A, B, z_0)$.

Proof: Let $f(z) = -\frac{a}{z} + \sum_{n=1}^{\infty} a_n z^n$. Then from the representation of F(z), it follows that

$$F\left(z\right)=\frac{a}{z}+\underset{n=1}{\overset{\infty}{\sum}}\ b_{n}z^{n},$$

where

$$b_n = \frac{\gamma - 1}{\gamma + n} a_n.$$

Therefore

$$\begin{split} &\sum_{n=1}^{\infty} \left[\left\{ n \left(1+B \right) + 1 + A \right\} - n \left(B-A \right) \, z_0^{n+1} \, \right] \, b_n \\ &= \sum_{n=1}^{\infty} \left[\frac{\gamma - 1}{\gamma + n} \right] \left[\left\{ n \left(1+B \right) + 1 + A \right\} - n \left(B-A \right) \, z_0^{n+1} \, \right] \, a_n \\ &\leq \sum_{n=1}^{\infty} \left[\left\{ n \left(1+B \right) + 1 + A \right\} - n \left(B-A \right) \, z_0^{n+1} \, \right] \, a_n \\ &\leq \left(B-A \right), \, \, \text{by Theorem 2.2.} \end{split}$$

the same of the state of the same of

Hence $F(z) \in T_M(A, B, z_0)$.

Theorem 2.6 Let $f(z) = \frac{1}{z}$ and

$$f_{n}\left(z\right) \; = \; \frac{\left\{n\;(1+B)+1+A\right\} \; \frac{1}{z} \; + \left(B\!-\!A\right) \, z^{n}}{\left\{n\;(1+B)+1+A\right\} \; - n\;(B\!-\!A)\; z_{0}^{n+1}}\;,$$

$$n = 1, 2, 3, \dots$$

Then $h \in T_M(A, B, z_0)$ if and only if it can be expressed in the form

$$h(z) = \lambda f(z) + \sum_{n=1}^{\infty} \lambda_n f_n(z),$$

where

$$\lambda \geq 0$$
 and $\lambda + \sum_{n=1}^{\infty} \lambda_n = 1$.

Proof: Let us suppose that

$$\begin{split} h\left(z\right) &= \lambda \, f\left(z\right) \, + \sum_{n=1}^{\infty} \, \lambda_n \, f_n\left(z\right) \\ &= \frac{a}{z} \, + \sum_{n=1}^{\infty} \, a_n \, z^n, \end{split}$$

where

$$a = \lambda + \sum\limits_{n=1}^{\infty} \ \frac{\left\{n \ (1+B) + 1 + A\right\} \right\} \ \lambda_n}{\left\{n \ (1+B) + 1 + A\right\} - n \ (B-A) \ z_0^{n+1}}$$

and

$$a_n \, = \, \frac{\left(B \! - \! A \right) \, \lambda_n}{\left\{ n \, \left(1 + B \right) + 1 + A \right\} \, - \, n \, \left(B \! - \! A \right) \, z_0^{\, n + \, 1}} \ . \label{eq:an}$$

Then, it is easy to see that $f'(z_0) = -\frac{1}{z_0^2}$ and the condition (2.5) is satisfied. Hence $h \in T_M(A, B, z_0)$.

TENER RESERVED

Conversely let $h \in T_M(A, B, z_0)$, and

$$h\left(z\right) \, = \, \frac{a}{z} \, \, + \sum_{n=1}^{\infty} \, a_n \, z^n.$$

Then, from (2.5), it follows that

$$a_n \leq rac{(B-A)}{\{n\ (1+B)+1+A\}-n\ (B-A)\ z_0^{n+1}}\ ,$$
 $(n=1,\,2,\,3,\,\ldots).$

Setting

$$\lambda_{n} \, = \left[\, \frac{\left\{ n \, \left(1 \, + \, B \right) \, + \, 1 \, + \, A \right\} \, - n \, \left(B - A \right) \, \mathbf{z_0}^{n+1}}{\left(B - A \right)} \, \right] \, a_n$$

and

$$\lambda = 1 - \sum_{n=1}^{\infty} \lambda_n$$

we have

$$h\left(z\right) = \lambda \; f\left(z\right) + \sum_{n=1}^{\infty} \; \lambda_n \; f_n\left(z\right).$$

This completes the proof of theorem.

Theorem 2.7. Let
$$f_j(z) = \frac{a_j}{z} + \sum_{n=1}^{\infty} a_{nj} z^n, j = 1, 2, ..., m$$
.

If $f_j \in T_M(A, B, z_0)$ for each j = 1, 2, ..., m, then the function h(z)

$$=\frac{b}{z}+\sum\limits_{n=1}^{\infty}\,b_n\,z^n$$
 also belongs to $T_M(A,\,B,\,z_0)$ where

$$b = \sum_{j=1}^{m} \lambda_{j} a_{j}, b_{n} = \sum_{j=1}^{m} \lambda_{j} a_{nj}, (n = 1, 2, ..., m),$$

$$\lambda_{j} \geq 0 \ \ \text{and} \ \ \sum\limits_{j=1}^{m} \, \lambda_{j} \, = 1.$$

Proof: Since $f_j \in T_M(A, B, z_0)$, then

$$\sum_{n=1}^{\infty} \left[\left. \{ n \, (1+B) + 1 + A \} - n \, (B-A) z_0^{n+1} \, \right] \, | \, a_{nj} \, | \leq (B-A) \right.$$

$$j = 1, 2, \dots, m.$$

Therefore

$$\sum_{n=1}^{\infty} \left[\left\{ n \left(1+B \right) + 1 + A \right\} - n \left(B-A \right) z_0^{n+1} \right] b_n$$

$$\begin{split} &= \sum_{n=1}^{\infty} \left[\left\{ n \left(1+B \right) + 1 + A \right\} - n \left(B-A \right) z_0^{n+1} \right] \sum_{j=1}^{m} \lambda_j \ a_{nj} \\ &= \sum_{j=1}^{m} \lambda_j \sum_{n=1}^{\infty} \left[\left\{ n \left(1+B \right) + 1 + A \right\} - n \left(B-A \right) z_0^{n+1} \right] a_{nj} \\ &\leq \sum_{j=1}^{m} \lambda_j \ (B-A) = (B-A). \end{split}$$

Hence by Theorem 2.2, $h \in T_M(A, B, z_0)$.

Theorem 2.8. If
$$f(z) = \frac{a}{z} + \sum_{n=1}^{\infty} a_n z^n \in T_M(A, B, z_0)$$
 and

$$\begin{split} g\left(z\right)&=\frac{b}{z}\;+\underset{n=1}{\overset{\infty}{\sum}}\;\;b_n\;z^n\;\;\text{with}\;\;b_n\leq 1\;\;\text{for}\;\;n=1,\,2,\,\ldots,\,\text{then}\\ f^*\;g\in T_M(A,\,B,\,z_0). \end{split}$$

Proof: Let
$$f(z) = \frac{a}{z} + \sum_{n=1}^{\infty} a_n z^n$$
 and $g(z) = \frac{b}{z} + \sum_{n=1}^{\infty} b_n z^n$,

then for convolution of functions f and g we can write

$$\mathop{\Sigma}\limits_{n=1}^{\infty} \ \left[\ \left\{ n \left(1 + B \right) + 1 + A \right\} - n \left(B - A \right) \ z_0^{n+1} \ \right] \ a_n \ b_n$$

$$\leq \sum_{n=1}^{\infty} \left[\left\{ n \left(1 + B \right) + 1 + A \right\} - n \left(B - A \right) z_0^{n+1} \right] a_n,$$

because $b_n \leq 1$.

$$\leq$$
 (B-A), by (2.5).

Hence, by Theorem 2.2 $f_* g \in T_M(A, B, z_0)$.

Note: It will be of interest to find some other convolution results analogous to those of Juneja and Reddy [2].

Acknowledgement: I am thankful to Dr. K.K. Dixit, Department of Mathematics, Janta College, Bakewar, Etawah (U.P.) for his valuable suggestions.

REFERENCES

- [1] CLUNIE, J., On meromorphic schlicht functions, J. Lond. Math. Soc. 34 (1959), 215-16.
- [2] JUNEJA, O.P., and T.R. REDDY., Meromorphic starlike univalent functions with positive coefficients, Annales Universitatis Mariae Curie Sklodowska Lubin-Polonia, Vol. XXXIX, 9, Section A, (1985), 55-75.
- [3] KACZMARSKI, J., On the coefficients of some class of starlike functions, Bull. Accad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 17 (1969), 495-501.
- [4] NEHARI, Z., Conformal Mapping, Dover Publication Inc. New York, (1952), ax. 8, p. 328.
- [5] POMMERENKI, C., On meromorphic starlike functions, Pacific J. Math. 13 (1963), 221-235.
- [6] ROYSTER, W.C., Meromorphic starlike multivalent functions, Trans. Amer. Math. Soc. 107 (1963), 300-303.