Commun. Fac. Sci. Univ. Ank. Series A, V. 43. pp. 1-11 (1994)

ON THE FOCAL SURFACES OF THE CONGRUENCES GENERATED BY THE INSTANTANEOUS SCREWING AXES CONNECTED WITH SOME SURFACES

TÜRKAN GÜL

Istanbul Technical Univ. Faculty of Art and Sci. İSTANBUL

(Received July 13, 1993; Accepted Feb. 15, 1994)

ABSTRACT

In this paper, the focal surfaces of the congruences derived in [1] and [3] have been investigated and correspondences between them have been explained.

1. INTRODUCTION

Let a surface \vec{x} be referred to its lines of curvatures. The congruences generated by the instantaneous screwing axes \vec{G} , \vec{G} of the moving trihedrons connected with these lines are respectively,

$\vec{y} = \vec{r} + t\vec{g}$,	$\vec{r} = \vec{x} + \frac{1}{r}$	ζ.	a se contra en la Seconda en la contra en la c	
	⇒ → 1	· ¥ .		(1-1)
$\int \frac{\mathbf{z}}{\mathbf{y}} = \mathbf{r} + \mathbf{t} \mathbf{g},$	$\vec{r} = \vec{x} + \frac{1}{\vec{r}}$	ξ	n de la constante de la constan	

[1]. In case \vec{y} and \vec{y} are normal congruences, let the surfaces generating these, be \vec{z} and \vec{z} . And let these surfaces be referred to their lines of curvature. The congruence generated by the instantaneous screwing axis \vec{G}^* of the moving trihedron connected with the lines of curvature u = const. of \vec{z} are

$$\vec{y^*} = \mathbf{r} + \vec{t}^* \vec{g^*}, \quad \vec{r} = \vec{z} + \frac{1}{\vec{b}} \vec{n}.$$
(1.2)

And the congruence generated by the instanteneous screwing axis \overrightarrow{G}^{**} of the moving trihedron connected with the lines of curvature $\mathbf{v} = \text{const. of } \overrightarrow{z}^{*}$ are

$$\overrightarrow{y^{**}} = \overrightarrow{r} + \overrightarrow{t^{**}} \overrightarrow{g^{**}}, \quad \overrightarrow{r} = \overrightarrow{z} + \frac{1}{\beta} \overrightarrow{n}$$
 (1.3)

[3].

2. THE PROPERTIES OF THE FOCAL SURFACES OF THE CONGRUENCES $\vec{y}, \vec{y}, \vec{y}, \vec{y}$

Since \vec{p} , \vec{k} are the focal surfaces of the congruence \vec{y} ; \vec{p} , \vec{k} of \vec{y} ; \vec{p} , \vec{k} of \vec{y} ; and \vec{p} **, \vec{k} ** of \vec{y} ** [3], to investigate considering the cases where they coincide and refer to their lines of curvature, first we may write the moving trihedrons (DARBOUX's trihedrons) connected with a common point before calculating their first and second fundamental forms.

1) Since the moving trihedron connected with the point \vec{x} of the line of curvature v = const. on the surface \vec{x} (u, v) is $(\vec{x}_1, \vec{x}_2, \vec{\xi})$, the trihedrons connected with the focal points corresponding to ρ_{II} of the focal surfaces $\vec{p}, \vec{p}^*, \vec{k}^**$ belonging to the congruences $\vec{y}, \vec{y}^*, \vec{y}^**$ and coinciding with the center surface \vec{r} of the surface \vec{x} , are respectively,

 $(\vec{\xi}, \vec{x}_2, -\vec{x}_1), (\vec{\xi}, \vec{x}_2, -\vec{x}_1), (-\vec{\xi}, -\vec{x}_2, -\vec{x}_1).$

2) Since the moving trihedron connected with the point \vec{x} of the line of curvature u = const. on the surface \vec{x} (u, v) is $(\vec{x}_2, -\vec{x}_1, \vec{\xi})$, the trihedrons connected with the focal points corresponding to ρ_{II} of the focal surfaces $\vec{p}, \vec{k}^*, \vec{p}^{**}$ belonging to the congruences $\vec{y}, \vec{y}^*, \vec{y}^*$, and coinciding with the center surface \vec{r} of the surface \vec{x} , are respectively,

$$(\vec{\xi}, -\vec{x}_1, -\vec{x}_2), \quad (\vec{\xi}, -\vec{x}_1, -\vec{x}_2), \quad (-\vec{\xi}, \vec{x}_1, -\vec{x}_2).$$

If we calculate the first and the second fundamental forms of the above focal surfaces

1) for the local surfaces $\vec{p}, \vec{p}^*, \vec{k}^{**}$, we find,

$$\mathbf{E}_{\mathrm{II}} = \mathbf{\bar{E}}^*_{\mathrm{II}} = \mathbf{\bar{E}}_{\mathrm{I}}^{**} = \left(\frac{1}{\mathrm{r}}\right)_{\mathrm{I}}^2 \mathbf{E}$$

$$\begin{aligned} \mathbf{F}_{\mathrm{II}} &= \mathbf{\bar{F}}_{\mathrm{II}}^{*} = \mathbf{\bar{F}}_{\mathrm{I}}^{**} = \left(\frac{1}{r}\right)_{1} \left(\frac{1}{r}\right)_{2} \sqrt{\mathbf{E}}\mathbf{\bar{G}} \\ \mathbf{G}_{\mathrm{II}} &= \mathbf{\bar{G}}_{\mathrm{II}}^{*} = \mathbf{\bar{G}}_{\mathrm{I}}^{**} = \left(\frac{1}{r}\right)_{2}^{2} \frac{\mathbf{r}^{2} + \mathbf{q}^{2}}{\mathbf{q}^{2}} \mathbf{G}, \end{aligned}$$

$$(2.1)$$

$$[I]_{\Pi} = [I^*]_{\Pi} = [I^{**}]_{I} = \left(\frac{1}{r}\right)_{1}^{2} E \, du^{2} + 2 \left(\frac{1}{r}\right)_{1} \left(\frac{1}{r}\right)_{2} \sqrt{EG} \, dudv$$

+
$$\left(\frac{1}{r}\right)_{2}^{2} \frac{r^{2} + q^{2}}{q^{2}}$$
 G dv² (2.2)
and

$$L_{II} = \bar{L}^{*}_{II} = \bar{L}_{I}^{**} = \left(\frac{1}{r}\right)_{1} r E$$

$$M_{II} = \bar{M}^{*}_{II} = \bar{M}_{I}^{**} = 0$$
(2.3)

$$N_{II} = \overline{N}^*_{II} = \overline{N}^{**}_{II} = \left(\frac{1}{r}\right)_2 \frac{r\overline{q}}{q} G,$$

$$[II]_{II} = [\overline{\Pi}^*]_{II} = [\overline{\Pi}^{**}]_{I} = r \left[\left(\frac{1}{r} \right)_1 \operatorname{E} \operatorname{du}^2 + \left(\frac{1}{r} \right)_2 \frac{\overline{q}}{q} \operatorname{G} \operatorname{dv}^2 \right].$$

From these we may derive the below conclusion:

Conclusion: 2.1. The focal surfaces $\vec{p}, \vec{p}^*, \vec{k}^{**}$ of the congruences $\vec{y}, \vec{y}^*, \vec{y}^{**}$ are different positions of the center surface \vec{r} of the base surface \vec{x} , in space.

Also, the Gaussian and the mean curvature of these focal surfaces, we find

$$\mathbf{K}_{\mathrm{II}} = \mathbf{\vec{K}}^{*}_{\mathrm{II}} = \mathbf{\vec{K}}_{\mathrm{I}}^{**} = \frac{q\overline{q}}{\left(\frac{1}{r}\right)_{1}\left(\frac{1}{r}\right)_{2}}$$
(2.5)

and

$$H_{II} = {}^{*}\overline{H}_{II} = {}^{*}\overline{H}^{*} = \frac{\left(\frac{1}{r}\right)_{1} q \bar{q} - \left(\frac{1}{r}\right)_{2} (r^{2} + q^{2})}{2r \left(\frac{1}{r}\right)_{1} \left(\frac{1}{r}\right)_{2}}.$$
 (2.6)

Since, $\mathbf{r}_1 \neq 0$, $\mathbf{r}_2 \neq 0$ from (2.1) and (2.3) we derive the conditions $\mathbf{F}_{II} = \overline{\mathbf{F}}_{I}^* = \overline{\mathbf{F}}_{I}^{**} \neq 0$ and $\mathbf{M}_{II} = \overline{\mathbf{M}}_{I}^{**} = 0$. From these, the following theorem may be stated:

Theorem 2.2. Since the surface $\vec{x}(u, v)$ cannot be a canal surface or at the same time cannot be both Mulür surface and tube-shaped canal surface, the parameter curves v = const. and u = const. of the focal surfaces $\vec{p}, \vec{p}^*, \vec{k}^{**}$ of the congruences $\vec{y}, \vec{y}^*, \vec{y}^{**}$ cannot be the lines of curvature.

Since $q \neq 0$, $\overline{q} \neq 0$, $r_1 \neq 0$, $r_2 \neq 0$ in (2.5) and (2.6), we find $K_{II} = \overline{K} *_{II} = \overline{K}_{I} *_{II} \neq 0$ and $H_{II} = \overline{H} *_{II} = \overline{H}_{I} *_{II} \neq 0$.

Therefore the theorem below may be stated:

Theorem 2.3. Since the surface \vec{x} (u, v) cannot be Mulür surface, canal surface or tube-shaped surface, the focal surfaces \vec{p} , \vec{p}^* , \vec{k}^{**} of the congruences \vec{y} , \vec{y}^* , \vec{y}^{**} respectively, cannot be developable surface, minimal surface.

2) For the local surfaces $\overrightarrow{p}, \overrightarrow{k^*}, \overrightarrow{p}^{**}$ we find,

$$\begin{bmatrix}
 \bar{E}_{II} = \bar{E}^{*}{}_{II} = \bar{E}^{**}{}_{II} = \left(\frac{1}{\bar{r}}\right)_{1}^{2} & \frac{\bar{r}^{2} + \bar{q}^{2}}{\bar{q}^{2}} E \\
 \bar{F}_{II} = \bar{F}^{*}{}_{I} = \bar{F}^{**}{}_{II} = \left(\frac{1}{\bar{r}}\right)_{1} \left(\frac{1}{\bar{r}}\right)_{2} \sqrt{EG} \\
 \bar{G}_{II} = \bar{G}^{*}{}_{I} = \bar{G}^{**}{}_{II} = \left(\frac{1}{\bar{r}}\right)_{2}^{2}G,
 \right\}$$
(2.7)

$$[\overline{\mathbf{I}}]_{11} = [\overline{\mathbf{I}}^*]_{\overline{\mathbf{I}}} = [\overline{\mathbf{I}}^{**}]_{\overline{\mathbf{II}}} = \left(\frac{1}{\overline{\mathbf{r}}}\right)_1^2 \frac{\overline{\mathbf{r}}^2 + \overline{\mathbf{q}}^2}{\overline{\mathbf{q}}^2} \to \mathrm{du}^2 + \mathbf{c}$$

 $2\left(\frac{1}{\bar{r}}\right)_{1}\left(\frac{1}{\bar{r}}\right)_{2}\sqrt{EG} \, dudv + \left(\frac{1}{\bar{r}}\right)_{2}^{2}G \, dv^{2}$ and (2.8)

$$\begin{split} \bar{\mathbf{L}}_{\mathrm{II}} &= \bar{\mathbf{L}}^{*}{}_{\mathrm{I}} = \bar{\mathbf{L}}_{\mathrm{II}}^{**} = \left(\frac{1}{\bar{\mathbf{r}}}\right)_{1} \frac{\tilde{\mathbf{r}}q}{\bar{q}} \mathbf{E} \\ \bar{\mathbf{M}}_{\mathrm{II}} &= \bar{\mathbf{M}}^{*}{}_{\mathrm{I}} = \bar{\mathbf{M}}_{\mathrm{I}}^{**} = 0 \\ \bar{\mathbf{N}}_{\mathrm{II}} &= \bar{\mathbf{N}}^{*}{}_{\mathrm{I}} = \bar{\mathbf{N}}^{**}{}_{\mathrm{II}} = \left(\frac{1}{\bar{\mathbf{r}}}\right)_{2} \bar{\mathbf{r}} \mathbf{G}, \end{split}$$

$$(2.9)$$

$$[\overline{\Pi}]_{\Pi} = [\overline{\Pi}^*]_{I} = [\overline{\Pi}^{**}]_{\Pi} = \bar{r} \left[\left(\frac{1}{r} \right)_1 \frac{q}{\overline{q}} E du^2 + \left(\frac{1}{\bar{r}} \right)_2 G dv \right].$$
(2.10)

From these we may write the below conclusion:

Conclusion 2.4. The focal surfaces $\vec{p}, \vec{k^*}, \vec{p^{**}}$ of the congruences $\vec{y}, \vec{y^*}, \vec{y^{**}}$ respectively, are different positions of the center surface \vec{r} of the base surface \vec{x} , in space.

Also, the values of K and H for these focal surfaces are found as

$$\bar{\mathbf{K}}_{\mathrm{II}} = \bar{\mathbf{K}}_{\mathrm{I}}^{*} = \bar{\mathbf{K}}_{\mathrm{II}}^{**} = \frac{q\bar{q}}{\left(\frac{1}{\bar{\mathbf{r}}}\right)_{1}\left(\frac{1}{\bar{\mathbf{r}}}\right)_{2}}$$
(2.11)

and

$$\overline{\mathbf{H}}_{\mathrm{II}} = \overline{\mathbf{H}}_{\mathrm{I}}^{*} = \overline{\mathbf{H}}_{\mathrm{II}}^{**} = \frac{\left(\frac{1}{\tilde{\mathbf{r}}}\right)_{2} q\bar{q} - \left(\frac{1}{\tilde{\mathbf{r}}}\right)_{1} (\tilde{\mathbf{r}}^{2} + \bar{q}^{2})}{2\tilde{\mathbf{r}} \left(\frac{1}{\tilde{\mathbf{r}}}\right)_{1} \left(\frac{1}{\tilde{\mathbf{r}}}\right)_{2}}.$$
(2.12)

Since $\bar{\mathbf{r}}_1 \neq 0$, $\bar{\mathbf{r}} \neq 0$ from (2.7) and (2.9), we find the conditions $\overline{\mathbf{F}}_{II} = \overline{\mathbf{F}}_{I}^* = \overline{\mathbf{F}}_{II}^{**} \neq 0$ and $\overline{\mathbf{M}}^*_{II} = \overline{\mathbf{M}}_{II}^{**} = \overline{\mathbf{M}}_{II}^{**} = 0$.

From these we may write the below theorem:

Theorem 2.5. Since the surface \mathbf{x} (u, v) cannot be canal surface or tube-shaped surface, the parameter curves $\mathbf{v} = \text{const.}$ and $\mathbf{u} =$ const. of the focal surfaces \mathbf{p} , \mathbf{k}^* , \mathbf{p}^{**} of the congruences \mathbf{y} , \mathbf{y}^* , \mathbf{y}^{**} cannot be lines of curvature.

Since $q \neq 0$, $q \neq$, 0 $\bar{r}_1 \neq 0$, $\bar{r}_2 \neq 0$ in (2.11) and (2.12), therefore the below theorem may be written.

Theorem 2.6. Since the surface \mathbf{x} (u, v) cannot be Mulür surface or general cylindric surface, canal surface or tub-shaped surface, the focal surfaces $\mathbf{p}, \mathbf{k}^*, \mathbf{p}^{**}$ of the congruences $\mathbf{y}, \mathbf{y}^*, \mathbf{y}^{**}$ respectively cannot be developable surface, minimal surface.

On the other hand to investigate the focal surface \vec{k} and \vec{k} belonging to the congruences \vec{y} and \vec{y} respectively and coinciding with the center surface of the surfaces \vec{z} and \vec{z} but which do not coincide with the center surfaces \vec{r} and \vec{r} of the surface \vec{x} (u, v), first, we may write the moving trihedrons connected with the focal point corresponding to ρ_I of \vec{k} , connected with the focal point corresponding to $\tilde{\rho}_I$ of \vec{k} before calculating their first and second fundamental forms. 1) For the focal surface \vec{k} , from

$$\vec{k}_1 = -\left(\frac{1}{b}\right)_1 \vec{g}, \ \vec{k}_2 = -\frac{r_2 \vec{q}}{r_1 q - q_1 r} \vec{x}_1 - \left(\frac{1}{b}\right)_2 \vec{g}$$

and

$$\vec{\mathbf{n}}_{\mathrm{I}} = \frac{\vec{\mathbf{k}}_{1} \Lambda \vec{\mathbf{k}}_{2}}{\sqrt{\vec{\mathbf{k}}_{1} \vec{\mathbf{k}}_{2}}} = \frac{\vec{\mathbf{q}} \vec{\mathbf{x}}_{2} - \mathbf{r} \vec{\xi}}{\sqrt{\mathbf{r}^{2} + \mathbf{q}^{2}}} = -\vec{\mathbf{z}}_{1}^{-}$$
$$\vec{\mathbf{n}}_{\mathrm{I}} \Lambda (-\vec{\mathbf{g}}) = \vec{\mathbf{x}}_{1}$$

the trihedron

$$(-\vec{g}, \vec{x}_1, \vec{n}_1)$$
 (2.13)

is found.

2) For the focal surface \overrightarrow{k} , from

$$\vec{\overline{k}}_{1} = -\left(\frac{1}{\overline{\beta}}\right)_{1} \vec{\overline{g}} - \frac{\overline{r}_{2}q}{\overline{q}_{2}\overline{r} - \overline{r}_{2}\overline{q}} \vec{x}_{2}, \vec{\overline{k}}_{2} = -\left(\frac{1}{\overline{\beta}}\right)_{2} \vec{\overline{g}}$$

and

$$\vec{\hat{n}}_{I} = \frac{\vec{\hat{k}}_{2} \wedge \vec{\hat{k}}_{1}}{\sqrt{\vec{\hat{k}}_{2} \wedge \vec{\hat{k}}_{1}}} = \frac{\vec{q}\vec{x}_{1} - \vec{r}\vec{\xi}}{\sqrt{\vec{r}^{2} + \vec{q}^{2}}} = -\vec{z}_{\frac{1}{2}},$$

$$\vec{\hat{n}}_{I} \wedge (-\vec{g}) = \vec{x}_{2}$$

the trihedron is

$$(\stackrel{\Rightarrow}{-g}, \stackrel{\Rightarrow}{x_2}, \stackrel{\Rightarrow}{n_I}).$$
 (2.14)

If we calculate the first and the second fundamental forms of the focal surfaces

1) For \vec{k} , we find,

$$E_{I} = \left(\frac{1}{b}\right)_{1}^{2} E$$

$$F_{I} = \left(\frac{1}{b}\right)_{1} \left(\frac{1}{b}\right)_{2} \sqrt{EG}$$

$$G_{I} = \left[\left(\frac{r_{2}q}{r_{1}q-q_{1}r}\right)^{2} + \left(\frac{1}{b}\right)_{2}^{2}\right] G,$$

$$[I]_{I} = \left(\frac{1}{b}\right)_{1}^{2} E du^{2} + 2 \left(\frac{1}{b}\right)_{1} \left(\frac{1}{b}\right)_{2} \sqrt{EG} dudv + \left[\left(\frac{r_{1}q}{r_{1}q-q_{1}r}\right)^{2} + \left(\frac{1}{b}\right)_{2}^{2}\right] G dv^{2}$$

$$(2.15)$$

and

$$L_{I} = -\left(\frac{1}{b}\right)_{1} \frac{r_{1}q - q_{1}r}{r^{2} + q^{2}} E$$

$$M_{I} = 0$$

$$(2.17)$$

$$[II]_{I} = -\left(\frac{1}{b}\right)_{1} \frac{r_{1}q - q_{1}r}{r^{2} + q^{2}} E du^{2} + \left(\frac{1}{b}\right)_{1} \frac{r^{2} \bar{q}^{2}}{r_{1}q - q_{1}r} G dv^{2} (2.18)$$

and also,

$$K_{I} = - \frac{q^{2} (r_{1}q-q_{1}r)^{2}}{\left(\frac{1}{\overline{b}}\right)_{1} \left(\frac{1}{\overline{b}}\right)_{1} r^{2}(r^{2}+q^{2})^{2}}, \qquad (2.19)$$

$$H_{I} = \frac{r_{1}q - q_{1}r}{2\left(\frac{1}{b}\right)_{1}\left(\frac{1}{\overline{b}}\right)_{1}^{2}r^{4}\overline{q}^{2}(r^{2} + q^{2})^{2}} \left\{ \left(\frac{1}{\overline{b}}\right)_{1}\left(r^{2} + q^{2}\right)r^{2}\overline{q}^{2}\left[q^{2}\left(\frac{1}{b}\right)_{1} - r^{2}\left(\frac{1}{\overline{b}}\right)_{1}\right] - \left(\frac{1}{\overline{b}}\right)_{2}^{2}\left(r_{1}q - q_{1}r\right)q^{2} \right\}.$$
(2.20)

2) For
$$\vec{\overline{k}}$$
,
 $\vec{E}_{I} = \left[\left(\frac{1}{\overline{\beta}} \right)_{1}^{2} + \left(\frac{\tilde{r}_{2}q}{\overline{q}_{2}\tilde{r} - \tilde{r}_{2}\overline{q}} \right)^{2} \right] E$
 $\vec{F}_{I} = \left(\frac{1}{\overline{\beta}} \right)_{1} \left(\frac{1}{\overline{\beta}} \right)_{2} \sqrt{EG}$
 $\vec{G}_{I} = \left(\frac{1}{\overline{\beta}} \right)_{2}^{2} G$,
(2.21)

$$\begin{bmatrix} \mathbf{I} \end{bmatrix}_{\mathbf{I}} = \begin{bmatrix} \left(\frac{1}{\overline{\beta}}\right)_{1}^{2} + \left(\frac{\mathbf{\tilde{r}}_{2}\mathbf{q}}{\overline{\mathbf{q}}_{2}\mathbf{\tilde{r}}-\mathbf{\tilde{r}}_{2}\overline{\mathbf{q}}}\right)^{2} \end{bmatrix} \mathbf{E} \, \mathrm{du} + 2 \, \left(\frac{1}{\overline{\beta}}\right)_{1} \left(\frac{1}{\overline{\beta}}\right)_{2} \sqrt{\mathbf{E}\mathbf{G}} \, \mathrm{du} \, \mathrm{dv} + \left(\frac{1}{\overline{\beta}}\right)_{2}^{2} \mathbf{G} \, \mathrm{dv}^{2}$$

$$(2.22)$$

and

$$\begin{split} \bar{\mathbf{L}}_{\mathbf{I}} &= \left(\frac{1}{\beta}\right)_{2} \quad \frac{\bar{\mathbf{r}}_{2}\mathbf{q}^{2}}{\overline{\mathbf{q}}_{2}\bar{\mathbf{r}} - \bar{\mathbf{r}}_{2}\overline{\mathbf{q}}} \quad \mathbf{E} \\ \bar{\mathbf{M}}_{\mathbf{I}} &= \mathbf{0} \\ \bar{\mathbf{N}}_{\mathbf{I}} &= \left(\frac{1}{\overline{\beta}}\right)_{2} \quad \frac{\bar{\mathbf{r}}_{2}\overline{\mathbf{q}} - \bar{\mathbf{q}}_{2}\bar{\mathbf{r}}}{\bar{\mathbf{r}}^{2} + \overline{\mathbf{q}}^{2}} \quad \mathbf{G}, \end{split}$$

$$\begin{bmatrix} \mathbf{I}\mathbf{I} \end{bmatrix}_{\mathbf{I}} = \left(\frac{1}{\beta}\right) \quad \frac{\mathbf{\tilde{r}}^2 \mathbf{q}^2}{\mathbf{\tilde{q}}_2 \mathbf{\tilde{r}} - \mathbf{\tilde{r}}_2 \mathbf{q}} \quad \mathbf{E} \quad \mathrm{du}^2 + \left(\frac{1}{\beta}\right)_2 \quad \frac{\mathbf{\tilde{r}}_2 \mathbf{q} - \mathbf{\tilde{q}}_2 \mathbf{\tilde{r}}}{\mathbf{\tilde{r}}^2 + \mathbf{q}^2} \quad \mathbf{G} \quad \mathrm{vd}^2 \quad (2.24)$$

and also,

$$\bar{\mathbf{K}}_{\mathbf{I}} = -\frac{\overline{\mathbf{q}^2} (\overline{\mathbf{q}_2} \bar{\mathbf{r}} - \overline{\mathbf{q}_2} \bar{\mathbf{r}})^2}{\left(\frac{1}{\overline{\beta}}\right)_2 \left(\frac{1}{\beta}\right)_2 \bar{\mathbf{r}}^2 (\bar{\mathbf{r}}^2 + \overline{\mathbf{q}}^2)^2}, \qquad (2.25)$$

$$\vec{\mathrm{H}}_{\mathrm{I}} = \frac{\overline{q}_{2} \, \ddot{\mathrm{r}} - \ddot{\mathrm{r}}_{2} \overline{q}}{2 \, \left(\frac{1}{\overline{\beta}}\right)_{2} \, \left(\frac{1}{\beta}\right)_{2}^{2} \, \left(\ddot{\mathrm{r}}^{2} + \overline{q}^{2}\right) \ddot{\mathrm{r}}^{4} \, \overline{q}^{2}}$$

(2.26)

$$\begin{cases} \bar{\mathbf{r}}^2 q^2 \left(\bar{\mathbf{r}}^2 + \bar{q}^2 \right) \left(\frac{1}{\bar{\beta}} \right)_2 \left[\left(\frac{1}{\beta} \right)_2 \bar{\mathbf{r}}^2 - \left(\frac{1}{\bar{\beta}} \right)_2 \bar{q}^2 \right] - \left(\frac{1}{\bar{\beta}} \right)_2^2 (\bar{q}_2 \ \bar{\mathbf{r}} + \bar{\mathbf{r}}_2 \ \bar{q})^2 \bar{q}^2 \end{cases}$$

are written.

1) Since the focal surface \vec{k} coincides with the center surface belonging to the lines of curvature v = const. of the surface \vec{z} , that is $\vec{k} = \vec{r} + \rho \vec{g} = \vec{z} + \frac{1}{b} \vec{n} = \vec{z} - \frac{1}{b} \vec{g}$, we may write,

$$\mathbf{b} = \mathbf{b}_{\mathbf{I}} = -[(\vec{\mathbf{q}}), \vec{\mathbf{n}}_{\mathbf{I}}] = -[\vec{\mathbf{n}}_{\mathbf{I}}, (-\vec{\mathbf{g}})] = \frac{\mathbf{r}_{\mathbf{I}}\mathbf{q}-\mathbf{q}_{\mathbf{I}}\mathbf{r}}{\mathbf{r}^{2} + \mathbf{q}^{2}} \neq 0, (\mathbf{r}_{\mathbf{I}}\mathbf{q}-\mathbf{q}_{\mathbf{I}}\mathbf{r} \neq 0).$$
(2.27)

Since $F_I \neq 0$ ($b_1 \neq 0$, $b_2 \neq 0$) in (2.15) and $M_I = 0$ in (2.17), the below theorem may be written.

Theorem 2.7. Since the surface \vec{z} cannot be canal surface or tube-shaped surface, the parameter curves v = const. and u = const. of the focal surface \vec{k} of the congruence \vec{y} , cannot be lines of curvature.

From (2.19) and (2.20) $K_I \neq 0$, $H_I \neq 0$ $(q \neq 0, r_1q-q_1r \neq 0)$ are seen. From this the below theorem may be written.

Theorem 2.8. Since the surface x (u, v) cannot be Mulür surface and the surface which have the lines of curvature v = const, consisting of plane curves, the focal surface \vec{k} of the congruence \vec{y} , cannot be developable surface, minimal surface.

2) Since the focal surface \overrightarrow{k} coincides with the central surface belonging to the lines of curvature u = const. on the surface \overrightarrow{z} that is $\overrightarrow{k} = \overrightarrow{r} + \overrightarrow{\rho g} = \overrightarrow{z} + \frac{1}{\overline{\beta}} \overrightarrow{n} = \overrightarrow{z} - \frac{1}{\overline{\beta}} \overrightarrow{g}$, we may write $\overline{\beta} = \overline{\beta}_{I} = -[\overrightarrow{n}_{I}, (-\overrightarrow{g}_{2})] = \frac{\overline{q}_{2}\overrightarrow{r} - \overrightarrow{r}_{2}\overline{q}}{\overrightarrow{r}^{2} + \overrightarrow{q}^{2}} \neq 0, (\overline{q}_{2}\overrightarrow{r} - \overrightarrow{r}_{2}\overline{q} \neq 0)$ (2.28) It can be seen that at (2.21), $\overline{F}_{I} \neq 0$ ($\overline{\beta}_{1} \neq 0$, $\overline{\beta}_{2} \neq 0$). If we take the condition $\overline{M}_{I} = 0$ at (2.23) into consideration together with these, we may write the below theorem.

Theorem 2.9. Since the surface \vec{z} cannot be canal surface or tube-shaped surface, the parameter curves v = const. and u = const. on the focal surface \vec{k} of the congruence \vec{y} , cannot be lines of curvature.

From (2.25) and (2.26) $\bar{\mathbf{K}}_{\mathrm{I}} \neq 0$, $\bar{\mathbf{H}}_{\mathrm{I}} \neq 0$ ($\bar{\mathbf{q}} \neq 0$, $\bar{\mathbf{q}}_{2}\bar{\mathbf{r}}-\bar{\mathbf{r}}_{2}\bar{\mathbf{q}} \neq 0$) are seen. From this below theorem may be written.

Theorem 2.10. Since the surface \mathbf{x} (u, v) cannot be Mulür surface and the surface which have with the lines of curvature $\mathbf{u} = \text{const.}$ consisting of plane curves, the focal surface $\overrightarrow{\mathbf{k}}$ of the congruence $\overrightarrow{\mathbf{y}}$ cannot be developable surface, minimal surface.

REFERENCE

- T. GÜL, On the rectilinear congruences generated by the instantaneous screwing axes connected with a surface, Bull. of Techn. Univ. İst. (1990).
- [2] T. GÜL, On the surfaces which cut ortogonally the congruences generated by the instantaneous screwing axes connected with a surface, Y.Ü.D. İstanbul (1989).
- [3] T. GÜL, On the congruences of lines generated by the instantaneous screwing axes connected with some surfaces, Communications Seri A1 Ankara (1991).
- [4] P. EISENHART, A treatise on the Differential Geometry of Curves and Surfaces, New York, (1960).