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ABSTRACT

In this paper, the focal surfaces of the congruences derived in [1 ] and [3] have been 
investigated and correspoudences hetween thern have been explained.

1, INTRODUCTION

Let a surface x be referred to its lines of curvatures. The eong- 

ruences generated by the instantaneous screwing axes G, G of the 
moving trihedrons connected with these lines are respectively.

1y = r + tg , r = X + —- Çr
(1.1)

ct...
y = r + tg r = X + I 

r

[1]. In case y and y are normal congruences, let the surfaces gene- 

rating these, be z and z. And let these surfaces be referred to their 
lines of curvature. The congruence generated by the instantaneous

screwing axis G* of the moving trihedron connected with the lines of 

curvature u = const. of z are

y* == r 4* t* g*. r = z M- n , 
b

{1-2)
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And the congruence generated by the instanteneous screwing axis

G** of the moving trihedron connected with the lines of curvature

V = const. of z are

y ** -- p —"t** 1
r = z + n (1-3)

[3].

2. THE PROPERTIES OF THE FOCAL SURFACES OF THE

CONGRUENCES y, y, y*, y**

Since p, k 
t±

are the focal surfaces of the congruence y; p, k of y;
c±

p*, k* of y*; and p**, k** of y** [3], to investigate considering the 
cases where they coincide and refer to their lines of curvature, first 
we may write the moving trihedrons (DARBOUN’s trihedrons) con­
nected witb a common point before calculating their first and second 
fundamental forms.

1) Since the movirig trihedron connected with the point x of tlıe

Üne of curvature v = const. on the surface x (u, y) is (xj, X2, Ç), the 
trihedrons connected with the focal points corresponding to pjj of the

focal surfaces p, p*, k** belonging to the congruences y, y*, y** and

coinciding with the çenter surface r of the surface x, are respectively.

X2, -Xı), (Ç, X2, -kJ, -X2, -Xı).

2) Since the moving trihedron connected with the point x of the

line of curvature u = const. on the surface x (u, v) is (x2,
the trihedrons connected tvith the focal points corresponding to pjj

of the focal surfaces p, k*, p** belonging to the congruences y, y*.

y** and coinciding with the çenter surface r of the surface x, are
respectively,
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-Xı, -X2), -Xl, -X2), (-?, Xj, -X2>.

If we calculate the first and the second fundamental forms of the above 
foeal surfaces

1) for the local surfaces p, p*, k**, we find,

En = E*ıı = £ı**
1

E

1
r

1 
rFıı = F*iı = Fi** VEG (2.1)

Gıı = G*ıı = Ğı**

2

r2 + q2
q2

G,

[l]n = - [I** ]ı = E du2-)-2 (v).(4)ve'^ dudv

r2 + q. 

q2
G dv2 (2.2)

1 
r

1
2

1

1
r 1 :

J

+ 2

2

9

and

Lıı L*n = Lt»# 1.
r r E

1
Mn = M*ıı = ^1** = 0 (2.3)

Nıı = N*n = N**' G.

tn]ıı = [n*]ıı = ın**]ı =r[^A) E du2 -3- G dv2'l. 
q J

n
2 q

1

2

From these we may derive the below conciusion;

Conciusion: 2.1. The foeal surfaces p, p*, k** of the congruences

y, y*, y’.*« are different positions of the çenter surface r of the base 

surface x, in space.
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Also, the Gaussian and the mean curvature of these foeal surfaces, 
we find

Kn = R*ıı = Rı** qq (2.5)

2

and

Hıı=*Hn=ı*H* =

J. 
r

qq-
1

(r2 + q2)

2

2r
(2.6)

Since, Tj O, r2 7^: O from (2.1) and (2.3) we derive the conditions
Fil =F*n = Fı** #:0 and Mu = M* 
the foUotving theorem may be stated:

II = Mi** — 0. From these.

1 

r

1

r

1
1 

r 2

Theorem 2.2. Since the surface x (u, v) cannot be a canal sur­
face or at the same time cannot be both Mulür surface and tube-shaped 
canal surface, the parameter curves v = const. and u = const. of the

foeal surfaces p, p*, k** of the congruences y, y*, y** 
lines of curvature.

cannot be the

Since q 7^; 0, q 7^ 0, r^ 7^: 0, r2 7^: 0 in
Kn = K*n = Ki»* 7^ 0 and Hıı = H*n = H,** 0.

(2.5) and (2.6), we find

Therefore the theorem below may be stated;

Theorem 2.3. Since the surface X (u, v) cannot be Mulür surface.

canal surface or tube-shaped surface, the foeal surfaces p, p*, k** of

the congruences y, y' 
minimal surface.

*, y** respectively, cannot be developable surface.

2) For the local surfaces p, k*, p** we find.
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1 \2 + q2En = £*: a2

Eli = F*ı = r**ıı VEG

Gıı =G’ = G**ıı =

1 \

2 
G,

2

(2.7)

[İ]n = [İ*]ı = [!**]„
2 f2 + q2

E <îu2

2 VEG dudv + Z —V
\ r 71 \ r '' \ r /

2
G dv2

2

(2.8)

and

Eli = L*ı = Lıı**

Mıı = 51*j = Mi**

A 'q 
î K q

{2.9)

Nn = N*ı = N**„ = î G,

[iıjıı = [rı*]ı = [n**]ıı = î E du2 4*
1 q

(2.10)

From these we may write the helow conelusion:

Conelusion 2.4. The focal surfaces p, k*, p** of the congruences

y/y*, 7 respectively, are different positions of the çenter surface

I = E**ıı = ( — 
\ r

= 0

1 q’
E

1
r

1
r

1 
r

2

1^ 
r 2

1

E

2

r of the base surface x, in space.

Also, the values of K and H for these focal surfaces arö föünd as

Kıı = Ki* = Kn** qq

(2.11)
2
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and

Hıı =Hı* = Hn** =

(J _ \ qq- / \ (r2 + q2)
\ î \r/ı (2.12)

2f
1 1

2

Since îj O, r O from (2.1) and (2.9), we find tlıe conditions
Fn = Fi* = Fn** 7^ 0 and 51*11 = ÎSı* = Sin** = 0.

From these we may ıvrite the below theorem;

Theorem 2.5. Since the surface x (u, v) cannot be canal surface 
or tube-shaped surface, the parameter curves v = const. and u =

const. of the focal surfaces p, k*, p** 
cannot be lines of curvature.

of the congruences y, y*, y**

Since q 0, q 0 7^ 0, 13 7^ 0 in (2.11) and (2.12), therefore
the below theorem may be written.

Theorem 2.6. Since the surface
or general cylindric surface, canal surface

X (u, v) cannot be Mulür surface 
or tub-shaped surface, the

*focal surfaces p, k*, p ** of the congruences y, y'" y** respectively
cannot be developable surface, minimal surface.

On the other hand to investigate the focal surface k and k 

belonging to the congruences y and y respectively and coinciding 

with the çenter surface of the surfaces z and z but which do not 

coincide with the çenter surfaces r and r of the surface x (u, v), 
first, we may ıvrite the moving trihedrons connected with the focal 

point corresponding to Pj of k, connected with the focal point corres­

ponding to pı of k before calculating their first and second funda­
mental forms.
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1) For the foeal surface k, from

and

ki
1 
b g, k2 =

1

r2q 
j’ıq-qır

- ^1 ' 8 
2

n,t
kj A k2

(ki ka)

qx2- r
^t2 + q2

'L 1

niA(-g) =xı

the trihedron

(-g’ xı, (2.13)

is found.

2) For the foeal surface k, from

1
ki g-

f2q

q2f - r2q

1_\
p /2

X2, k2 = g
1

and

k2 Ak| qxı

(k2Akı)
+ q2

nı = = 1
2

“i A(-g) =X2

the trihedron is

(-g, X2, nı). (2.14)

If we calculate the first and the second fundamental forms of the 
foeal surfaces
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->
1) For k, we find,

El =
1 
b

Fi
l
b

9
E

1

) VEG 
11

1
1)

r2q 
rıq-qır

2
(2.15)

[(
2 2-

G,
i

f’’- = (v)1

1
E du2 + 2 (i)^VEGdudv +

2

[( ^19 

rıq-qır

2 + 1 
b G dv2

(2.16)

and

Lı =-
b

rıq-qıi-
1 r2 + q2

E 1
Mi = 0 (2.17)

[11]^I

and also.

Hı =

2

F 
b

1 r2 q2 

rıq-qır

rıq-qır
1 r2 + q2

Ki == -

rıq-qır 
1 \2

1

-t2

G,

! 1 \
E du2 1 “F" )\ D /

q2 (rıq-qjr)2

1 
r ¥

1

r2 q2 

rıq-qır
G dv2 (2.18)

(2.19)
r2(r2+q2)2 

1

r'^q2(r2-|-q2)2
1

(T \ / 1 \) (r2 + q2) r2q2 [q2 / j 
b / 1 \ ^ / 1

(t)J - (t)
1

2
(rıq-qır) (• (2.20)
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2) For k.

r2q

q2f - î2q

2'
E

Fi =
1
î V

P /2
EG (2.21)

Gı
2 

G,
2

2 î2q 2'

and

Lı =

Mj = 0

Nj

q2r-r2q
E du + 2

l 1 \2+ (I G dv2
\ /2

1
P 2

E 
q2f-r2q

(2.22)

(2.23)
M~q2i'

+ q2
G,

‘"i- = (t
Î2q2 

q2î-r2q
E du2 -|- T)2

hq-q2r 

f2 4- -q2
G vd2 (2.24)

and also,

Ki = -
q^ (q2r-q2r)^

Hı =

2 
î

2 
P 2 î2 (r? 4- q2 )2

q2 ‘-■'2q

2

2
(r2 q2) f4 q2

(2.25)

2
(2.26)
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S (t): [(t)." - (j},. - (f)/« î-r2 q)2 q2

are written.

1) Sinöe the foeal surface k coincides with the çenter surface be-

longing to the lines of curvature 

k = r + pg = z + 1 
b n = z -

V = const. of the surface z, that is

1 -g, we may vvrıte.

b== bı= -[(-g). (nı) J
1 1 r2 4- q2

7^0, (rıq-qır 0).
(2.27)

Since Fi 0 (bj 7^ 0, b2 7^ 0) in (2.15) and Mj = 0 in (2.17), 
the below theorem may be ıvritten.

Theorem 2.7. Since the surface z cannot be canal surface or
tube-shaped surface, the parameter curves v = const. and u = const. 

of the foeal surface k of the congruence y, cannot be lines of cur­
vature.

From (2.19) and (2.20) Ki 7^ 0, Hı 7^ 0 (q 7^ 0, rıq-qır 7^: 0) 
are seen. From this the below theorem may be written.

Theorem 2,8. Since the surface x (u, v) cannot be Mulür surface 
and the surface which have the lines of curvature v = const, consisting 

of plane curves, the foeal surface k of the congruence y, cannot be 
developable surface, minimal surface.

2) Since the foeal surface k coincides with the Central surface

belonging to the lines of curvature u = const. on the surface z that
1 
î

1isk=r+pg=z4- g, we may write

P = Pı = - [m. (-g_) ] =
i

q2r-r2q

Î2 + q2
0, (q2Î-r2q 0) (2.28)

n = z -
P
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It can be seen that at (2.21), Fj 0 (fij 7^ 0, Ş2 7^ 0). If we take 
the condition îîı = 0 at (2.23) into consideration together with these, 
we may write the below theorem.

Tljcorcm 2.9. Since the surface z cannot be canal surface or
tubc-shapcd surface, tiıc paramctcr curvcs v = const. and u = const.

on the focal surface k of the congruence y, cannot be lines of cur­
vature.

From (2.25) and (2.26) Ki yt 0, H[ 7^ 0 (q 0, q2İ-Î2q 7^ 0) 
are seen. From this below theorem may be written.

Tlıeorem 2.10. Since the surface (u, v) cannot be Mulür .sur-X
face and the surface which have with the lines of curvature u = const.

consisting of plane curves, the focal surface k of the congruence y 
cannot be developable surface, minimal surface.
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