Commun. Fac. Sci. Univ. Ank. Series Al V. 45. pp. 55-60 (1996)

ON THE SUBRINGS OF THE RİNG OF ANALYTIC FUNCTIONS AND CONFORMALLY EQUIVALENCE

EKREM KADIOĞLU* and MUSTAFA BAYRAKTAR**

* *Department of Mathematics, Atatürk University, Faculty of Sciences and Arts, 25240 Erzurum-TURKEY **Department of Mathematics, Uludağ University, Faculty of Sciences and Arts, Bursa-TURKEY*

(Received Nov. 6, 1995; Revised Apr. 12, 1996; Aceepted June 13, 1996)

ABSTRACT

We consider the discrete sets $D_i \subset G$ of the regions G , in the complex plane $\mathcal C$ and study the subrings of the rings of analytic functions A(G_i) corresponding to these discrete sets D_i (i=1,2). Furthermore, we prove that the sets of zeros of the functions which map onto each other under the \mathcal{C} -isomorphism Φ : A(G₁) \rightarrow A(G₂), are also mapped onto each other by a conformal mapping $\varphi: G_2 \rightarrow G_1$, where $\Phi(f)=f \circ \varphi$.

1. INTRODUCTION

Helmer had shown that fınitely generated ideal in the ring of entire functions was a principle ideal [2], After this work, some other authors have started to work on the rings of analytie funetions, and eonformal equivalence was eharaeterized algebraically.

Let G_1 and G_2 be two domains in the complex plane, and let $A(G_1)$ and $A(G_2)$ be the rings of analytic functions of G_1 and G_2 respectively. If these exists a \mathbf{C} -isomorphism between A(G₁) and A(G₂), then G₁ and G₂ are conformally equivalent [1]. The problem was generalized to open Riemann surfaces G_1 and G_2 [4]. It was shown that two domains G_1 and G_2 in the complex plane were conformally equivalent if the rings $B(G_1)$ and $B(G_2)$ of all bounded analytic functions defined on them were algebraically C -isomorphic [3]. When we discuss the rings B(G_i) (i=1,2), it is always assumed that G_i is bounded and has the following property: for any $z \in \partial G_i$, boundary of G_i, there exists a function $f \in B(G_i)$ for which z is an unremovable singularity. It is proved that if there is a

 \mathcal{L} **-isomorphism** between A(G₁) and A(G₂), then the sets G₁ and G₂ are conformally equivalence [5].

Definition 1.1. Let S be any non-empty subset of the complex plane $\mathcal C$ and *f*: S \rightarrow be a function. If f is an analytic function in the domain which contains S, f is called an analytic function is S .

Let G be any non-empty subset of $\mathscr C$ and A(G) be the set of single-valued analytic functions on G. The set $A(G)$ is a ring with respect to two binary operations which are defined by $(f+g)(z) = f(z)+g(z)$ and $(fg)(z) = f(z)g(z).$

Definition 1.2. Let G_1 and G_2 be two non-empty subsets of \mathcal{C} . If the mapping φ : G₁ \rightarrow G₂ is analytic and bijective, then φ is called a conformal mapping from G_1 to G_2 . In this case, G_1 and G_2 are called conformally equivalent.

In this work, an analytic function means that it is a single-valued analytic function.

Let a \in G be an arbitrary but fixed point. The set $M_a = \{f \in A(G):$ $f(a) = 0$ } is a maximal ideal which is generated by z-a from A(G). M_a is called a fixed maximal ideal of $A(G)$, and all other maximal ideals of $A(G)$ are called free maximal ideal.

Dcfinition 13. Let G be a region (or a set) in the complex plane and $D \subset G$. If D has no limit point in G, then D is called a discrete subset of G.

Theorem 1.4. Let G₁ and G₂ be two subsets of \mathcal{C} , and Φ be an \mathscr{C} -isomorphism from A(G₁) onto A(G₂). Then Φ induces a mapping $\varphi: G_2 \rightarrow G_1$, defined by $\Phi(f) = f \circ \varphi$, and φ is a conformal mapping of G_2 onto G_i [5].

Theorem 1.5. Let G₁ and G₂ be two subsets of \mathcal{C} , and φ : G₂ \rightarrow G₁ be a conformal mapping. Then the mapping Φ defined by $\Phi(f) = f \circ \phi$ is a $\mathcal{C}\text{-isomorphism from } A(G_i)$ onto $A(G_j)$ [5].

2. SUBRINGS OF THE RİNG A(G)

In this section, subrings of the ring A(G) corresponding to the discrete sets will be investigated.

Theorem 2.1. Let

$$
A_{D_1}(G_1) = \{ f \in A(G_1): f(u) = \text{constant, for all } u \in D_1 \}
$$

and

$$
A_{D_2}(G_2) = \{ g \in A(G_2): g(v) = \text{constant, for all } v \in D_2 \}
$$

where D_1 and D_2 are discrete subsets of G_1 and G_2 , respectively. Let $\varphi: G^{\lambda}_{\lambda} \to G^{\lambda}_{\lambda}$ be a bijective analytic mapping. If $\varphi(D^{\lambda}_{\lambda}) = D^{\lambda}_{\lambda}$, then Φ : A_{D₁}(G₁) \rightarrow A_{D₂}(G₂), $\Phi(f) = f \circ \phi$ is a \mathcal{C} -isomorphism.

Proof: It is easily seen that $\Phi(f_1 f_2) = \Phi(f_1) \Phi(f_2)$ and $\Phi(f_1 + f_2) =$ $\Phi(f_1) + \Phi(f_2)$. Hence Φ is a homomorphism. Since g is an element of $A_{D_2}(G_2)$, go $\varphi^{-1} \in A_{D_2}(G_1)$. If $\varphi^{-1}(c) \in D_2$, $c \in D_1$, then $(g \circ \varphi^{-1})(c) = g(\varphi^{-1}(c)) =$ constant. Therefore, for all $g \in A_{D}(\tilde{G}_2)$, there exists $g \circ \phi^{-1} \in A_{D}(\tilde{G}_1)$ such that $\Phi(g \circ \phi^{-1}) = (g \circ \phi^{-1}) \circ \phi = g$. Hence Φ is onto. On the other hand, since

$$
\Phi(f_1) = \Phi(f_2) \Rightarrow f_1 \circ \phi = f_2 \circ \phi \Rightarrow f_1 = f_2
$$

 Φ is one to one. It is obvious that the constants are invariant under the isomorphism Φ . Hence Φ is a \mathcal{C} -isomorphism.

The following theorem gives us a relation between the ring A(G) and the subring $A_{p}(G)$.

Theorem 2.2. If a discrete set $D \subset G$ contains only one element, i.e., $D = {a}$, then $A_n(G) = A(G)$.

Proof: From definition of $A_{1}(G)$, we have $A_{1}(G) \subset A(G)$. On the other hand, suppose that $f \in A(G)$. In this case, since $f(a) = \text{constant}$, *f* is an element of $A_n(G)$. Then $A(G) \subset A_n(G)$ holds. Therefore, $A(G) = A_n(G)$.

By this theorem, we can say that we will be able to work on the subring $A_n(G)$ instead of the ring A(G). If D has only one element, we can take the set $A_D(G)$ for $A(G)$.

Corollary 2.3. Let D_1 and D_2 be two discrete subsets of G. If $D_1 \subset D_2$

$$
A_{D_1}(G) = \{ f \in A(G): f(u) = \text{constant}, \text{ for all } u \in D_1 \}
$$

and

$$
A_{D_2}(G) = \{ g \in A(G): g(v) = \text{constant, for all } v \in D_2 \}
$$

then $A_{D_2}(G) \subset A_{D_1}(G)$.

Proof: Let $f \in A_{D_2}(G)$. Then for all $v \in D_2$, $f(v) = constant$. Since $D_1 \subset D_2$ and $f(u) = \text{constant}$ for all $u \in D_1$, $f \in A_{D_1}(G)$. Hence, we have $A_{D_2}(G) \subset A_{D_1}(G)$.

Let D_f cG be a set of zeros of $f \in A(G)$. Now we can give the following theorem on maximal ideals of $A_{D}^{\quad} (G)$.

Theorem 2.4. Let $f \in A(G)$ and D_f be a finite set. Furthermore suppose that

$$
A_{D_f}(G) = \{ g \in A(G): g(u) = \text{constant, for all } u \in D_f \}
$$

Then

$$
\{g(z) \prod_{u \in D_f} (z-u): g \in A(G)\}
$$

is a maximal ideal of $A_{D}^{\quad} (G)$.

Proof. It is ealisy shown that $J = \{g(z) \prod_{u \in D_f} (z-u): g \in A(G)\}\$ is an ideal of A_{D} (G). Now, we will show that this ideal is maximal. Let us ideal of $A_{D_f}(G)$. Now, we will show that this ideal is maximal. Let us consider the mapping $\Psi_a: A_{D_f}(G) \rightarrow \mathcal{C}$, $\Psi_u(g) = g(u)$, $u \in D_f$. It is clear that the mapping ψ_n is a homomorphism. There exists $h = f^n + c \in A_n$ (G) such that $\Psi_{u}(h) = h(u) = c$, (ce \mathcal{O}_1), hence Ψ_{u} is onto. At the same time

$$
Ker \psi_{u} = \{h \in A_{D_f}(G): \psi_{u}(h) = h(u) = 0\}.
$$

Since h(u)=0 for all $u \in D_f$ and $h \in A_{D_f}(G)$, we get $h(z)=g(z) \prod_{r \in D_f} (z-u)$, $u \in D_{\mathfrak{c}}$

where $g \in A(G)$. Hence Ker $\psi_n = J$. According to the first isomorphism theorem

$$
A_{D_f}(G)/J \,\cong\, \mathcal{C}.
$$

Hence, J is a maximal ideal.

 M_a = {g \e A(G): g(a) = 0} is a maximal ideal of A(G), where a \e G. In Theorem 2.4, taking a discrete set instead of a, this result is generalized for maximal ideals.

Theorem 2.5. Let D_{f_1} and D_{f_2} be sets of zeros of $f_1 \in A(G_1)$ and $f_2 \in A(G_2)$, respectively. Moreover, suppose that the mapping Φ : A(G₁) \rightarrow A(G₂) defined by $\Phi(f) = f \circ \phi$ is a *C*-isomorphism. If $\Phi(f_1) = f_2$, then $\varphi(D_{f_2}) = D_{f_1}.$

Proof. From Theorem 2.4, G_2 and G_1 are conformally equivalent, i.e., there exists a mapping $\varphi: G_2 \rightarrow G_1$ which is analytic and bijective. From the hypothesis $f_2 = f_1 \circ \varphi$. If $a \in D_{f_2}$, then

$$
0 = f_2(a) = (f_1 \circ \phi)(a) = f_1(\phi(a)).
$$

Thus, $\varphi(a) \in D_{f_1}$. Since a is an arbitrary element of D_{f_2} , we have that $\varphi(D_{f_2})CD_{f_1}$. On the other hand, if $d \in D_{f_1}$, then there exists $c \in G_2$ such that $\phi(c) = d$. Hence

$$
0 = f_1(d) = f_1(\varphi(c)) = (f_1 \circ \varphi)(c) = f_2(c)
$$

and ceD_{f_2} . Thus $D_{f_1} \subset \varphi(D_{f_2})$. Then the result follows.

We can give the following theorem as a corollary of Theorem 2.1 and 2.5.

Theorem 2.6. If F: A(G₁) \rightarrow A(G₂) is a \mathscr{L} -isomorphism and $\Phi(f_1)$ = f_2 , then

$$
A_{D_{f_1}}(G_1) \cong A_{D_{f_2}}(G_2).
$$

Proof. From the hypothesis and Theorem 2.4, G_2 and G_1 are conformally equivalent, i.e., there exists a mapping φ : $G_2 \rightarrow G_1$ which is analytic and bijective. According to Theorem 2.5. $\varphi(D_{f_2}) = D_{f_1}$. From Theorem 2.1, we have

$$
A_{D_{f_1}}(G_1) \cong A_{D_{f_2}}(G_2).
$$

REFERENCES

- [1] BERS, L., On rings of analytic functions, Bull. Amer. Math. Soc. 54 (1948), 311-315.
- [2] HELMER, O., Divisibility properties of integral functions, Duke Math. J., 6 (1940), 345-356.
- [31 KAKUTANI, S., Rings of analytic functions, Proc. Michigan Conference on Functions of a Complex Variable. (1955), 71-74.
- [4] RUDIN, W., An algebraic characterization of conformal equivalence. Bul. Amer. Math. Soc. 61 (1955), 543.
- [5] SU, L.P., Rings of analytic functions on any subset of the complex plane, Pacific J. Math. 42 (1972), 535-538.