RESTRICTIVE SEMIGROUPS OF HOLOMORPHIC ENDOMORPHISMS ON RIEMANN SURFACES

AYHAN ŞERBETÇİ and İ.KAYA ÖZKIN

Department of Mathematics, Faculty of Science, University of Ankara, Ankara, TURKEY (Received April 15, 1997; Accepted June 9, 1997)

ABSTRACT

Let R be a Riemann surface and X be any nonempty subset of R. E(R,X) denotes the semigroup, under composition, of all holomorphic selfmaps of R which carry X into X and is referred to as a restrictive semigroup of holomorphic endomorphisms. Let R_1 , R_2 be Riemann surfaces which have bounded nonconstant holomorphic functions and X, Y be any subsets of R_1 , R_2 , respectively. If $\phi: E(R_1, X) - E(R_2, Y)$ is an isomorphism of semigroups, then there exist a conformal (or anticonformal) isomorphism $\psi: X \to Y$ such that $\phi(f) = \psi$ o f o ψ^{-1} for every $f \in E(R,X)$.

1. INTRODUCTION

Let R be a Riemann surface and X be a nonempty subset of R. The semigroup, under composition, of all holomorphic selfmaps of R which carry X into X is denoted by E(R,X) and is referred to as a restrictive semigroup. E(R,X) is clearly a subsemigroup of E(R) and it coincides with E(R) precisely when X is all of R.

A well-known theorem by L. Bers states that two plane domains are conformally (or anticonformally) equivalent if and only if their rings of holomorphic functions are isomorphic [1]. This result has been generalized to Riemann surfaces and its nonempty subsets [3, 4, 5]. A. Eremenko has shown that if R_1 and R_2 are two Riemann surfaces which have bounded nonconstant holomorphic functions and $E(R_1)$ and $E(R_2)$ are the semigroups of all holomorphic endomorphisms of R_1 and R_2 , respectively, then any isomorphism of $E(R_1)$ with $E(R_2)$ induces a conformal (or anticonformal) isomorphism R_1 with R_2 [2].

2. ISOMORPHISIMS BETWEEN RESTRICTIVE SEMIGROUPS

Definition 1. R_1 , R_2 are two Riemann surfaces and X,Y be any nonempty subsets of R_1 , R_2 , respectively. A function $\psi\colon X\to R_2$ is said to be holomorphic if for each point $P\in X$ there exists an open neighborhood U_P of P and a holomorphic function $\phi_P\colon U_P\to R_2$ such that ϕ_P and ψ coincide on $U_P\cap X$. This is equivalent to assuming that there is a single open set $U\supset X$ and a holomorphic functions $\phi\colon U\to R_2$ such that $\phi|X=\psi$. $\psi\colon X\to Y$ is said to be a conformal (anticonformal) mapping if ψ is holomorphic (or antiholomorphic, i.e., $\overline{\psi}$ is holomorphic), one-to-one and onto [3].

Let R_1 , R_2 be Riemann surfaces which have bounded nonconstant holomorphic functions and X,Y be any nonempty subsets of R_1 , R_2 , respectively. It is immediate that each conformal (or anticonformal) mapping $\psi \colon R_1 \to R_2$ which carries X onto Y induces an isomorphism $\varphi \colon E(R_1,X) \to E(R_2,Y)$ such that $\varphi(f) = \psi$ of φ^{-1} , $f \in E(R_1,X)$.

The purpose of this paper is to prove the following theorem. So we generalize the Eremenko's result to nonempty subsets of Riemann surfaces.

Theorem: Let R_1 , R_2 be Riemann surfaces which have bounded nonconstant holomorphic functions and X,Y be any nonempty subsets of R_1 , R_2 , respectively. Suppose that $\phi \colon E(R_1,X) \to E(R_2,Y)$ is an isomorphism of semigroups of holomorphic endomorphisms, then there exists a conformal (or anticonformal) isomorphism $\psi \colon X \to Y$ such that $\phi(f) = \psi$ o $f \circ \psi^{-1}$, for each $f \in E(R_1,X)$.

Proof. We denote the constant mapping which maps R_1 to $P \in X$ by c_p and denote the set of all constant endomorphisms by $C(R_1,X)$ the subsemigroup of $E(R_1,X)$. Then $c_p(P') = P$ for all $c_p \in C(R_1,X)$ and $P' \in R_1$;

$$f \circ c_p = c_{f(P)}$$
 and $c_p \circ f = c_p$ for all $f \in E(R_1,X)$.

We first prove that ϕ : $C(R_1,X) \to C(R_2,Y)$, i.e., ϕ maps constants to constants. Let $c_p \in C(R_1,X)$, $P \in X$. For any $Q \in Y$ there exists an $f \in E(R_1,X)$ such that $\phi(f) = c_0$ since ϕ is onto. Hence, for all $Q' \in Y$

$$\phi(c_p)(Q) = \phi(c_p) \circ \phi(f)(Q') = \phi(c_p \circ f)(Q') = \phi(c_p)(Q'),$$

which shows that $\phi(c_p) \in C(R_2, Y)$. Thus, we can define $\psi: X \to Y$ by

$$\phi(c_P) = c_{\psi(P)}$$
 for all $P \in X$ (i.e., $\psi(P) = Q$).

Then ψ is one-to-one, because $\psi(P) = \psi(P')$ implies that $\phi(c_p) = \phi(c_{p'})$, which leads to P = P'. Further, ψ is onto, beacuse for any $Q \in Y$, if we take $f \in E(R_1, X)$ such that $\phi(f) = c_Q$, then we can show in the same way as above that $f \in C(R_1, X)$, or $f = c_p$ for some $P \in X$, and hence, $Q = \psi(P)$.

Now let $f \in E(R_1,X)$ and $P, P' \in X$ such that f(P) = P' and $\psi(P) = Q \in Y$. Then for all $Q' \in Y$,

$$\begin{array}{lll} \varphi(f)(\psi(P)) & = & \varphi(f)(Q) & = & [\varphi(f) \circ (c_Q)](Q') \\ & = & [\varphi(f) \circ c_{\psi(P)}](Q') & = & [\varphi(f) \circ \varphi(c_P)](Q') \\ & = & \varphi(f \circ c_P)(Q') & = & \varphi(c_{P'})(Q') \\ & = & c_{\psi(P')}(Q') & = & c_{\psi \circ f(P)}](Q'). \end{array}$$

Hence $\phi(f)$ ϕ = ψ o f so $\phi(f)$ = ψ o f ϕ .

Now we show that ψ is continuous. Firstly, we give following definition:

Definition 2: Let f be an element of E(R,X). f is called a good element if for any iterate f^n of f, $f^n(R)$ is relatively compact image in R.

If f is a good element, then the existence of a fixed point in R follows from relatively compactness of the image. Every element of E (R,X) which is different from identity has at most one fixed point in R. If R is a hyperbolic Riemann surface, i.e., the universal covering of R, is the unit disk U, then there exists a Riemannian metric on R which is called Poincaré metric. Denote by ρ the distance in the Poincaré metric in R. The invariant form of the Schwarz lemma states that $\rho(f(P), f(Q)) \leq \rho(P,Q)$ for every P and Q. If f(R) is relatively compact, then f cannot be a covering so f strictly decreases the Poincaré distance. It follows that the sequence $f(R) \supset f^2(R) \supset ...$ has one point of intersection and this point P is the unique attractive fixed point of f in R. (Attractive means that |f'(P)| < 1.

The derivative at a fixed point does not depend on the choice of local coordinate.).

Now let $f \in E(R_1, X)$ be a good element. Then f has a fixed point $P_0 \in X$ and f is univalent in a neighborhood of this fixed point and

$$\bigcap_{n\in\mathbb{N}} f^{n}(R_{1}) = \{P_{0}\}.$$

Eremenko showed that $\{f^n(R_1)\}$ forms a fundamental set of neighborhoods of P_0 [2]. Now let $Q_0 = \psi(P_0) \in Y$. Since f is good, $\phi(f) = g$ is a good element in $E(R_2,Y)$ which fixes Q_0 . We also have $\psi(f^n(R_1) \cap X) = g^n(R_2) \cap Y$. So ψ maps a fundamental set of neighborhoods of P_0 to a fundamental set of neighborhoods of Q_0 , in the relative topologies. Thus ψ is continuous.

Next, we show that ψ is conformal (or anticonformal). Let

$$P(f) = \{h \in E(R_1,X) \mid h \text{ o } f = f \text{ o } h, f \in E(R_1,X)\}.$$

This is a semigroup of $E(R_1,X)$. Denote by S the group of all linear self-maps of the field C, i.e.,

$$S = \{z \rightarrow \lambda z \mid \lambda \in C^* = C \setminus \{0\}\}.$$

The group S is isomorphic to the multiplicative group C^* . There exists a neighborhood $O_1 \subset R_1$ of P_0 and a local coordinate F: $(O_1,P_0) \to (C,0)$ which conjugates P(f) to some subsemigroup $S_1 \subset S$. In other words s(h) = F o h o $F^1 \in S$ if $h \in P(f)$ and $h \to s(h)$ is an isomorphism of semigroups $P(f) \to S_1$. Similarly consider a local coordinate G: $(O_2,Q_0) \to (C,0)$, $Q_0 \in O_2 \subset R_2$, which conjugates P(g) to a subsemigroup $S_2 \subset S$. If S_1 and S_2 are considered as subsets of C^* , then they contain some punctured neighborhoods of O.

Lemma. Let S_1 and S_2 be subsemigroups of the multiplicative group C^* both containing some punctured neighborhoods of 0. If V is a continuous injective mapping in a neighborhood of 0 which conjugates S_1 to S_2 , then

$$V(z) = az^{A} \overline{z}^{B}, \qquad (1)$$

where $a \in C^*$, A, B \in C and A - B = ± 1 [2].

Note that V given by (1) is differentiable (as a function from R^2 to R^2) and nondegenerate in C^* . It is differentiable and nondegenerate at 0 iff A + B = 1. In the latter case V is conformal (or anticonformal) because A + B = 1 and $A - B = \pm 1$ imply A = 1 or B = 1.

Now the function $V_{P_0} = G$ o ψ o F^1 maps a neighborhood of 0 to some neighborhood of 0 and conjugates S_1 to S_2 . According to the Lemma, for arbitrary $P \in O_1 \setminus \{P_0\}$ the function V_P is differentiable and nondegenerate. Therefore $\psi \mid X \cap (O_1 \setminus \{P_0\})$ is differentiable and nondegenerate. So V_P is conformal (or anticonformal) this implies that ψ is conformal (or anticonformal).

REFERENCES

- [1] BERS, L. On rings of analytic functions, Bull. Amer. Math. Soc., 54(1948), 311-315.
- [2] EREMENKO, A., On the characterization of a Riemann surface by its semigroup of endomorphisms, Trans. Amer. Math. Soc., Vol. 338, No.1 (1993), 123-131.
- [3] MINDA, C.D., Rings of holomorphic and meromorphic functions on subsets of Riemann surfaces, Journal of the Indian Math. Soc., 40(1976), 75-85.
- [4] RUDIN, W., An algebraic characterization of conformal equivalence, Bull. Amer. Math. Soc., 61(1955), 543.
- [5] ŞERBETÇİ, A., and ÖZKIN, İ.K., On the rings of analytic functions on any subset of an open Riemann surface, Jour. Inst. Math. and Comp. Sci. (Math. Ser.), Vol.3, No.1 (1990), 15-20.