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ABSTRACT

Let R be a Riemann surface and X be any nonempty subset of R. E(R,X) denotes the
semigroup, under composition, of all holomorphic selfmaps of R which carry X into X and
is referred to as a restrictive semigroup of holomorphic endomorphisms. Let Rl, R, be
Riemann surfaces which have bounded nonconstant holomorphic functions and X, Y be any
subsets of Rl, Rz, respectively, If ¢ : E(Rl , X) - E(R2 , Y) is an isomorphism of
semigroups, then there exist a conformal (or anticonformal) isomorphism y: X — Y such
that 9(f) = y o f o y' for every f € E R X).

1. INTRODUCTION

Let R be a Riemann surface and X be a nonempty subset of R. The
semigroup, under composition, of all holomorphic selfmaps of R which
carry X into X is denoted by E(R,X) and is referred to as a restrictive
semigroup. E(R,X) is clearly a subsemigroup of E(R) and it coincides
with E(R) precisely when X is all of R.

A well-known theorem by L. Bers states that two plane domains are
conformally (or anticonformally) equivalent if and only if their rings of
holomorphic functions are isomorphic [1]. This result has been generalized
to Riemann surfaces and its nonempty subsets [3, 4, 5]. A. Eremenko has
shown that if R and R, are two Riemann surfaces which have bounded
nonconstant holomorphic functions and E(Rl) and E(Rz) are the
semigroups of all holomorphic endomorphisms of R, and R, respectively,
then any isomorphism of ER) with ER,) induces a conformal (or
anticonformal) isomorphism R, with R, [2].
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2. ISOMORPHISIMS BETWEEN RESTRICTIVE SEMIGROUPS

Definition 1. R, R, are two Riemann surfaces and X,Y be any
nonempty subsets of R, R,, respectively. A function - X — R, is said
to be holomorphic if for each point P € X there exists an open
neighborhood U, of P and a holomorphic function @ Up — R, such
that ¢, and y coincide on U, N X. This is equivalent to assuming that
there is a single open set U > X and a holomorphic functions ¢: U —
R, such that ¢X = ¢ . y: X > Y is said to be a conformal
(anticonformal) mapping if y is holomorphic (or antiholomorphic, i.e., ¥
is holomorphic), one-to-one and onto [3].

Let R, R, be Riemann surfaces which have bounded nonconstant
holomorphic functions and X,Y be any nonempty subsets of R, R,
respectively. It is immediate that each conformal (or anticonformal)
mapping y: R, — R, which carries X onto Y induces an isomorphism ¢:
ER,.X) - E(R,,Y) such that ¢(f) = y o f oy, f € ERX).

The purpose of this paper is to prove the following theorem. So we
generalize the Eremenko's result to nonempty subsets of Riemann
surfaces.

Theorem: Let R, R, be Riemann surfaces which have bounded
nonconstant holomorphic functions and X,Y be any nonempty subsets of
R, R,, respectively. Suppose that ¢: ER,X) — ER,Y) is an
isomorphism of semigroups of holomorphic endomorphisms, then there
exists a conformal (or anticonformal) isomorphism y: X — Y such that
o =y o f oy’ for each f € ER X).

Proof. We denote the constant mapping which maps R to P € X
by Cp and denote the set of all constant endomorphisms by C(RI,X) the
subsemigroup of E(R;,X). Then c,(P") = P for all ¢, € C(RX) and P e

Rl;

foc, = @) and ¢, of = ¢, for all f € E(R,X).
We first prove that ¢: C(R.X) — CR,.Y), ie., ¢ maps constants to

constants. Let Cp € C(RI,X), P e X. For any Q € Y therc exists an f €
E(R,.X) such that ¢(f) = % since ¢ is onto. Hence, for all Qe Y
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9@ = o) 0 $OQ) = d(c, 0HQ) = d(c)Q),
which shows that ®cy) € CR,.Y). Thus, we can define y: X — Y by
o(cp) = o) for all P € X (ie., y(P) = Q).

Then y is one-to-one, because W(P) = y(P) implies that d(cp) = 9(cp),
which leads to P = P’. Further, v is onto, beacuse for any Q € Y, if we
take f € E(R,X) such that ¢(f) = o then we can show in the same
way as above that f € CR;X), or f = ¢, for some P € X, and hence,

Q = w(P).

Now let f € E(RX) and P, P" € X such that f(P) = P’ and y(P)
=Q € Y. Then for all Q" € Y,

HOWEP)) = 9OQ = [0 0 (cIQ)
= [0 0 c,pJQ) = 0D 0dcHIQ)
= 9 0 ¢)(Q) e,)Q)

¢y (@) = o rlQ).

Hence ¢(f) oy = yo fso ¢(f) = yo f oyl

Now we show that y is continuous. Firstly, we give following
definition:

Definition 2: Let f be an element of E(R,X). f is called a good
element if for any iterate f* of f, f*(R) is relatively compact image in R.

If fis a good element, then the existence of a fixed point in R
follows from relatively compactness of the image. Every element of E
(R, X) which is different from identity has at most one fixed point in R.
If R is a hyperbolic Riemann surface, i.c., the universal covering of R, is
the unit disk U, then there exists a Riemannian metric on R which is
called Poincaré metric. Denote by p the distance in the Poincaré metric in
R. The invariant form of the Schwarz lemma states that p(f(P), f(Q)) <p
(PQ) for every P and Q. ¥ f(R) is relatively compact, then f cannot be
a covering so f strictly decreases the Poincaré distance. It follows that the
sequence f(R) o f2(R) > ... has one point of intersection and this point P
is the unique attractive fixed point of f in R. (Attractive means that {f'(P)| < 1.
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The derivative at a fixed point does not depend on the choice of local
coordinate.).

Now let f € ER X) be a good element. Then f has a fixed point
P, € X and f is univalent in a neighborhood of this fixed point and

M tﬁ(Rl) = {P}-

neN
Eremenko showed that {f'(R )} forms a fundamental set of neighborhoods

of P, [2]. Now let Q, = y(P) € Y. Since f is good, of) = g is a good
clement in E(R,,Y) which fixes Q,. We also have y("R) N X) = g"
R) n Y. So y maps a fundamental set of neighborhoods of Py to a
fundamental set of neighborhoods of Q. in the relative topologies. Thus
Wy is continuous.

Next, we show that W is conformal (or anticonformal). Let
P(f) = {h e ER X) |hof=foh, fe ER.X)}.

This is a semigroup of E(R ,X). Denote by S the group of all lincar
self-maps of the field C, ie.,

S={z > A |Ae C*¥=C\{0}}.

The group S is isomorphic to the multiplicative group C*. There
exists a neighborhood O, — R, of P, and a local coordinate F: O, Py
— (C0) which conjugates P(f) to some subsemigroup S, < S. In other
words s(h) = F o h o F! € S if h € P(f) and h — s(h) is an °
isomorphism of semigroups P(f) — S,. Similarly consider a local
coordinate G: (0,.Q) — (C0), Q, € O, c R,, which conjugates P(g) to
a subsemigroup S, — S. If S, and S, are considered as subsets of C*,
then they contain some punctured neighborhoods of O.

Lemma. Let S and S, be subsemigroups of the multiplicative group
C* both containing some punctured neighborhoods of 0. If V is a
continuous injective mapping in a neighborhood of O which conjugates S,
to S,, then

V@) = ar” 7, (D

where a € C¥, A,Be Cand A - B =% 1 [2].
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Note that V given by (1) is differentiable (as a function from R? to
R? and nondegenerate in C*. It is differentiable and nondegenerate at O
iff A+ B = 1. In the latter case V is conformal (or anticonformal)
because A + B =1and A - B =+l imply A=1or B = 1.

Now the function Ve, =GovyoF ! maps a neighborhood of 0 to
some neighborhood of O and conjugates S, to S,. According to the
Lemma, for arbitrary P e OMP,} the function V, is differentiable and
nondegenerate. Therefore v | X n (O,{P,}) is differentiable and
nondegenerate. So V, is conformal (or anticonformal) this implies that Y
is conformal (or anticonformal).
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