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ABSTRACT

Mohanty and Nanda [2] were the first to establish a result for (C,l) i.e.
C -summability of the sequence {n B (x)} Varshney [5] established a theorem on (N , ] —)C,
summablhty In the present paper we have discussed (a ), -summability of the sequence
{n B (x)} which includes the result due to Tripathi and Smgh [7]

1. Let X, U, be a given infinite series with the sequence of partial sums
{S_}. Let |ITli=(a ,) be infinitc triangular matrix with real constants. Then
sequence to sequence transformation.

t=3a,S n=012.

defines the T-transform of the sequence {S }. Recall that the matrix
elements a x = 0 for each K > n, then the matrix is called triangular.

The series X U, is said to be T-summable to S, if lim t = S.
The regularity conditions for T-method are:
(1) There exists a constant K such that gla“kl <K, for each n;
(2) For ever K, lim a , = 0;and
n
(3) lim é a, =
The matrix T reduces to Norlund matrix gencrated by the sequence

of coefficients {p } if )
n P, P , ifK<n

a = K n
J{ .
n 0 ., fK>n
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n
where P = Zpr #z 0.
=0

If the method of summability [[T|| is applied to Cesaro means of
order one, another method of summability ITII.C, is obtained.

2. Let f(x) be a periodic function with period 2r and integrable in the
sense of Lebesgue over an interval (-m,m). Let the Fourier series of (x)
be

% g+ 2 AR 2.1
n=1

% 3, + Z(an cos nx + b_ sin nx)
n=1

and then the conjugate series of (2.1) is

co

Z (b, cos nx - a sin nx) = Z B ® 22)
n=l n=1
We write

y(t) = f(x+t) - f(x-t) - L,

(where L is some constant),

t

Yy, = J Y(u) du ;
0
AM = g a, s
and t = [1/t] the integral part of 1/t.

3. Mohanty and Nanda [2] proved the following theorem:

Theorem A; If

= 1 0
yit) = O (log(llt)) as t—0,

and a_ = O(m®; b = O@®) , 0 <& < 1, then the scquence {n B (x)} is
(C,1) summable to the value L/x.

Varshney [5] generalized the above theorem of Mohanty and Nanda
[2} which was later on extended by Tripathi and Singh [7] in the
following form:

Theorem B: Let a function p(u), tending to infinity with u and a
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sequence {p } be defined as follows in terms of p(u), monotonic
decreasing and strictly positive for u > 0

P(u) = f pE) dx , p. = pn) G0
0
= _t 32
v, =0 (S(I/t)) ,as t > +0 (32)
€(t) being positive non-decreasing with t and
PO 4 - o
L —— O®,) (33)

then the sequence {n B (x)} is summable (N,p).C, to the value L/m. The
object of this paper is to generalize the above theorem of Tripathi and
Singh [8] for ||T||.C1 summability. However, our theorem is as follows:

Theorem: Let ||T} = (a, ) be an infinite triangular matrix with a_ g 2 0
and a . be defined by a x = a (k), a(u) being a strictly positive
monotonic non-increasing function and

u
A(n,p-u) = j a(n-t) dt - 1 as n — oo for fixed u 2 0. “4.1)
0

Let g(t) be positive non-decreasing function of t.

If
v® =0 (E(—ltB) ,as t = 40, 42
and
nA(n,n-u) _ o
L _l_lT(u)_ du=0O(1), as n > oo, 4.3)

then the sequence {n B (x)} is summable ITI.C, to the value L/m.

We note that (4.2) and (3.2) are same while conditions (4.1) and
(4.3) in the case of (N Pp,)-.C, summability reduce to conditions (3.1) and
(3.3), respectively. '

5. For the proof of the theorem we require the following lemmas:

Lemma 1: (Kishore and Hotta [8]).

n
If {2} is non-negative and non-decreasing with respect to k, then
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for 0 Sa<b<eo,0<t<w and any n,

L iu-kjt <K
lé an,n~ke l - An,n4: (51)

Lemma 2: (Mittal [10]). If 0 < t < 1/n, then

13 '
lQn(tN = E 2 a, sin 2kt _cos kt] .. O(n) (5.2
k=1 kt t
Lemma 3: (Mittal [10]). If 0 < t £ &, then
A
QI = o( ) 5-3)
n t

6. Proof of the Theorem: If we denote the (C,1) transform of the
sequence {n Bn(x)} by t , we have after Mohanty and Nanda (2]

=L i yo (L 1 51;1 nt _ cos nt) 4¢
T Jo n 2 Gn® Ly tan—;-t

+ L |y sin nt dt + O(1)
2n 0
k4
=1 j () sin 2nt - cos nti ge + O(1).
T Jo nt t

by Riemann-Lebesgue theorem.

On account of the regularity of the method of summability we have
to show that under our assumptions

J y() Za sin_kt kt cos Kt| gr = O(1) (6.1)
0 kt t

as n — oo,

From Lemma 2 we write

zn: a {sin kt _ cos ktJ
nk 2

Qv =1
= kt t

L%
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Therefore

f w(H Q1) dt
0

I/n [ b
(f + [ + J ) w(t) Q (O dt
0 1n 3

=II+IZ+13,say,whereO<5<n.

Now by Lemma 2 and hypothesis (4.2), we have
I
I = J y(® Q) dt
0
I
=oa [ ol a
0

=0 (o (1)

n &(n)

=0 (L.
&(n)
Therefore [ =0(),an > c. 62)

Again by Lemma 3, s
L = f ¥ Q) dt
I

S
=0(j WOl ““) )
1/n

8 A
=0 (J (o)l ( “; e(t)) dt)
I

8

=0 (‘Vl(t) n:”)

1n

8 A
+0 j O 5 dt (t £(1/t) (I/t)) a

-0 (L 1
0 (S(n)) 0 G

6( An.nt ) d )
o g(1/t) t g(1/t) (e

+ O(1) + O(1) J

“a (s(l/t)) dt (t a(Jll/Tt)) )
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~° () 0 )

8
4 g(1/e) 5 A
+ O d~t—'—2 + 0(1)J td (___“M )
n (€Q/D) o Gt e

| t
0 [k +0 ) oo [kl

ta T (% a
0(1) nn-t _ T gy
te(), t e(1/1)

n
=0 [ -1 1 1).
© (gi5) * © fgy) + 0 + 00
By virtue of (4.3) we have
L=0(),an— o 6.3)

Since the method of summability is regular, we have
L=01),an—>ee 64)

by Riemann-Lebesgue theorem.

Combining the above results we obtain (6.1).

This completes the proof of the thcorem.
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