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1. INTRODUCTION

We recall that a spherical harmonic is a homegeneous function of x, y,
z of certain degree n which satisfies Laplace equation. Thus, if V(x,y,z) is
such a function of degree A, then XV +yVy+zV, = AV(xy,z), and AV =
Vxx+Vyy+Vzz = 0. An important result in the theory of harmonic functions
is that any harmonic function can be expressed in a series involving the
spherical harmonics.

In this paper we shall study homogeneous functions which satisfy the
general elliptic-ultrahyperbolic partial differential equation
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where o, (1<i<n), Bj (1<j<s) and 7y are real parameters and
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The domain of the operator L is the set of all real valued functions
u(x,y) of class C%D), where x = (X, ) and y = (y),....y) denote points
in R" and R® respectively, and D is a regularity domain of u in R™®.
Clearly the equation (1) includes some of the well known classical
equations of mathematical physics such as the Laplace equation, the wave
equation and EPD and GASPT equations [1-5]. The equation (1) was
considered by Altin [2] for which some expansion formulas for solutions
of the iterated forms of the equation were given.
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2. HOMOGENEOUS SOLUTIONS

We first give some properties of the operator L. In [2] the following
two properties of L are given.

(i) For any real parameter m,
La™ = [m@m + ¢) + v] ™7 3)
where

¢—n+s-2+2(x+ZB ©

i=1
(ii) If uveCXD) are any two functions, then the operator L satisfies
the relation
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In (5), taking u = ™ and v = V., (x,y) which is a homogeneous function
of degree A, we then obtain the formula

LE™V,) = m(m + 2h+ Q)r"7V, + r"L(V,) (6)

This formula will play an important role in finding homogeneous solutions
of our equation (1). By making use of the formula (6) we shall prove the
following theorem.

Theorem 1. Let V, (x,y)eC”(D) be any homogencous function of
degree A. If 20+ ¢ is not a positive even number, then the function

W,y = {1+ ¥ (Do 'L?) V) 9
=1
where
A0) = 1
200 2.4..2Q)CA+0-2) 204 0-4)...(2A+0-2q) ®)
and

L = (LY for q = 1.2,..
is a homogeneous solution of degree A of the equation (1).

Proof. Using the properties of homogeneous functions and the
definition of L, we can see that LY(V,(x,y)) is a homogeneous function of
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degree A-2q for any positive integer q. Since the factor 124 is
homogeneous of degree 2q, each term r2qu(V)b) of (7) is again a
homogencous function of degree A, and therefore the limit function
W,(x,y) will be also a homogencous function of the same degree A.
Hence, by the relation (6) we have

L[r*9LY(V,)]

2q12q + 2(A-2q) + QIPIZLAV,) + PILEV,)  (9)

2qQA + ¢ - 2P7LYV,) + PILYV,)

Now let us apply the operator L on both sides of (7) and use the
formula (9). We obtain

LOW,) = LV + ¥, D'a,dort] LV,

q=1

=L + 3 (Va0 {<2q>(2k+¢2q)r2“'2L“<vmr2‘lL““(Vg}

= LV - a (A 0)220+¢-2)L(V,)

+ 3 0 (k208 0ta, 0LV,
On the other l?and from the definition of aq(h,¢), it is clear that
220 + ¢ - Da0p) = 1
and
2q2A + ¢ - 2q)aq(k,¢) = aq_l(?»,q)) ;5 9=2,3, .

Therefore, L(W,) = 0, which proves our theorem.

3. SOLUTIONS FOR THE ITERATED EQUATION LPu = 0.
First we shall prove the following lemma.

Lemma 1. Let V,(x,y) be any homogeneous function of degree A
Then for any positive integer p and for any real number m

p _—
r’a"V) = Y cp,k "L k(V,») (10)

k=0
where

Le(V,)) = V,, ¢(00) = c(p0) = 1, c(p,1) = mp(m+2-2p+2A+$),
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c(pk) = c(p-1.K)+(m+2-2k)(m+2-4p+2k+2A+d)c(p-1k-1); k = 1,...p-1

p-1

cpp) = [] m2j)m-2j+22+¢) and c(pk) = O for k > p.
j=0

Proof. Applying the operator L on both sides of the formula (6) and
noting that L(V,) is a homogeneous function of degree A-2, we have
Lz(rmVx) = m(m+27k+¢){(m-2)(m-2+2?~+¢)r““4Vx+rm‘2L(V7b)}
+mm+2(A-2)+0]r™ LV, )+"LA(V, )

LAV, )+2m(m-2+42A+0)r™ 2L(V, )
+m(m-2)(m+2A+0)(m-2+2A+9)r™ V.

CROMLAV, Je(2, I 2LV, 42254V,

Hence by induction we obtain the formula (10). We note that if V, is a
solution of the equation L(u) = 0, then our formula (10) takes the form

LPE™V,) = c(p,p)rm‘szx
p-1
=" I m-2i)m-2+20+0)V, an
=0

By making use of Lemma 1 we shall now establish the following
theorem.

Theorem 2. Let V, (x,y) be any p homogeneous integral functions of
degree ?»j for j = 0,1,...,pJ-1, respectively. Then the functions

p-l oo
@u =370 [ 1+3 (-l)qaq(?»j,cp)rquq V, (xy)
=0 g=1 J

p-1 i I o0
®u, =31y (-1)qaq(xj,¢)r2qu\l VA (x)
0

B

satisfy the iterated equation LP(u) = 0. Here L, r, ¢ and aq(?»,q)) are
defined by (1), (2), (4) and (8) respectively.

and

Proof. Since V, is a homogeneous integral function of degree lj , by
Theorem 1 !
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W}bj(x,y) = ’ 1+ q;(-l)qaq(lj,q))rquql ij(x,y)

\ J

is a homogencous solution of degree )»j of the equation L(u) = O.
Therefore, from the formula (11) of Lemma 1, we have

p-~1
LP(,.“‘wxj) = g (m-2)m-2§+2A+OW, (12)

Thus, by (12), for j = 0,1,...,p-1, we have
LP[ZW, ] = 0 and LP[H20W, | = 0
3 i

Hence, by the principle of superposition, it follows that u
satisfy the equation LP(u) = 0.

. and u, both

We notice that the solution u, is a special case of Almansi’s
expansion for the equation (1) and the solution u, is a homogeneous
function expansion for the same equation (1). Both of them were obtained
in [2] using a different method.

4. SOME REMARKS

(i) Supposc V, is a homogeneous integral function of degree A such
that 2A+¢ is not a positive even number. Since the function

W,y ={1+3 (-l)qaq(Xj,¢)r2qu\ V,(xy)

e

is a solution of the equation (1) and since Kelvin principle is valid for
the same equation [2,3], the function

u(x,y) = 1"¢W;L(§’n)

is also a solution of the same equation (1). Here §
M,-..n) and & = x/r%, (1 < i < n), n, = yj/r2 a<j
are defined before by (2) and (4).

k) M =
s) and r and ¢

IN

@ii) In [2] it was shown that if V,(x)y) is a homogeneous solution of
degree A of the equation (1), then

-1

P
LIV,E] = % [] m2i+0)@m-2j-20V,En) (13)

=0
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Using Theorem 2 and the formula (13), we can give two more
solution for the iterated equation LPu = 0.

Let V (x,y) be any p homogencous integral function of degree )\, for
j=0,1,. ,p-l and define W (x,y) as

1+ 2 (-1)a (7» ¢)r qL‘ \Y (x,y) j=0,.p-1
| B

which are homogeneous solution of degree ?»j of the equation (1). From
(13) we can say that

W. (X’Y) =

p-1

uxy) = 3 20 W, En)
0 3
and

p-1
Ak,
u&xy) = Y 7w &)
0
are also solutions of the iterated equation LP(u) = O,

(iii) It is clear that by a simple linecar transformation, Theorem 1 can
be readily extended to the more gencral equation of the form

2
Ll(u)=za28_ll+_9_i_§£ :tz 2au+ia_u +12u=0(14)

: 1 2 0 ! 0
i=1 at t"t atl =l az Zj-' aZJ rl

where & b, a, B are real parameters (a # O, b #0), t (t1’ ,t) and
2 = (Zv Z) are ﬁxed points in R" and IRs rcepectlvely, and 1 denoted by
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