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SUMMARY

In this work, we show the connection between the Liouville theorem in mechanics and the
Holditch theorem in geometry.

1. INTRODUCTION

There is a similarity between the theorems of Liouville and Hol-
ditch. We recall first the well known Holditch Theorem of geometry [11].

Let y be a smooth closed curve (oval) in Euclidean Plane and !
be a line segment of constant length which is less then the diameter
of v with the moving end points attached to vy. If X is a point on [
with distances ¢ and b to the end points of I, during the motion of [
the area between the orbit v, of X and v can be given by wab. In other
words, the area is independent of the motion (i.e. independent of the
choice of v).

If the area bounded by the closed curve vy, drawn by the point

— —>
X = (%4, X3) on the plane 0, e,’, ¢’ is denoted by f,, letting X = 0X

— >
and X' = O0'X = (x'y, X3}, we can write

ot

”
i

—_ -
£, =14 Jpp < X, dX' >
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(24

= b Jyy (' x'adx).
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Since the metric here is the Fuclidean metric and the motion is
Euclidean, the invariant f - {, is one of the invariants of the Euclidean
space, where { is the area bounded by the curve y.

Now we ask the following question:

Is there an invariant (or invariants) similar to the one given above
if we replace” the Fuclidean plane with a Riemannian manifold ?

The answer is affirmative, in our another study [2] we show
the existence of such invariants. The main aim of this work is to show
that Liouville theorem in mechanics is an analogue of Holditch Theorem
of geometry which is given above.

2. HAMILTONIAN AND GEODESICS

Let M be a Ricinannian manifold of dimension n. Tt is clear that
there can be no integral invariants of M if we do not iinpose any condi-
tion on M. We present some invariants imposing some conditions on

M in [2].

Meanwhile the Holditch theorem of Kuclidiean plane has a con-
nection with well-known Liouville Theorem of mechanic. So it may be
wise to have a look at Liouville Theorem and its counnection with
Holdicth Theorem.

Consider the Hamiltonian function H defined by

H: MxTMX) - R

(X, 5) — H(X, &) — gi(X) 55,

where [gli] denotes the inverse matrix of {gij] and the corresponding
Riemannian metric [3] is given by

ds? = g;(X) dxidxd

where £ is the velocity vector at the point X of the orbit drawn by

th

the point X, x! is the i'® coordinate function and &; is the i'™™ compo-

- i 4l

- . . . 1%} .
nent of £, with respeet to the coordinate basis goet Let ds be the
X

arc—length element of the orbit drawn by the point X and assume that
we load a mass on X. Suppose that the motion of these masses are
independent of time but depend on the points.
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As is well-known from mechanies [4]

oxi - oH

Ys W5 l<i<n @
0% _ _ ©H

Os T 0xy

i.e. the orbit curve drawn by the point X is the solution of the system (1).
This means that if the initial point and the velocity vector at that
point are given, then the orbit curve is givemn, that is the motion is
given.

dxi cH

The first n—equations =, 1 <1 < n) in system (1)
ds aii

express how the orbit of the point X in M changes. Similarly the second

dg; oH
n—equations ( d‘-vl = 1 <i< n) in system (1) express how
8 X

the velocity vector of this orbit changes. The system (1) is known as
the Hamilton-Jacobi system.

An important property concerning geodesic curves of Hamilton-
Jacobi system is rather interesting for geometry.

Theorem 2.1. Let M be a Riemannian manifold of dimension n

and X be a point moving en M with respect to (1) Hamilton—Jacobi
system. Then the orbit of X is a geodesic relative to the metric

ds? = g;(X) dxidxi.

Proof: If s is the arc-length of the geodesic path as the natural
parameter, the equality

H (X, §) = gii(X) &% -1 =0 2)

can be interpreted as hypersurfaces of level 1 of the set of the vectors
of length 1.

On the other hand, if we write the Hamilton-Jacobi system for
this hypersurface we obtain,
dxi oH . dxi

e, i £, —
ds g & (N h=g

= gl(X) & &)
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dz; oH ogii . d§ ogh .,
— . T e T — s — == — - i"", 14
ds oxt O & = ds oxt 1S )
. dxJ . . C e
From (3) we have, & = g;; - T and if we substitute this in (2)
s
for gii(X) &% =1 we get
g, A X -1
glen e T =
or
dxi dxi
e
or
) dxt dxi
8 g ds

which gives us |/
gijdxidx = ds2
from which the arc-length element of the curve, in concern, is obtained as
ds = (g;;(X) dxidxi). 12 (5)

For a curve L(X, X0) which has an arc-length element of form
(5) to be a geodesic, it is necessary the functional

(L) = | [gi(X)dxidxi]t/2 (6)
L(X, X0)
attains a minimum on this curve.

It is clear that the geodesic curves of the metric (5) are the solutions
of FEuler-Largrange system which is corresponding to functional (6),
see [6]. If the arc—length parameter s is the natural parameter then the
Fuler-Lagrange system is the system (3) and (4), where

dxJ
£1 = gy A
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The solutions of (1) arc called the orbits which are corresponding

to H(X, £). Here we assume that the orbits (geodesics) of H(X, &)
are regular, i.e., there is only one geodesic passing through any two
points of M.

Besides, the masses loaded to X € M are assumed to be independent
of each other and they are not effected by the source field in which
they are or they are not sensitive to the effects around them.

3. LIOUVILLE THEOREM

Definition 3.1. Let M be an n—Riemannian manifold and Q <« M
be a domain on M. Let X ¢ Q, £ e To(X), W = Q x To(X) and

U(X, E‘:) denotes the density of the masses included in the volume
element

dW == dV2n = det (g) d&; A.. AdEAdxIAL . Adxn
then the number of the little masses in W is given by [5]
[ UX, E) dvam,
A

If there is no source in W effecting the little masses as is known
from mechanies [4], [5]

n oU n oU
U =3 5 2 - 3 Digh o —o. 7
i e ppey E St 23 @

We can write (7) simply in the form
dU = &U,; - Tl &&5Uz =0 (8)

where dU is the exact differential of the density function with respect
to the metric g == [gi;] along the corresponding geodesic path.

Now we explain the physical meaning of (8):

All corresponding orbits to the Hamiltonian H at all points of a
certain set at M are called the pipe of rays.

Theorem 3.1. (Liouville Thecrem): The number of the little
masses at each section of two parallel sections of pipe of rays of an
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n-dimensional Riemannian manifold is independent from these sec-

tions [5].

The body bounded by these sections is the domain W in QxTM.

If there are sources in W of density F, the equation (8) turns into

dU = §;U,; — My &5 Us =F

see [4] and [5].

)

(Generalized Liouville Theorem). The following

Theorem 3.2.
connection exists between the domain W and the density of sources F:
| FAW = [ UdF,- [ UdF,. (10)
W 2 Fy
/azﬁ’/‘» [ w
. i
f"‘f‘ " .‘;,g" &
e
i P { &1 é
Lo ! lYs
ﬁ’ ?‘ i /‘/‘ { 1
} Fl e { i \
¢ $ i
oo \

J.._.m.\ |

s
[ 43-

—

(see the figure)
Proof At first we consider the case corresponding to F =0.
In this case from (10) we obtain
[ UdF, = [ UdF;.
F, F;
This is the Liouville theorem which means that the number of
the little masses on the arbitrary sections parallel to each other is the

same.
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The difference of the numbers of the little masses passing through
the parallel sections F; and F, is

[ FAW
.

which is dependent on the distance s between ¥, and F,. We have

considered the fact that integral of U(X, -é) vanishes on the side
surface of W while we obtain the formula (10). This result follows
from the fact that the side surface of W is composed from the geodesic
curves and the normal of the side surface of W is orthogonal to geodesic
curves.

If W is a cylindirical domain it is known that

ou . _
[——dW = [ UnxX)dS
w X oW
= | UdF, - | UdF,
:E\‘Z ]:“V

where n,2(X) is the projection of the outher normal of the surface

oW on Oxn,

Since the outher normal of the side surface of W is orthogonal
to geodesic curve on the side surface, the projection onto the side sur-
face of the outer normal vanishes, therefore, the integral over this
side surface vanishes [4].

Now we present the relation between the theorems of Holditch
and Liouville.

The area of | in Liouville Theorem corresponds to the area bo-
unded by v in Holditch theorem and the area of F, corresponds to
the area bounded by v, which is the orbit of X.

The difference between these two areas, in generalized Liouville
Theorem, is

| FdW

A%
which corresponds to

f-1f, =mab
in Holditch Theorem.
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The independence of [ FAW, in (10), from the curve vy which is

w
the boundary of F,, corresponds to the independence of f-f, from the
curve y in the Holditch Theorem.

Since the Euclidean metric is gij, == 8ij, then the Hamiltonian

H(X, _é) in generalized Liouville Theorem is given as

H(X, %) = 5 &
n o

The function F (the sources) corresponds to
d {3 (xydxp - xadxy)}

in Fuclidean metric {1].

REFERENCES

[11 MULLER, H.R., Kinematik Dersleri, T.C. Ankara Universitesi Fen Fakiiltesi Yaymlar,
Ankara, Turkiye.

2] A. KH. AMIiROV., H.H. HACISALIHOGLU., Integral Geometry for Differential Forms
Russian Math. Dokl (1995).

[31 DUBROVIN, B.A., NOVIKOV, S.P., and FOMENKO, A.T., Modern Geometry, Nauka,
Moscow, 1979, English Transl., Parts I, II, Springer-Verlag, 1984, 1985.

[4] ALEKSEEV, B.V. Matematicheskaya Kinetika Reagirutyshikh Gazov, (In Russian)
Moscow, Nauka, 1982.

[5] BESSE, A., Manifold Witk Clesed Geodesics, Springer, Berlin, 1978.

[6] ROMANOYV, V.G., Inverse Problems of Mathematical Physies, Nauka, Moscow 1984, English
Trans. VNV Sci. Press, Vtrecht, 1987.





