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ABSTRACT

In this paper, spacelike ruled surfaces, central ponits, curves of striction, developable
spacelike ruled surfaces and some theorems related to them are obtained in three dimensional
Minkowski space.

1. INTRODUCTION

A surface in 3-dimensional Minkowski space ]Rf= (R3,dx? +dy?- dz?)
is called a spacelike surface if the induced metric tensor on the surface is
a positive definite Riemannian metric. A ruled surface is a surface swept
out by a straight line ¢ moving along a curve o. The various positions of
the generating line ¢ are called the rulings of the surface. Such a surface,
thus, has a parametrization in the form

P(tv) = at) + VZ(1)

where we call o the base curve, Z the director vector of ¢. Alternatively,
we may visualize Z as a vector field on «. Frequently, it is necessary to
restrict v to some interval, so the rulings may not be the entire straight
lines. If the tangent plane is constant along a fixed ruling, then the ruled
surface is called a developable surface. The remaining ruled surfaces are
called skew surfaces. If there exists a common perpendicular to two
preceding rulings in the skew surface, then the foot of the common
perpendicular on the main rulings is called central point. The locus of the
central points is called the curve of striction. If there is a curve which
meets perpendicularly to each one of the rulings, then this curve is called
an orthogonal trajectory of a ruled surface (Noel JH., 1974). If the
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tangent vector at every point of a given curve ianj is a spacelike vector,
then the given curve is called a spacelike curve (O’Neill, 1983). In IRI,
we define the exterior product of vectors by W AV =—(ii dx A dy A dz)*,
where i, denotes the interior product with respect to W and # stands for
the operation of raising indices by the metric dx? + dy® - dz2. Here we
choose the mines sign so that d_ A By = d, holds.

2. SPACELIKE RULED SURFACES
Let

ol - Ri
t = a®) = (a0, 0,0, am),

be a differentiable spacelike curve parameterized by arc-lenght in
Minkowski 3-space where I is an open interval in IR containing the
origin. The tangent vector field of o is denoted by T.

A spacelike straight line,

&R — lR? ‘
v = V) = (o) + va (), at) + va, ), a,(t) + va, (1)

can be chosen so that the director vector of ¢ and the tangent vector of
o are linearly independent at every point of the curve o where o (t) € R
for 1 €£i £ 3, are the components of the director vector at a point o(f).

If ¢ moves along o then a ruled surface given by the parametrization

¢ I xR —>IR?
(tVv) = @tv) = (o () + va (1), 0,(t) + va,(1), o, (t) + va ) (2.1

can be obtained in the Minkowski 3-space. The ruled surface is denoted
by M. An orthonormal basis of y(M), {T,X} can be obtained; thus, N =
TAXisa normal of M. Hence, {T, X, N} is an orthonormal frame
field along o in ]R Let D be Levi-Civita conncctlon on IR We will
obtain variation of thls system along o in ]R We define thc functions
a, b, ¢c by
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[
I

{O,T , X) = TKT , X)] - (T , DX) = «T , D;X)
~D,T , Ny = -TKT , N)] + (T , D,N) = (T , D_N)
¢ = DT, N)=-TKT , N)] + (X , DN} = (X , D,N)

o
H

where

DT = aX + bN
D X = -aT + cN QY
DN = bT + cX.

The matrix given by

0Oab
B=}1a0c
bcoO
is a skew-adjoint matrix in the sense that BT = —eBe, where
100
E=1010/{-
00-1

For the ruled surface M given by the parametrization (2.1) we have

E=2 99y _ (1 av’- &, F=(%2,%9=0,G = o2 99y,
ot ot ot v ov ov

The induced metric on the ruled surface is positive definite when E

is positive. min{ 1 _1 and max {—1—— ,—1_\ are roots of E where
a-c¢c a+¢c¢ a-c a+¢
a2 - = (DX , D X).

1) If DX is the specelike vector field, then

—'oo<v<mjnL,—1- or max -—1—, 1 <V < oo,
a—¢c a+c¢ a—-¢ a+¢C

2) If DX is the timelike vector filed, then

min{—l—,—l—-> < v < max{ 1 ,—1——}.
a-Cc a+c¢ a-c a+c¢

3
3) Let DX be the null vector field on IRI.

fa>0 , thenv<l b andifa<O,thenv>L.
2a 2a
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Therefore, in all three cases above, the domain of parameter v which
is defined in the parametrization of the ruled surface, is not whole of R
but is one of the above intervals. Let J denote the domain of v. If we
fix the parameter v in ], then the curve

¢ Ix{v} - M
tv) — (pv(t,v) = a(t) + vX(t)

can be obtained in M. The tangent vector field of this curve is
A =(1 - av)T + cvN.

Theorem 2.1. Let M be a spacelike ruled surface. The tangent
planes along a ruling coincide if and only if ¢ = 0.

Proof. It can be seen easily.

Corollary 2.1. The spacelike ruled surface is developable if and only
if c=0.

Lemma 2.1. ¢ = det(T , X , D_X) for a spacelike ruled surface.

3. POSITION VECTOR OF A CENTRAL POINT

If the distance, between the central point and the base curve of a
spacelike ruled surface which is a skew spacelike surface, is U then the
position vector T(t) can be expressed as

otn) = at) + u X(

where oft) is the position vector of the base curve and X(t) is the
directed vector belonging to the ruling. The parameter u can be expressed
in terms of the position vector of the base curve and directed vector of
the ruling. Given three preceding rulings of a spacelike ruled surface such
that the first one is X(t), and the second oné is X() + dX(t). Let P, P’
and Q, Q" be the feet on the rulings of common perpendicular to two
preceding rulings. The common perpendicular to X(t) and X(t) + dX(t) is
the multiple X(t) A dX(t).



SPACELIKE RULED SURFACES 87

’[_')hc vector ITQ coincides the vector PP’ in the limiting position,
and PQ will be tangent vector of the curve of striction. Thus, we have
DX, l%) = 0. Therefore, we get

g=. DX 4

T PX. DX 2o

Hence, the curve of striction is

— (T, DX
at) = o) - ——L— X
DX .DX 3.1

u = a i i QE =
where (DX , D X) # 0.u T is constant since (dt , X) =0.
Theorem 3.1. The curve of striction & does not depend on the

choice of the base curve o for the skew spacelike surface.

Proof. Let B be another base curve of the skew spacelike surface;
that is, let, for all (t , v),

ot , v) = a(t) + vX(t) = Bt + sX(®
for some function s = s(v). Then, from (3.1) we obtain
dp
T -
M- 2%
®X DX

since (X , D X) = 0. This proves our claim.

aw - B = a® - PO - Xt = 0

Theorem 3.2. Let M be a skew spacelike surface. @t , v,) on the
ruling through the point o(t) is central point if and only if D X is a
normal vector of the tangent plane at @(t , Vv,).

Proof. Let D X be a normal of the tangent plane at ¢t , v)) on the

ruling through o(t). Thus (D X , A) = 0. Hence, we get Vo= 2a 5
Therefore, @(t , v,) is the central point of M. a-c

Conversely, let o(t , v)) be central point on the ruling through o(t).
Then, we have (D X , A) = -a + @@ - chv = 0.

On the other hand, (DTX , X) = 0. Therefore, D X is a normal
vector of the tangent plane at @(t , v,).
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DX is a timelike vector at the central point as D X is a
normal vector of the tangent plane at the central point. Thus, (D, X D_X)

=a’-c? < 0.

Theorem 3.3. The curve of striction

o) = at) + Za = X(®)
a —¢C

is a spacelike curve in a skew spacelike surface.

Proof. It can be shown that the tangent vector field of the curve of
striction is a spacelike vector field. The tangent vector field of & is

<i_<—i=T+(2a2 D,X.

dt al_c

Thus, we have (%f— , %} > 0 since ¢’ - a® > 0.

3
Theorem 3.4. Assume that M is a spacelike ruled surface in R, .

There exists unique orthogonal trajectory of M through each point of M.
Proof. Let

<p:IxJ~—>IRf
t,v) = o, v) = a®) + vZ({),

be a parametrization of M. An orthogonal trajectory of M is

B: 1 > M
s = B(s) = als) + F()Z(s)

where (Z(s) , Z(s)) = 1. We may assume that I — I. Since
@9 7y >0,
ds
we obtain
f(s) =—J(M,Z(s))ds+h,
ds
where h is a real constant. We get h = f(sy) ~ F(s) where

F(s) = — f(ﬂﬂ , Z(s)) ds .
ds
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Therefore, the orthogonal trajectory of M through P is unique. Thus,
we have I = I since the orthogonal trajectory of M meets cach ruling.

Theorem 3.5. Suppose that M is skew spacelike surface. The longest
distance between two rulings is measured only by the curve of striction
which is one of the orthogonal trajectories through these two rulings.

Proof. Fixing two rulings say for t < t,, we compute the length j(v)
of an orthogonal trajectory between these two rulings by

ty ty 2 172
i) = j Al de = j YKA , A) dt = ] [(az—cz)vz—Zav+ 1] dt.
i} )

L
1

Let us find the value of s which maximizes j(v), and we get a_Ja(ll = 0.
a v

Thus, we have v= > This completes the proof.
a—c ‘
Example 1. (The helicoid of the st kind). This is a spacelike ruled

surface parametrized by,

2 2 . 2 2
(p(t,v)=( X —v)cos‘VK—Tt,( K. —v)sm K—1t,—t—t},
7 2

2 2 2 2
K1 K -1 K -1

(Waestijne, 1990), where x and T are the curvature and the torsion of o
respectively, and || > [t]. The base curve o is a spacelike curve since

(%% , %%> =1, and each ruling is a spacelike line.

Now, v<min: -1 1

T+K’1:_1(

or v>max -1 ,—-1— since D, X is
T+K T—K

a specelike vector field. Furthermore, det(T , X , D X) = 7. The leicoid
of the 1st kind is developable if and only if T = O (Fig. ().
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Example 2. (The helicoid of the 2nd kind). This is a spacelike ruled

surface parametrized by,

7 2
KZ—V shVK -t t],
T

)
ot,v)=|{{—X——vichVx-1t, t,
2 2 2 2
K- K~

K-T

(Woestijne, 1990), where [t] > [k|. The base curve o is a spacelike curve,

and each ruling is a spacelike line. Now,

min -1 , -1 < v<max< -1 s -1
T-%k T+KX T~k T+X
since DTX is a timelike vector field. The line of striction is
alt) = ot) + zK > X() ,

K-71
and o(t) is a spacelike curve. Furthermore, det(T , X , D X) = —t. The

helicoid of the 2nd kind is developable if and only if T = 0 (Fig. (2)).

Fig. (2)

Example 3. (The conjugate surface of Enneper of the 2nd kind).

This is a spacelike ruled surface parametrized by,
2t3 t
= t~1<vt,52—+'cvt ,

—

KT
t,V)=|——+vV,
o, v) 5

(Woestijne, 1990), where [k} = |t| # 0. The base curve o is a spacelike
curve, and each ruling is a spacelike line. Now

v<-L ¥ x>0
2k

v>-L1L K <0,
2K
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since DTX is the null vector field. Furthermore, det(T , X , DTX) = 1.
The conjugate surface of Enneper of the 2nd kind is developable if and
only if © = 0 (Fig. 3)).

Example 4. This is a spacelike ruled surface paremetrized by,
ot ,v) =a) + vX®) = (0 ,t,0) + v(t,0,0),

(Woestijne, 1990). The base curve is a spacelike curve, and each ruling is
a spacelike line. This ruled surface is developable.
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