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ABSTRACT

A family of univalent harmonic functions is studied from the point of geometric
function theory. This class consists of mappings of the open unit disk onto the entire
complex plane except for two infinite slits along the real axis with a normalization at the
origin, Extreme points are determined, and sharp estimates for Fourier coefficients and
distortion theorems are given.

1. INTRODUCTION

Clunie and Sheil-Small [1] studied the class Sy of all harmonic,
complex-valued, sense preserving univalent mappings f defined on the
open unit disk U which are normalized by f(0)=0, f (0)=1. Such functions
admit the representation f=h+g where h(z) = z+a222+... and g(z)=blz+b222+...
are analytic in U. f is locally one-to-one and sense preserving if and only
if |g'(2)l < |h’'(2)| for z is in U. This implies that bl < 1. Therefore £, =

(f-l;l_t)/(l-lbllz) is also in S, and one may restrict attention to the subclass
0
Sy={fe S £© =0).

If f = u+iv is harmonic in U with f(0)=0, we let F and G be
analytic in U and satisfy F(0)=G(0)=0, u=Re F and v=Re G. If we Iet
h=(F+iG)/2 and g=(F-iG)/2 then h and g are analytic in U and f=h+g.

In contrast to conformal mappings, harmonic mappings are not
essentially determined by their image domains. Therefore, it is natural to
study the class SH(U,D¢) of harmonic, sense preserving and univalent
mappings of U onto another domain D =¢-(-oo,a¢]u[b s+o0) normalized by
f0) = 0, £(0) = 0 and £0) = 1, where ¢ is a fixed parameter (0<¢<m),
and the constants 3y b¢ (a¢< 0 < b,) are determined as in Theorem 1. If
$—0, our results will give those of Livingston [2].
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2. THE CLASS SH(U,D¢)

Let P be a class of p(z), which are apalytic in U with p(0)=1 and
Re p(z)>0 for z in U.

Lemma 1. If p(z) is in P, then, for O<¢<r,

1 2
~——1—(1+L)chJ_&§£@d_C_

2(1+cosd) sind . (1-2cos<1>C+C2)2 ®
<1 __qa--%
2(1-cosdy) sing
1 2
___I_‘(BE_-I)SRCJ‘% (2)
2(1+cos¢) sing ; (1-200s¢C+C2)2
< 1L (0 Ly
2(1-cosd) sind
(20-m)cos)-25in+T  _ o f _0paL @
2sin’0 ] (1-2cosq>C+C2)2

< (n-2¢)cosO+2sing+1
2sin’0

Proof. We set w=¢'®, O<¢<m. We estimate the integral
1 2 1 2
I=Ref—(1—-%§)d—§2-=-j——zl——2ch(-t)dt. @
o (1-2cos¢C+C) o (+wo (1+w)
It is well known that for -1<t<1

(1-t)/(A+t)<Re p(O<(1-+t)/(1-]t]). &)

Substituting (5) into (4), we obtain

1 2 1 2
. 12't _21_Ldtg1g-f____12't 2%dt.
D oawy awy 1 L awy (e
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Since

l-¢

K i0
log (1 ) = i(¢-wr) and log (1+e ) = i$ ,

inequality (1) is readily obtained.
(2) can be proved in the same way. From (1) and (2), we have (3).

Remark. The expression on the left hand side of (1) tends to -1/2
as ¢—0" while the expression on the right hand side of (1) tends to -1/6
as ¢—0*. These bounds have been given by Livingston [2,Lemma 1].
Moreover, the upper and lower bounds in (3) have a minimum for ¢=n/2.

We now let &F N be the class of functions f which have the form

f(z) = Re f A+ im —L—
o (1-2cosd Q.,.C) 1-2cost z+2

where peP and ¢ is a fixed parameter in the interval (0,%).

Theorem 1. If fe ¥ , then f is harmonic, sense preserving and
univalent in U and f(U) is convex in the direction of the real axis with
f(U)cD¢.

Proof. Let f=h+g=Re F+iRe G. Then, we have from (6) that

Z 2
Fo = [ — ot wa o) - —ie— @
o (1-2cos¢pl+{ )2 1-2cos¢ z+z

for z in U. Since F'(2)/iG’(z)=p(z) and

£@ _ F@)-iG'@) _ p@-l
W(z) F@+G'(z p@+l

it follows that |g'(z)l</h’(z)]. Thus, f is locally one to one and sense
preserving. Also,
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h(2)-g@) = i6@) = —2—
1-2cos¢ z+z

is convex in the direction of the real axis. By a thecorem of Clunie and
Sheil-Small [1, Theorem 5.3], f is univalent and f(U) is convex in the
direction of the real axis.

Moreover, f(z) is real if and only if z is real. Since Re p(z)>0, it
follows that f(r)=Re F(r) is increasing on (-1,1) and f(r) is bounded on
(-1,1) by the Lemma 1 for a fixed ¢, O<¢<m. Thus, lim_ f{r) and lim £r)

r—> -1 r—1
exists and equals to 3, and b¢, respectively. Thus, f(U) does not contain

the interval (-oo,a¢]u[b¢,oo). Therefore, f(U)cD¢.

Theorem 2. S (UD q>)<:‘;’F o

Proof. Let fe SH(U,D¢). Since f(U)=Dq> is convex in the direction of
real axis for a fixed ¢, by the theorem, given by Clunie and Sheil-Small
[1,Theorem 5.3], h-g=iG is univalent and convex in the direction of real
axis.

Let h(z)=z+a,2’+... and g(z)=b,2+... Then, iG(z)=h(z)-g(z)=z+... Since
f(U)=D¢, Re G(z)=Im f(z) is 0 on the boundary of U. Since G is convex
in the direction of the imaginary axis, it follows that G(U) is T slit along
two infinite rays on the real axis for ¢e(0,m). Also, since iG(0)=iG(0)-1=0,
it follows that iG(z) is a member of the class S of functions f which are
analytic and univalent in U and normalized by f(0)=f"(0)-1=0. Thus, there
is a fixed ¢, O<d<m, such that

iG(2) < k(2 = ——l——;
1-2cosp z+z"

where < denotes subordination. Since k¢eS, it follows that iG=k¢. Hence,
Im f(r)=Re G()=0 for -1<r<1.

Now, if f=h+g, then h’-g’=iG" and

hW+g' _ l+g'/h’
hl_gl I-g,/h,

Since [g'(2)[<Ih’(z)|, for z in U, it follows that
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(hW+g)/(h'-g’) = p,
where peP. Thus, h'+g’ = (h'-g")p = iGp
z z 2
F(z) = h@z}+g(2) = j iG'(OpOd = J ———1—C——2—2 p©dC .
p o (1-2cos¢C+C)

Thus f(z)=Re F(z)+iRe G(z) belongs to &F o

Theorem 3. S, (UD <|>)=$ o

Proof. Let fe F o have the form (4), and let r be a sequence with
O<r <1 and lim r=1. Let p,(z)=p(r z), and denote by f (z) the function
obtained from (4) by replacing p(z) with p,(z). We claim that f is in
SH(U,D¢). To see this, let

Z 2
Ro = [ —poa.
o (1-2cos¢l+L)

There exists 8>0, i=12, so that we may write for |z-w|<d,
Pa@=P, (WD (W) (Z-W)+[p" (W) 2] (- W) +...

where w =¢'® and w,=¢™®. Then, for lz-w <8,

i}

F () L1+ 1L 1 p0

2 2
w-1 @w,) Wl (@zw)

W) P, wv)

wi-zw)  GaDEw,)

+q@ .,

where ql(z) is analytic in Iz-wll<81. Let Di={z:|z-wi|<8i}mU, i=12. If
1-81<ci<1, then, for z in Di,

z

F@ - F() = J F (0L . ®

0

where the path of integration is in Di. Equation (8) gives for zeDl.
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pn(wl) - p,n(wl)
Aw)ew) 1w

F(z) = + log(z-w)) + q(@)

where

q@ = 2 }»j(z-wl)J + 2 pj(z-wz)] + ﬁ + a log (z-w,)
= =0 2
is analytic in D1 and arg(z-wl)e 0,m). Thus, for ze Dv Fn has the form

F@ = [z o + m log(z-w )}

1
and then
Re f (z) = Re F (2)

= |Re -K_
W

+ Re(m) ]nlz-wll-Im(m)arg(z—wl)-i-Re q(z)]
1

Now, we wish to prove that f cannot have a nonreal finite cluster
point at z=w,. To see this, supposc that Z=w, +pe % is in U with p>0
and lim p—O We claim that [Re f (z )]0 as n—-)oo Indeed,
\Re(ke‘“"j)+ije(m)1n(pj)
| P;

Re fn(zj) = - Im(m)arg(zj-wl)-i-Re q(z%

approaches to +oo as n approaches to +oo. Similarly, we have the same
argument for D,. Thus, f has no finite nonreal cluster points at z=w, and
z=w,. At all other points of |z]=1, the finite cluster points of f are real.
Since fn(U)cD¢, and

lim f() = a, lim f () = b

r—-1 =1

it follows that f (U)-D for a fixed ¢.

Thus, f is in SH(U,D) and hence, f is in S (U,Dq,) Since ?.F
closcd under uniform lmnts on compact subsets of U, it follows that
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3. EXTREME POINTS OF & o
If peP, then it is known that
_ 14z
pz) = J T—?\—Z_ dum) , ©)
k=t

where N is a probability measure on X={n:m|=1}. Thus, if f is in &F o
there is a probability measure u on X such that

fz) = [Re j K, (zdp(m)+ilm kq,(z)}

mni=1
and
4 2
o (1-2cos¢ G+L) (1O
Wz
Awmlog(1-zwHAW n)log(1-wz+B(w.1) Ty +
2
BWm) IvaZZ + Cw log(1Mz) ; if M # ww
= i log(l'm) __cospwz iwz s ifn=w
BE 1-vz L2 . 2
4sin ¢ 2sin ¢(1-wz)  2sind(1-wz)
i3 log(i-v_vz ) C(Z)sq)wz + iwz ~ fn=w
4sin” ¢ Y2 2sin'o(1-wz)  2sing(1-wz)
for ¢e(0,n)
. 2 2
w=e’ , A(w) = ___2._1]23"__ , Bwm) = _(d+mww
(1nw) (1-w) (1nwy1-w)
2
and cown) = ﬂi_ﬂ)_z_ _
(1-mw) (I-mw)

The extreme points of &F o AT€ readily obtained by making use of the
consequence observed by Szapiel [3].
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Lemma 2. {3]. Suppose X is a convex linear Hausdorff space, ®: X—T
is homogeneous, ce T\{0} and A is a compact convex subset of ®'(c).
Let y:A—R be affine continuous with Oz y(A) and let B={a/y(a):ac A}.
Then

1) B is compact convex,
2) The map a—a/y(a) is a homeomorphism of A onto B,
3) Eg={a/y(a)acE,}, where E, shows the set of all extreme points
of P. .
Theorem 4. The cxtreme points of F o TS

f@=[Re kyzn)+im k)] , Mi=1.

Proof. We apply Lemma 2 with

z 2
Q@ = R [ (1-§)p© dac| + ,n{ z }
22 2

(1-2cosd £+C) 1-2cos¢ z+z

0

A={Q,peP} , ®(D=1(0)=1 , c=1 and W(Q)=1

Then &F 4>=B is convex. The map Qp—)p is a lincar homeomorphism
between A and P. E={(1+nz)/(1-z):m|=1}. Thus, the proof of theorem is
completed.

4. APPLICATIONS
In this section, we will use our knowledge of extreme points to

solve some extremal problems on SH(U,D¢).

Theorem 5. Let f=h+ge S,(UD, ¢). If h(z) = Z+2 anzn and g(z) = 2 bnzn ,
then, for O<d<m, =2 n=2

[sin(k®)} < (n+1)(2n+1)

<l3k
la| < gf <ino . (11)
bl<l ’ik lsin(k)l _ (n-1)(2n-1) (12)
TS sin¢ 6

and
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lla,l - 1,{ < % <n. (13)

Equality in (11), (12) and (13) occours for the function
fz)=[Re k2, 0y 4+ilm k(@] .

Proof, In order to prove validity of (11), (12) and (13), we will make
use of the extreme points of S (U,D) Let (z) {Re k (z,n)+1Im k (z)]
Also, F(z)= ¢(Z’n) and G(z)--lz/(l 2cos¢ z+7). Thus

hz) = L [Fewice) = L kenk @) = 243, 27"
2 2 n=2
and .
_ 1 . _ _ n
80 = - [F@}GE) = % [k zn)k,@)] = z% b,z

if nzet’?, for w=c'%, then we have

—_Z -y 7
Awyawd = 1w aw? ="
(+nww iwnzn N (LW W' i 0 n

A-qw)(l-w) = (1w 1w =

_ 21](1-1]2) i _ﬂ_n_ n W-W 1
n E
(l—nw) (amw ) =l =l ow-w

2 oo 2
h(Z) - % [ -21']W 2 w n 21']W W n

+

Therefore,
n-2

L1 { oaw' oW , (nww”
2 naw) -y Aawawd)  Qnwi-w)
e maam’ | W
A Xw?)  nawyaw’y  ww'
1 [t o e e O e )
2 n(w-w Y(1-mwy (Lqw)’
2(w-w")2n(w"+l nl‘
(v Y1em L )f

2 W +2T|Z u2k+l_n 2 n2k_n +T] n (i wn-2k+l_ni wm?_k)
k=1 + k=1 k=0

1wy (tnw')’ nANw(nw )

=S
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n n n
Yy nk+l(w""k+wk'")-nz wWExmy w! nnY, wX
k=1 k=0

k=1

=

(l-nw)(l-nw'l)

= % [n"-1+2n"'2(w+w_l)+3nn_3(w2+w'2+l)t- it

1- 31
W e e +?»)]

where A=w+w! if n is even, A=1 if n is odd. And so for n=2,3,...

a = % ww') Z(H.km( W) = 2 m1n  sin(md).

sm¢ m=1

Thus,

ja) < —L— ¥ misin(me)| <

n sind po

(n+1)(2n+1)
6

with equality for n=c*®

Similarly, for n=2,3,..., we have

=1 (ww ) 2 -kn ( MW = z m ' sin(m)
% =n s1n¢ el
from which
i
bl<—1 3 misinm) < &0
" n sind pm 6

with equality for n=e*?

Remark. If ¢—0, our results in the Theorem 5 give those of
Livingston [2, Theorem 5].

Theorem 6. If f=h+g is in S(UD ¢), then

1+|z|

2
@ < and () < AL (14)

5 z
(1-1z)) (1-zh
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Equality in (14) occurs for the functions
f(z)=[Re k(z.e**)+ilm k(z)]

Proof. We need only to consider extreme points f (z) In this case
for nze?, w=e, it is concluded that

b)) = Lk Gk @)

2

= L | Awmlog(1-w ' zpAw ' mlog(L-wa)+B(win) ——
1wz

N

+ Bw ,n) —ri-C(w,n)log(l-nz)+
1- (w+w )z+z

After having straightforward computations, we have

2

hl(Z) - — 1z S
(-w z) (I-wz) (12
2
Wl = | ———2
|(1-W' z) (1-wz) (l-nz)l
and
) 2
W) < L 12 |
el aw's? awn| )’

Similarly, for n=e*?®, we obtain

212
A-w'z (-wz) (1-2)

2@ = 1 kenk@l , £0) =
and

o < ;L | wd | _w (1+xz|>

el aw's? awsy] (L)
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