(Received Aug 22, 1994; Accepted March 21, 1995)

THE SEIFERT - VAN KAMPEN THEOREM FOR THE GROUP OF GLOBAL SECTIONS

SABAHATTIN BALCI

Department of Math. Faculty of Sci. University of Ankara. 06100 Tandoğan-Ankara-TURKEY

SUMMARY

Let X be the union of the subspaces U_1 and U_2 that are both open, path connected, $U_{12} = U_1 \cap U_2 \neq \varnothing$ and U_{12} is also path connected. In this paper, We first contruct the sheaf H of the fundamental groups of a path connected space and give the characteristic features of H. Then, the homomorphisms and global sections of the sheaf H are explored. Finally it is proved that if the groups of global sections $\Gamma(U_1, H_1) = \langle S; R \rangle$, $\Gamma(U_1, H_1) = \langle S_1; R_1 \rangle$ and $\Gamma(U_2, H_2) = \langle S_2; R_2 \rangle$ are given, then the group $\Gamma(X, H)$ is isomorphic to the group defined by the generators $S_2 \cup S_2$ and the relations $S_2 \cup S_2$. As a result of this, the sheaf H, especially the fundamental group π_1 (X, x) was easily calculated for any $x \in X$.

1. INTRODUCTION

Let X be a path connected space and H_x be any fundamental group of X based for any $x \in X$, that is $H_x = \pi_1(X, x)$. Let X = (X, c) be a pointed topological space, for an arbitrary fixed point $c \in X$. Also, let $H = \bigvee_{x \in X} H_x$. H is a set over X and the mapping $\phi \colon H \to X$ defined by $\phi(\sigma_x) = \phi([\alpha]_x) = x$, for any $\sigma_x = [\alpha]_x \in H_x \subset H$, is onto.

We introduce a topology on H as follows:

Let $W \subset X$ be an open set. Define a mapping s: $W \to H$ such that $s(x) = [(\gamma^{-1} \alpha) \gamma]_x$ for each $x \in W$, where $[\alpha]_c = \sigma_c \in H_c$ is any element and $[\gamma]$ is an arbitrary fixed homotopy class defines an isomorphism between H_x and H_c . Then, the change of s depends on only the change of $\sigma_c = [\alpha]_c$. Furthermore, φ os $= 1_w$. Let us denote the totality of the mappings s defined on W by $\Gamma(W, H)$.

If B is a base for X, then $B^* = \{s(W): W \in B, s \in \Gamma(W, H)\}$ is a base for H. The mappings φ and s are continuous in this topology.

Moreover, φ is a locally topological mapping. Then (H, φ) is a sheaf over X. (H, φ) (or only H) is called "The Sheaf of the Fundamental Groups" over X [1]. For any open set $W \subset X$, an element s of $\Gamma(W, H)$ is called a section of the sheaf H over W. The set $\Gamma(W, H)$ is a group with the pointwise operation of multiplication. Thus, H is a sheaf of groups over X [2]. Furthermore, the group $H_x = \pi_1$ (X, x) is called the stalk of the sheaf H for any $x \in X$.

- 2. CHARACTERISTIC FEATURES OF H [2].
- 2.1. Let $W \subset X$ be an open set. Then, any section over W can be extended to a global section over X. Furthermore, $\Gamma(W,H) \,=\, \{s \mid W\colon s \in \Gamma(X,H)\} \,=\, \Gamma(X,H) \mid W.$
- 2.2. Any two stalks of H are isomorphic with each other.
- 2.3. Let W_1 , $W_2 \subset X$ be any two open sets, $s_1 \in \Gamma(W_1, H)$ and $s_2 \in \Gamma(W_2, H)$. If $s_1(x_0) = s_2(x_0)$ for any point $x_0 \in W_1 \cap W_2$ then $s_1 = s_2$ over the whole $W_1 \cap W_2$.
- 2.4. Let $W \subset X$ be an open set and s_1 , $s_2 \in \Gamma(W, H)$.

 If $s_1(x_0) = s_2(x_0)$ for any point $x_0 \in W$, then $s_1 = s_2$ over the whole W.
- 2.5. To each point $\sigma_x \in H_x \subset H$, there uniquely corresponds a secsections $s \in \Gamma(W, H)$ such that $s(x) = \sigma_x$. Hence, $H_x \cong \Gamma(W, H)$. In particular, $H_x \cong \Gamma(X, H)$.
- 2.6. Let $x \in X$ be any point and W = W(x) be any open set. Then, $\phi^{-1}(W) = \bigvee_{i \in I} s_i(W), s_i \in \Gamma(W, H)$ and $\phi \mid s_i(W) : s_i(W) \to W$ is a topological mapping for every $i \in I$. Hence, W = W(x) is evenly eovered by ϕ . Thus, ϕ is a cover projection and (H, ϕ) is a covering space of X. Moreover (H, ϕ) is regular, because the group T of cover transformations of H is isomorphic to the group H_x , that is T is transitive on H_x [2].

3. HOMOMORPHISMS AND THE GROUP $\Gamma(X,\,H)$

Let X_1 , X_2 be topological spaces and H_1 , H_2 be the corresponding sheaves, respectively. We begin by giving the following definition.

Definition 3.1. Let $f^* \colon H_1 \to H_2$ be a mapping. If f^* is continuous, a homomorphism on each stalk of H_1 and maps every stalk of H_1 into a stalk of H_2 , then it is called a sheaf homomorphism.

Let $f: X_1 \to X_2$ be a continuous mapping and $f^*: H_1 \to H_2$ be a sheaf homomorphism. If $f^*(H_1)_{X_1} \subset (H_2)_{f(X_1)}$ for each $X_1 \in X_1$, then f^* is (called) a stalk preserving mapping with respect to f.

Definition 3.2. Let f^* : $H_1 \rightarrow H_2$ be a sheaf homomorphism. If f^* is also a bijection, then f^* is called a sheaf isomorphism.

Theorem 3.1. Let $f: X_1 \to X_2$ be a continuous mapping. Then there is a stalk preserving sheaf homomorphism $f^*: H_1 \to H_2$ with respect to f.

Proof: Let $x_1 \in X_1$ be any point and α be a closed path based at x_1 . Then f o α is a closed path with base point $f(x_1) = x_2$ in X_2 and $[fo\alpha] \in (H_2)x_2$. On the other hand, if α_1 and α_2 are closed paths at x_1 in X_1 such that $\alpha_1 \backsim \alpha_2$, then $fo\alpha_1 \backsim fo\alpha_2$. Thus, we can define the mapping f^* : $H_1 \rightarrow H_2$ such that $f^*(\sigma x_1) = f^*([\alpha]x_1) = [fo\alpha]_{f(x_1)=x_2}$ for any $[\alpha]x_1 = \sigma_X \in (H_1)x_1 \subset H_1$.

It is easily seen that the mapping f* is well-defined, stalk preserving with respect to f and homomorphism on each stalk [1].

To complete the proof, let us show that f^* is continuous. Let $U_2 \subset f^*$ $(H_1) \subset H_2$ be an open set. Without lost of generality, we assume that $U_2 = s^2(W_2)$, where $W_2 \subset X_2$ is an open set and $s^2 \in \Gamma(W_2,\,H_2)$. Thus, $\phi_2(U_2) = \phi_2$ $(s^2(W_2)) = W_2$. Since f is continuous, $f^{-1}(W_2) = W_1 \subset X_1$ is an open set. Now let $\sigma_{X_2} \in U_2$ be an element. Then, there exists at least one element $\sigma_{X_1} \in U_1 = f^{*-1}(U_2)$ such that f^* $(\sigma_{X_1}) = \sigma_{X_2}$. Since $\phi_1(\sigma_{X_1}) = x_1 \in W_1$, there is a section $s^1 \in \Gamma(W_1,\,H_1)$ such that $s^1(x_1) = \sigma_{X_1}$ and $s^1(W_1) \subset H_1$ is an open. Also $s^1(W_1) \subset U_1$. It is easily seen that $U = \bigcup_{i \in I} s_i^{-1}(W_i)$. Therefore,

 $U_1 \subset H_1$ is an open set, that is f^* is a continuous mapping.

Now, let $\mathcal L$ denote the category of connected topological spaces and continuous mappings and $\mathcal D$ denote the category of sheaves and sheaf homomorphisms. Let us define a mapping $F\colon \mathcal L\to \mathcal D$ such that $F(f)=f^*\colon H_1\to H_2$ for any continuous mapping (morphism) $f\colon X_1\to X_2$. Then,

- 1. If $f=1_x$, then $F(1_x)=1_{F(x)}$, since $(1_x)^*=[1_xo\alpha]=[\alpha]$ for any $\sigma_x=[\alpha]_x\in H_x$.
- 2. If $f_1 \colon X_1 \to X_2$ and $f_2 \colon X_2 \to X_3$ are any two morphisms, then f_2 o $f_1 = f_2 f_1 \colon X_1 \to X_3$ is also a morphism and $F(f_2 f_1) = (f_2 f_1)^* \colon H_1 \to H_3$. However, $(f_2 f_1)^* ([\alpha]) = [(f_2 f_1)\alpha]$, for any $[\alpha] \in H_{X_1} \subset H_1$. Since $(f_2 f_1) \alpha \backsim f_2 (f_1 \alpha)$ rel. (0, 1), it can be written that $[(f_2 f_1) \alpha] = [f_2 (f_1 \alpha)] = f_2^* ([f_1 \alpha]) = f_2^* (f_1^* ([\alpha])) = (f_2^* f_1^*) ([\alpha])$.

Theorem 3.2. There is a covaryant functor from the category of path connected topological spaces and continuous mappings to the category of sheaves and sheaf homomorphisms.

Let $f: X_1 \to X_2$ be now a topological mapping, then there exists the continous mapping $f^{-1}: X_2 \to X_1$ such that $ff^{-1} = 1_{x_2}$, $f^{-1} f = 1_{x_1}$.

From the theorem 3.1, there are the mappings $(f^{-1})^*: H_2 \to H_1$, $(ff^{-1})^* = (1_{x_2})^*: H_2 \to H_2$, $(f^{-1}f)^* = (1_{x_1})^*: H_1 \to H_1$

From the theorem 3.2, $(ff^{-1})^* = f^* (f^{-1})^* = 1_{F(X_2)}$, $(f^{-1}f)^* = (f^{-1})^* f^* = 1_{F(X_1)}$. Hence, $(f^{-1})^* = (f^*)^{-1}$. Thus, f^* is a sheaf isomorphism.

Corollary 3.1. Let $f: X_1 \to X_2$ be a topological mapping. Then the corresponding sheaves H_1 and H_2 are isomorphic.

Let $f\colon (X_1,\ c_1) \to (X_2,\ f(c_1)=c_2)$ be a continuous mapping. We know that the mapping $f^*\colon H_1 \to H_2$ is a sheaf homomorphism. Also, each element $\sigma_{c_1} = [\alpha]_{c_1} \in (H_1)_{c_1}$ defines a unique section s^1 over X_1 such that $s^1(x_1) = [(\gamma^{-1}\ \alpha)\ \gamma]_{x_1},$ for any $x_1 \in X_1$. However, $f^*([\alpha]_{c_1}) = [fo\alpha]_{c_2} \in (H_2)_{c_2}$ and $[fo\alpha]_{c_2}$ defines a section s^2 over X_2 such that $s^2(x_2) = [(\delta^{-1}\ fo\alpha)\ \delta]_{x_2}$ for any $x_2 \in X_2$. Then the correspondence $[\alpha]_{c_1} \leftrightarrow [fo\alpha]_{c_2}$ bet ween $(H_1)_{c_1}$ and $(H_2)_{c_2}$ [gives the correspondence $s_1 \leftrightarrow s_2$ between $\Gamma(X_1,\ H_1)$ and $\Gamma(X_2,\ H_2)$. If we denote this correspondence $f_*(s^1) = f^*([(\gamma^{-1}\ \alpha)\gamma]_{x_1}) = [(\delta^{-1}\ fo\alpha)\ \delta]_{x_2} = s^2(x_2)$, then the mapping $f_*\colon \Gamma(X_1,\ H_1) \to \Gamma(X_2,\ H_2)$ is a homomorphism. In fact, for any two sections s^1 , s^1 $\in \Gamma(X_1,\ H_1)$ and any point $x_2 \in X_2$,

$$\begin{split} &f_*(s^1_1)\;(x_2)=f^*(\,[(\gamma^{-1}\;\alpha_1)\;\gamma\,]_{x_1})=[(\delta^{-1}\;fo\alpha_1)\;\delta\,]_{x_2},\\ &f_*(s^1_2)\;\;(x_2)=f^*\;\;(\,[(\gamma^{-1}\;\alpha_2)\;\gamma\,]_{x_1})=[(\delta^{-1}\;fo\alpha_2)\;\delta\,]_{x_2},\;\text{and}\\ &(f_*\;(s^1_1),\,f_*(s^1_2)\;\;(x_2)=[(\delta^{-1}\;fo\alpha_1,\;fo\alpha_2)\;\delta\,]_{x_2}=[(\delta^{-1}\;fo\alpha_1,\;\alpha_2)\delta\,]_{x_2}=f_*\\ &(s^1_1,\;s^1_2)\;(x_2). \end{split}$$

We then state the following theorem.

Theorem 3.3. Let $f: X_1 \to X_1$ be a continuous mapping. Then there exists a homomorphism $f_*: \Gamma(X_1, H_1) \to \Gamma(X_2, H_2)$.

We now give the functorial statement of this theorem. Let $\mathcal L$ be the category of path connected topological spaces and continuous mapping and $\mathcal D$ be the category of groups and homomorphims. Let us define a mapping $F\colon \mathcal L\to \mathcal D$ with $F(X)=\Gamma(X,H)$ and $F(f)=f_*$ for

any element $X \in \mathcal{L}$ and morphism $f: X_1 \to X_2$. F is a covaryant functor. In fact,

1. If $f=1_x$, then $F(1_x)=\left(1_x\right)_*$ and $\left(1_x\right)_*$ (s) = s for any s $\in \Gamma(X,\,H).$

Thus, $F(1_x) = 1_{F(x)}$.

2. Let f_1 : $X_1 \to X_2$, f_2 : $X_2 \to X_3$ morphisms. Then, $f_2f_1 = f_2$ of $X_1 \to X_3$ is a morphism and $F(f_2f_1) = (f_2f_1)_*$: $\Gamma(X_1, H_1) \to \Gamma(X_3, H_3)$. Moreover, $(f_2f_1)_*(s^1) = f_{2*}(f_{1*}(s^1)) = (f_2*f_{1*})(s^1)$. Hence, $F(f_2f_1) = F(f_2)F(f_1)$.

We then state the following theorem.

Theorem 3.4. There is a covaryant functor from the category of path connected topological spaces and continous mappings to the category of groups and homomorhisms.

Now, let $f_1\colon X_1\to X_2$ be a topological mapping. Then there is the mapping $f^{-1}\colon X_2\to X_1$ such that $ff^{-1}=1_{x_2},\ f^{-1}\ f=1_{x_1}.$ From theorems 3.3,3.4 $(ff^{-1})_*=f_*(f^{-1})_*=1_{F(x_2)},\ (f^{-1}f)_*=(f^{-1})_*f_*=1_{F(x_1)}.$ Hence, $(f^{-1})_*=(f_*)^{-1}.$ Therefore f_* is an isomorphism. Notice that, for any $s^1\in\Gamma(X_1,\ H_1)$ the composition f^* os of $f^{-1}\in\Gamma(X_2,\ H_2).$

Corollary 3.2. Let $f\colon X_1\to X_2$ be a topological mapping. Then, the corresponding groups $\Gamma(X_1,\ H_1)$ and $\Gamma(X_2,\ H_2)$ are isomorphic.

4. THE SEIFERT-VAN KAMPEN THEOREM FOR GLOBAL SECTIONS [3, 4, 5, 8]

Let X be the union of the subspaces U_1 and U_2 which are both open, path connected and the intersection $U_{12} = U_1 \cap U_2 \neq \varnothing$ and U_{12} is also path connected. Let f_1 , f_2 , g_1 , g_2 denote various inclusion mappings as indicated below

Form Theorem 3.1. We obtain the following diagram of homomorphisms defined on the corresponding sheaves of fundamental groups.

Recall that; H_{12} , H_1 , H_2 and H are the sheaves which are constructed over U_{12} , U_1 , U_2 and X, respectively. Hence, we can form the following diagram of homomorhisms defined on the groups of global sections.

Let us suppose that, $U_{12}=(U_{12},c),\ U_1=(U_1,c),\ U_2=(U_2,c)$ for an arbitrary fixed point $c\in U_{12}$. Assume that the groups $\Gamma(U_{12},\ H_{12})=<\!S,R>,\ \Gamma(U_1,\ H_1)=<\!S_1\,;R_1>$ and $\Gamma(U_2,\ H_2)$

=<S₂; R₂> are known. We will calculate the groups $\Gamma(X, H)$ by means of these groups.

Let R_s denote the following set of words S_1U S_2 : $(f_{1*}s)$ $(f_{1*}s)^{-1}$, $s \in S$.

We shall think of R_s as a set of relators. As a set of relations $R_s = \{f_{1*} \ s = f_{2*} \ s \colon s \in S\}$. We assert that the group $\Gamma(X,\,H)$ is isomorphic to the group defined by the generators $S_1 \cup S_2$ and the relations $R_1 \cup R_2 \cup R_s$. Note that the relations R of $\Gamma(U_{12},\,H_{12})$ are not required. Loosely speaking $\Gamma(X,\,H)$ is the smallest group generated by $\Gamma(U_1,\,H_1)$ and $\Gamma(U_2,\,H_2)$ for which $f_{1*} \ s = f_{2*} \ s, \ s \in \Gamma(U_{12},\,H_{12}).$

To prove this assertion we begin by giving the following lemma. Lemma 4.1. Let α : $I \to X$ be a path and $0 = t_0 \le t_1 \le t_2 \le \dots \le t_n = I$. If the mapping α_i : $I \to X$ defined by $\alpha_i(t) = \alpha$ ((1-t) $t_{i-1} + tt_i$) for $i = 1, 2, \dots, n$ then $[\alpha] = [\alpha_1] [\alpha_2] \dots [\alpha_n]$.

Proof: The proof is by induction on n. Suppose first that n=2, then $0=t_0\leq t_1\leq t_2=1$ and

$$\begin{array}{l} (\alpha_{1}.\;\alpha_{2})\;(t)\;=\;\left\{ \begin{array}{l} \;\alpha_{1}\;(2t),\,o\;\leq\;t\;\leq\;1\,/\;2\\ \\ \;\alpha_{2}\;(2t-1),\;1\,/\;2\;\leq\;t\;\leq\;1\\ \\ =\;\left\{ \begin{array}{l} \;\alpha\;(2tt_{1}),\;0\;\leq\;t\;\leq\;1\,/\;2\\ \\ \;\alpha\;((1-(2t-1)\;t_{1}\,+\;2t-1),\;1\,/\;2\;\leq\;t\;\leq\;1 \end{array} \right. \end{array}$$

We can see that α_1 . $\alpha_2 \sim \alpha$ simply by using the homotopy

F: I x $J \rightarrow X$ given by

$$F\left(t,s\right) \ = \left\{ \begin{array}{l} \alpha((1-s)\ 2tt_{_{1}}+\,st),\ o \le t \le 1\,/\,2 \\ \\ \alpha((1-s)\ (t_{_{1}}+\,(2t_{_{1}}\!-\!1)\ (1\!-\!t_{_{1}}))\,+\,st),\ 1\,/\,2 \le t \le 1 \end{array} \right.$$

Suppose now that n>2 and the result holds for smaller integer. We have, $0=t_0\leq t_1\leq\ldots\leq t_n=1$. Since $0=t_0\leq t_{n-1}\leq t_n=1$ we can apply the above result to get $\alpha\backsim\beta$ α_n . where $\beta(t)=\alpha(tt_{n-1})$.

Now,
$$0=\frac{t_0}{t_{n-1}}\leq \frac{t_1}{t_{n-1}}\leq \cdots \leq \frac{t_{n-1}}{t_{n-1}}=1,$$
 so that by the

inductive hypothesis, $[\beta] = [\beta_1] [\beta_2] \dots [\beta_{n-1}]$, where $\beta_i(t) = \beta ((1-t)t_{i-1}/t_{n-1} + tt_1/t_{n-i})$

$$= \alpha ((1-t) t_{i-1} + t t_i) = \alpha_i (t).$$

Thus $[\alpha] = [\alpha_1] [\alpha_2] \dots [\alpha_n]$, which competes the proof.

Let us now choose the paths $q_i\colon I\to X$ so that $q_i(0)=c,\ q_i(l)=\alpha(t_i)$ and so that $q_i(t)\in U_{12}$ for all $t\in I$ and for $i=1,\ 2,\ldots,\ n-1$. Also, let q_0 and q_n be given by $q_0(t)=q_n(t)=c$.

Since
$$[\alpha] = [\alpha_1] [\alpha_2] \dots [\alpha_n]$$
, we have

$$\begin{array}{l} \left[\alpha\right] \ = \ \left[q_{0}\right] \left[\alpha_{1}\right] \left[q_{1}^{-1}\right] \left[q_{1}\right] \left[\alpha_{2}\right] \left[q_{2}^{-1}\right] \ldots \left[q_{n-1}\right] \left[\alpha_{n}\right] \left[q_{n}^{-1}\right] \\ \ = \ \left[\left(q_{0}\alpha_{1}\right) \ q_{1}^{-1}\right] \left[\left(q_{1}\alpha_{2}\right) \ q_{2}^{-1}\right] \ldots \left[\left(q_{n-1}\alpha_{n}\right) \ q_{n}^{-1}\right] \end{array}$$

and each of q_i (α_{i+1}) q^{-1}_{i+1} are closed paths based c which lie entirely in U_1 or U_2 . Hence $[(q_i\alpha_{i+1})q^{-1}_{i+1}]$ defines a section either in $\Gamma(U_1, H_1)$ or in $\Gamma(U_2, H_2)$ for $i=1,2,\ldots$ n-1, so that for $\lambda(k)=1$ or 2 and for $x_{\lambda(k)}\in U_{\lambda(k)}$,

$$s^{\lambda(k)} \ (\mathbf{x}_{\lambda(k)}) \, = \, \left[\left(\gamma^{-1} \left(\mathbf{q}_i \alpha_{i+1} \right) \, \mathbf{q}^{-1}_{i+i} \right) \, \gamma \, \right] \, \mathbf{x}_{\lambda(k)}$$

For brevity, let $(q_i\alpha_{i+1})$ $q^{-1}{}_{i+1}=\delta_{i+1}$. Thus, we can write that $[\alpha]=[\delta_1]$ $[\delta_2]\dots[\delta_n]$ such that each $[\delta_i]$ defines a section either in $\Gamma(U_1,\ H_1)$ or in $\Gamma(U_2,\ H_2)$. Also, the homotopy class $[\alpha]$ defines a section s in $\Gamma(X,\ H)$, that is $s(x)=[\gamma^{-1}\ \alpha)\ \gamma]_x$ for each $x\in X$. $[\alpha]=[\delta_1]$ $[\delta_2]\dots[\delta_n]$ implies that $s(x)=[(\gamma^{-1}\ \delta_1\delta_2\dots\delta_n),\gamma]_x$ for each $x\in X$. On the other hand, for any $x\in X$ and for $i=1,2,\dots n$,

$$s^{i}(x) = [(\gamma^{-1} \delta_{i})\gamma]_{x}$$
 and it is defined that $(s^{i}.s^{k})(x) = s^{i}(x). \ s^{k}(x)$, thus $(s^{i}.s^{2}...s^{n})(x) = s^{i}(x). \ s^{2}(x)...s^{n}(x)$

$$(s^{1}. s^{2}....s^{n}) (x) = s^{1}(x). s^{2}(x) ... s^{n}(x)$$

$$= [(\gamma^{-1} \delta_{1})\gamma]_{x}. [(\gamma^{-1} \delta_{2})\gamma]_{x}.... [(\gamma^{-1} \delta_{n})\gamma]_{x}$$

$$= [(\gamma^{-1} \delta_{1}. \delta_{2}.... \delta_{n})\gamma]_{x} = s(x).$$

Hence, each element of $\Gamma(X,H)$ may be written as the product of images of elements from $\Gamma(U_1,H_1)$ or $\Gamma(U_2,H_2)$ under g_{1*} or g_{2*} , respectively.

Corollary 4.1. The group $\Gamma(X, H)$ is generated by the set $g_{1*}(S_1) \cup g_{2*}(S_2)$ where S_1 , S_2 are the generators of $\Gamma(U_1, H_1)$, $\Gamma(U_2, H_2)$, respectively.

From the definition of g_{i*} we can identify S_{i} with $g_{i*}(S_{i})$ for i=1, 2. In this sense $\Gamma(X, H)$ is generated by $S_{1} \cup S_{2}$ where S_{i} , S_{2} generate $\Gamma(U_{1}, H_{1})$, $\Gamma(U_{2}, H_{2})$ respectively.

Lemma 4.2. The generators of $\Gamma(X, H)$ statisfy the relations R_1 , R_2 and R_s . Moreover R_1 , R_2 and R_s are the unique relations in $\Gamma(X, H)$.

Proof: Since g_{i_*} : $\Gamma(U_i, H_i) \rightarrow \Gamma(X, H)$ is homomorphism for i = 1, 2 any relation satisfied by the elements of S_i in $\Gamma(U_i, H_i)$ is

also satisfied by the elements g_{i_*} $(S_i) \subset \Gamma(X, H)$. Thus ,if we use our convention of suppressing g_{i_*} , the elements $S_i \cup S_i$ in $\Gamma(X, H)$ satisfy the relations R_i and R_i .

If $s \in S \subset \Gamma(U_{12}, H_{12})$ then g_{1*} f_{1*} $s = g_{2*}$ f_{2*} s since $g_1f_1 = g_2f_2$. If a word in S_1 represents f_{1*} s, then the same word in S_1 represents g_{1*} f_{1*} s in $\Gamma(X, H)$ so that f_{1*} s = f_2 s, s $\in S$, and so the proof of the first part of lemma 4.2. is finished.

Let us now suppose that $s=s_1^{\in (1)} \ s_2^{\in (2)} \ \dots \ s_k^{\in (k)}=I$ is a relation between the elements of S_1 U $S_2 \subset \Gamma(X,H)$, Here $\in (i)=\mp 1$ and $s_i \in S_{\lambda(i)}$ for $i=1,\ 2\ \dots$, k where $\lambda(i)=1$ or 2. From the definition of the elements of $\Gamma(X,H)$ there is a unique element $[\alpha]$ and unique homotopy classes $[\alpha_1]$ such that $[\alpha]$ defines the sections s and each of $[\alpha_i]$ define the sections s_i . Thus, for $i=1,\ 2,\ \dots$,k

$$[\alpha] = [\alpha_1]^{\in (1)} \ . \quad [\alpha_2]^{\in (2)} \qquad \ldots \ [\alpha_k]^{\in (k)} = [1].$$

However, it has been proved in [4, 6, 7] that $[\alpha]$ can be reduce to [1] by a finite sequence of operations each of which inserts or delates an expression from a certain list. Hence s is a consequence of the relations $R_1 U R_2 U R_s$ and $R_1 U R_2 U R_s$ are the unique relations in $\Gamma(X, H)$.

As a result of lemma 4.1. and 4.2. we can state that

Corollary 4.2. The group $\Gamma(X, H)$ is isomorphic to the group defined by the generators $S_1 \cup S_2$ and the relations $R_1 \cup R_2 \cup R_s$.

W then state the following theorem.

Theorem 4.1. (The Seifert-Van Kampen Theorem For Global Sections). Let us suppose that the topological space X is the union of the subspaces U_1 and U_2 which are both open, path connected, $U_{12} = U_1 \cap U_2 \neq \varnothing$ and U_{12} is also path connected. Let the groups $\Gamma(U_{12}, H_{12})$, $\Gamma(U_1, H_1)$ and $\Gamma(U_2, H_2)$ be known. Then, i) (The "generators" of $\Gamma(X, H)$). If $s \in \Gamma(X, H)$ is any section, then

$$s \, = \, \prod_{k=1}^n g_{\lambda(k)_{\bigstar}} \, s_k, \text{ where } s_k \in \Gamma(U_{\lambda(k)}, \ H_{\lambda(k)}), \ \lambda(k) \, = 1 \ \text{ or } 2$$

ii) (The "relators" or "relations" of $\Gamma(X, H)$).

Let
$$s=\prod\limits_{k=1}^n g_{\lambda(k)_{\displaystyle *}}\, s_k\in \Gamma(X,\,H).$$
 Then $s=I$ if and only if s can be

reduced to I by a finite sequence of operations each of which inserts or delates an expression from a certain list.

It we restrict this theorem to any stalk $H_x \subset H$ for any $x \in X$, we get the known Seifert-Van Kampen Theorem at once such that it does not depend on the base point.

Theorem 4.2. (The Seifert-Van Kampen Theorem for the fundamental groups). Let us suppose that the topological space X satisfy the conditions mentioned in theorem 4.1 and let the groups $\Gamma(U_{12}, H_{12})$, $\Gamma(U_1, H_1)$ and $\Gamma(U_2, H_2)$ be known. Then,

- i) (The "generators" of $\pi_{_1}(X,x).)$ If $x\in X$ is any point and $[\alpha]\in\pi_{_1}$
- $\begin{array}{l} (X,\,x) \text{ is any element, then } \left[\alpha\right] \,=\, \prod\limits_{k=1}^n g_{\lambda(k)_{\, *}} \, s_k(x), \text{where } s_k \in \Gamma\left(U_{\lambda(k)}, H_{\lambda(k)}\right), \; \lambda\left(k\right) \,=\, 1 \; \text{ or } 2. \end{array}$
 - ii) (The "relators" or "relations" of π_1 (X, x).)

Let
$$[\alpha] = \prod\limits_{k=1}^n g_{\lambda(k)_*} \, s_k(x).$$
 Then $[\alpha] = [1]$ if and only if $[\alpha]$

can be reduced to [1] by a finite sequence of operations each of which inserts or delates an expression from a certain list.

REFERENCES

- S. BALCI., "On the sheaf of the homology groups of the Complex Manofold". Jour. Inst. Math.-Comp. Sci. Math. Ser. Vol. 1. No. 2. pp. 127-133, 1988 (INDIA).
- [2] S. BALCI., "On the Restricted Sheaf". Comm. Fac. Sci. Univ. Ankara Ser, Al, Vol. 37, pp. 41-51, 1988.
- [3] R.H. CROWELL, "On the Van Kampen Theorem". Pac. J. Math., pp. 43-50, 1959.
- [4] C. GODBILLON., "Elements de Topologie Algebraique". Paris: Herman 1971.
- [5] R.J. KNILL., "The Seifert-Van Kampen Theorem Via Regular Covering Speces". Pasific. J. Math., 49, pp. 149-160, 1973.
- [6] W.S. MASSEY., "Algebraic Topology an Introduction" Springer-Verlag, Newyork, 1977.
- [7] H. SEIFERT., "Konstruktion Dreidimensionaler Geschlossener Raume" Ber. Sachs. Akad. Wiss. 83, pp. 26-66, 1931.
- [8] E.R. VAN KAMPEN., "On the connection between the fundamental groups of some related spaces". Amer. J. Math., 55, pp. 261-267, 1933.