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SUMMARY

Let X be the union of the subspaces U, and U, that are both open, path connected,
U,=U, nU,s# & and U, is also path connected. In this paper, We first contruct the
sheaf H of the fundamental groups of a path connected space and give the characteristic fea-
tures of H. Then, the homomoxphisms and global sections of the sheaf H are explored. Finally it
is proved that if the groups of global sections I'U,H,) = <S;R >, I'U,, H) = < SR, >
and T'(U,, H)) = < S,; R, > are given, then the group I'(X, H) is isomorphic to the group
defined by the generators 5, U S, and the relations R, y R, y R;. As a result of this, the
sheaf H, especially the fundamental group 7, (X, x) was easily caleulated for any x e X.

1. INTRODUCTION

Let X be a path connected space and H_ be any fundamental
group of X based for any x € X, that is H ==, (X, x). Let X =
(X, c) be a pointed topological space, for an arbitrary fixed point ¢ € X.

Also, let H = V H . H is aset over X and the mapping ¢: H » X
xeX

defined by ¢ (5,) = ¢ ([2]ly) =x, for any o, = [a], ¢ H = H,

is onto.
We introduce a topology on H as follows:

Let WeX be an open set. Define a mapping s: W — H such that
s(x) = [(Yy~la)y], for each x € W, where [#]. =06, € H, is any
element and [y] is an arbitrary fixed homotopy class defines an iso-
morphism between H and H_. Then, the change of s depends on only
the change of 6, = [«],. Furthermore, gos = 1,. Let us denote the
totality of the mappings s defined on W by I'(W, H).

If B is a base for X, then B* = {s (W): W ¢ B, s e [(W, H)} is

a base for H. The mappings ¢ and s are continous in this topology.
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Mozeover, ¢ is a locally topological mapping. Then (H, ¢) is a sheaf
over X. (H, ¢) (or only H) is called “The Sheaf of the Fundamental
Groups” over X [1]. For any open set W< X, an element s of T(W, H)
is called a section of the sheaf H over W. The set I(W, H) is a group
with the pointwise operation of multiplication. Thus, H is a sheaf of
groups over X [2]. Furthermore, the group H, == (X, x) is called
the stalk of the sheaf H for any xeX.

[\

. CHARACTERISTIC FEATURES OF H [2].

2.1. Let W<X be an open set. Then, any section over W can be

extended to a global section over X. Furthermore,
(W, H) = {s| W:s e (X, H)} =I'(X, H)| W.

2.2. Any two stalks of H are isomorphic with each other.

2.3. Let W, W, <X be any two open sets, s, € (W, H) and
s, € [(W,, H). If s(x,) =s,(x,) for any point X, € W, nW,
then s, =s, over the whole W, 0 W,

2.4. Let W < X be an open set and s, s, € (W, Hj.

If s,(x,) = s8,(x,) for any point x, € W, then s, =s, over the
whole W.

9.5. To cach point 6, € H, © H, there uniquely corresponds a sec-
sections s € I'(W, H) such that s(x) = ¢,. Hence, H, ¥ I'(W, H).
In parteicular, H, = I'(X, H).

3]
<

. Let x € X be any point and W = W(x) be any open set. Then,

o (W) ::.\; si(W), sie T(W, H) and ¢ | s(W): si(W) - W is a
ig

topological mapping for every icl. Hence, W = W(x) is evenly
covered by . Thus, ¢ is a cover projection and (H, ¢) is a
covering space of X. Moreover (H, o) is regular, because the group
T of cover transformations of H is isomorphic to the group H,,
that is T is transitive on H, [2].

3. HOMOMORPHISMS AND THE GROUP I'(X, H)

Let X, X, be topological spaces and H,, H, be the corresponding
sheaves, respectively. We begin by giving the following definition.

Definition 3.1. Let £*: H, — I, be a mapping. If {*is continuous,
a homomorphism on each stalk of H, and maps every stalk of H,
into a stalk of H,, then it is called a sheaf homomorphism.
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Let f: X, -+ X, be a continuous mapping and f*: H — H,
be a sheaf homomorphism. If f* (H)x, < (H))yx,) for each x, & X,
then £* is (called) a stalk preserving mapping with respect to f.

Definition 3.2. Let f*: H - H, be a sheaf homomorphism.
If £* is also a bijection, then f* is called a sheaf isomorphism.

Theorem 3.1. Let f: X, — X, be a continuous mapping. Then
there is a stalk preserving sheaf homomorphism f*: H, — H, with
respect to f.

Proof: Let x, € X, be any point and « be a closed path based at
x;. Then f 0 a is a closed path with base point f (x) =x,in X, and
[foa] € (H,)x,. On the other hand, if o, and «, are closed paths at
x, in X, such that o a,, then foa, «~ foa,. Thus, we can define the
mapping {*: H, — H, such that f*(ox,) = f*( [2]x,) = [foa]t(xp=x,
for any [a]x, = 6x € (H)x, < H.

It is easily seen that the mapping f* is well-defined, stalk preser-
ving with respect to f and homomorphism on each stalk [1].

To complete the proof, let us show that f* is continwous. Let
U, = f* (H) < H, be an open set. Without lost of generality, we
assume that U, = s(W,), where W, © X, is an open set and s
P(Wy, H,). Thus, ¢,(U,) = o, ($(W,)) = W,. Since f is continuous,
f=1(W,) =W, = X, is an open set. Now let ox, € U, be an element.
Then, there exists at least one element ox, €U, = *1(U,) such
that {* (ox,) = ox,. Since ¢ (ox) =x, € W, there is a section s'e
(W, H)) such that s'(x) = ox, and s!{(W,) < H, is an open. Also
s'(W) < U, It is easily seen that U = y 8;(W,). Therefore,

~ ie1
U, = H, is an open sct, that is f* is a continaous mapping.

Now, let £ denote the category of connected topological spaces
and continuous mappings and 7) denote the category of sheaves and
sheaf homomorphisms. Let us define a mapping F: 2 - ¢) such that
F(f) = f*: H, — H, for any continuous mapping (morphism) f: X, —X,.
Then,

LI £ =1, then T(1) =1, since (1)* = [lo00] == [«] for any
Oy = [‘X]x = Hx'
2. If f: X, =X, and f: X, - X, are any two morphisms, then
f,of, =£f: X —X, is also a morphism and Ff) = (£f)*:
- H, - H,. However, (f£)* ([x]) = [(ff)a], for any [a] cHx <H,.
Sinece (f,f\) « w1, (f&) rel. (0, 1), it can be written that [(£f) «]
= L0 ] = £* ([fa)) = £2E* ([2]) = (%) ([2]).
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Theorem 3.2. There is a covaryant functor from the category
of path connected topological spaces and continuous mappings to the
category of sheaves and sheaf homomorphisms.

Let f: X, - X, be now a topological mapping, then there exists
the continous mapping £~1: X, - X, such that ff~'=1x,, {~! f=Ix_.

From the theorem 3.1, there are the mappings (f)*: H,—H,,
()% = (1x,)*: H, > H,, (f)* = (1x)*: H,—H,

From the theorem 3.2, (ff-1)* = f* (f1)* = lyx, (E1)*
= (f1)* f* = 1., Hence, (f)* = (f*)7". Thus, f* is a

sheaf isomorphism.

Corollary 3.1. Let f: X, — X, be a topological mapping. Then
the corresponding sheaves H, and H, are isomorphic.

Let f: (X,, ¢,) - (X,, f(¢;) = ¢,) be a continuous mapping. We
know that the mapping f*: H, — H, is a sheaf homomorphism. Also,
each element 6, = [a],, € (H),, defines a unique section st over X,
such that s'(x,) = [(y~! @) y]x,, for any x, € X,. However, £* (Jocley)
= [fox],, € (H,),, and [fox] . defines a section s”over X, such that
s¥(x,) = [(3~ fox) 3]k, for any x, € X,. Then the correspondence [«],
> [foa ], bet ween (H,),, and (H,),{gives the correspondence s, <> s,
between I'(X,, H)) and I['(X,, H,). If we denote this correspondence
P, (s1) = £ ([ @)y ]x) — [(3 fox) 8]y, = s(x,)s then the mapping
f,: I(X,, H) - I'(X,, H,) is a homomorphism. In fact, for any two
sections st,, s', € ['(X,, H)) and any point x, € X,

£.(s1) () = [y 1 ) vlx) = [(37 fox)) 3]xs
£(s) () = ([(y™* %) vlx) = [(37" fou,) 8]x, and
(£, (s7)- f*(slz) (x,) = (37" fou,. fo“z) 3lx, = [ foml. 052)3];(2 = f*

(') s%) (%5)-
We then state the following theorem.

Theorem 3.3. Let f: X, — X, be a continuous mapping. Then
there exists a homomorphism f,: T(X,, H) — I'(X,, H,).

We now give the functorial statement of this theorem. Let £ be
the category of path connected topological spaces and continuous
mapping and ) be the category of groups and homomorphims. Let us
define a mapping F: - 9 with F(X) = I'(X, H) and F(f) =f, for
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any element X € £ and morphism f: X, - X,. Fis a covaryant
functor. In fact,

1. If f =1,, then F(1,) =(1,), and (1), (8) = s for any s €
I'X, H).

Thus, F(L,) =1,().

2. Let f: X, - X, f,: X, — X, morphisms. Then, £,f, = £, of;:
X, = X, is a morphism and F(£f) = (£,f),: I(X,, H) — I'(X,, H,).
Moreover, (fzfl)*(sl) :fz* (fu(sl)) :(fz*fl*) (s'). Hence, F(fzfl) :F(fz)F(fl)'

We then state the following theorem.

Theorem 3.4. There is a covaryant functor from the category
of path connected topological spaces and continous mappings to the
category of groups and homomorhisms.

Now, let f: X, — X, be a topological mapping. Then there is the
mapping £~': X, - X such that ff~! = lx,, £ f = 1x. From the-
orems 3.3,3.4 (f-1), = £,(), = Lpays (1), = (E),6, — L.
Hence, (f-1), = (f,)~!. Therefore f, is an isomorphism. Notice that,
for any s' e I'(X,, H,) the composition f* os! of~! e I'(X,, H,).

Corollary 3.2. Let f: X, - X, be a topological mapping. Then,
the corresponding groups I'(X,, H,) and [(X,, H,) are isomorphic.

4. THE SEIFERT-VAN KAMPEN THEOREM FOR GLOBAL
SECTIONS [3, 4, 5, 8]

Let X be the union of the subspaces U, and U, which are bhoth
open, path connected and the intersection U,=0U,nU,% o
and U, is also path connected. Let f, f,, g, g, denote various inclu-
sion mappings as-indicated below
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Form Theorem 3.1. We obtain the following diagram of homo-
morphisms defined on the corresponding sheaves of fundamental

groups.

Recall that; H ,, H, H, and H are the sheaves which are cons-
tructed over U, U, U, and X, respectively. Hence, we can form
the following diagram of homomorhisms defined on the groups of

global sections.

"
(Ul'”l)
.
1+ g“
P -
(Ut ) (X, H)
f Jy'/
24

'y
( 2,!{2)

Let us suppose that, U, =(U, ¢), U, = (U, ¢, U, =(U,
c) for an arbitrary fixed point ¢ € U, Assume that the groups
P(U12’ H12) = <5, R>, F(Up H1) - <Sl ;R > and P(Uv H)
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= <8,; R,> are known. We will calculate the groups (X, H) by
means of these groups.

Let R, denote the following set of words 5,U 8,
(f.8) (f,,8)71, s € 8.

We shall think of R, as a set of relators. As a set of relations B, =
{fix8 =1, 805 €8}, We assert that the group I'(X, H) is isomorphic
to the group defined by the generators S, US, and the relations R,
U R, U R,. Note that the relations R of P(U,,. H,,) are not required.
Loosely speaking I'(X, H) is the smallest group generated by I'(U,
H,) and I'(U,, H,) for which f,_ s = f0 8, 8 e T(Uy,, H).

To prove this assertion we begin by giving the following lemma.

Lemmma 4.0. Let o: T > X be a path and 0 =1, <t <t, < ... <
ty = 1. If the mapping o;: I > X defined by ai(t) = o ((1-%) ©i, +
tt;) for 1 =1, 2,..., n then [2] =[] [o,].. ... [o, ]

Proof: The proof is by induction on n. Suppese first that n — 2,
then 0 ==t <t <t,=1 and
a (2t),0 <t <1/2

(o) () = |
«,(2t-1), 1/2 <t < 1
§ a(2tt), 0 <t <1/2

=

We can see that u,. a, «~ « simply by using the hometopy

a((I-(2t-1)t, + 2t-1), 1/2 <t < 1

F: IxJ>X given by

( a((1-8) 2tt, + st), 0 <t < 1/2

F (T,, S) = }
a((1-s) (t, + (2,-1) (I-t)) +st), 1/2 <t <1

Suppose now that n > 2 and the result holds for smaller integer.
We have, 0 =Lt <. . <ty =1.8ince 0 =t, <ty , <ty =1
we can apply the above result to get ««~8 «y. where B(t) = a(ttn_,).

Now, 0 = %o < b <... < oy 1, so ‘that by the
th thy th ‘
inductive hypothesis, [B] = 2,1 [B,] --. [Pa,], where

Pi(t) = B ((l_t)ti—1/tn—1~+ ttl/tnﬂ)
= o ((1-t) ti, + tt;) = oy (1).
Thus [a] = [o,] [o,] ... [&n], which competes the proof.
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Let us now choose the paths ¢;: I — X so that ¢i(0) = ¢, qi(l)
= «(t;) and so that qi(t) € U, for all t € I and fori =1, 2,..., n-1.
Also, let q, and q, be given by q(t) = q,(t) =c.
Since [a] = [&,] [%,] - [en], we have

[2] = [qo] ] [a,'] [q,] Teeo] [, -+ [gney] [on] fan™']
= [(qo%) @71 Mg @] {da-ia) @'
and each of q; (x;,,) q~'i., are closed paths based ¢ which lie entirely
in U, orU,. Hence [(qioiy,)q "iy,;] defines a section either in I'(U,,
H) or in T(U,, H)) for i =1,2,... n-1, so that for Nk) =1 or 2
and for X\ (k) € U;\(k),

M9 (o) = (v~ (Gitiy) 9755) v] =20
For brevity, let (qiai.,) q ‘i, =i, Thus, we can write that
[] = [5,]1 [5,].---[5a] such that each [8;] defines a section either
in I(U,, H)) or in T'(U,, H,). Also, the homotopy class [«] defines
a section s in T'(X, H), that is s(x) = [y «) y], for each x € X. Jee]
= [5,] [5,].---[8a] implies that s(x) = [(y' 8,3, cod)ply for
each x € X. On the other hand, for any x € X and fori = 1,2,....n,
si(x) = [(y~' 8i)y]; and it is defined that
(sl.s¥) (x) = sl(x). s¥(x), thus
(st 7. .. .80) (x) = si(x). s%(x) ... s%(x)
= [(¢*3)v]e [ Sy [y Baly s
= [(y73,- 8, ... dn)ylx =s(x).
Hence, each element of I'(X, H) may be written as the product of
images of clements from I'(U, H,) or T(U,, H)) under g, or g,

respectively.

Corollary 4.1. The group I(X, H) is generated by the set
g, (S) U g,, (S,) where 5, S, are the gencrators of (U, H), I'(U,, H,),
respectively.

From the definition of gi, we can identify S; with g (5i) fori =1,
2. In this sense I'(X, H) is generated by S, U S, where S, 5, generate
(U, H)), I'(U,, H,) respectively.

Lemma 4.2, The generators of I'(X, H) statisfy the relations R, R,
and R,. Moreover R, R, and R; arc the unique relations in (X, H).

Proof: Since gi,: I'(Uy, Hy) - T(X, H) is homomorphism for
i ==1,2 any relation satistied by the elements of S; in T(Uy, Hy) is
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also satisfied by the elements gi, (5i) <T(X, H). Thus ,if we use our
convention of suppressing gi,, the elements S, U S, in T(X, H) satisfy
the relations R, and R,.

If seScTI(U,, H,) then g, f, 5 =g, f,, s since gf, = gf,
If a word in S; represents fj, s, then the same word in S; represents
gi, fi, s in ['(X, H) so that f,, s =f,s, s € S, and so the proof of the
first part of lemma 4.2. is finished.

Let us now suppose thats =s &) 5,6 .. £ &%) =1T1is a relation
between the elements of S, U S, < I'(X, H), Here (i) = T 1 and
sieSyy fori=1,2 ..... , k where A(i) = 1 or 2. From the definition

of the elements of I'(X, H) there is a unique element [a] and unique
homotopy classes [«] such that [o] defines the sectious s and each of
[2;] define the seciioms s;. Thus, for i=1, 2, ..... k

o] = [0]€0 . [nle® ..o e = (1]

However, it has been proved in [4, 6, 7] that [«] can be reduce to
[1] by a finite sequence of operations each of which inserts or delates
an expression from a certain list. Hence s is a consequence of the rela-
tions R, UR, UR; and R, UR, U Ry are the unique relations in
(X, H).

As a result of lemma 4.1. and 4.2. we can state that

Corollary 4.2. The group I'(X, H) is isomorphic to the group
defined by the generators S, U S, and the relations R, UR,UR..

W then state the following theorem.

Theorem 4.1. (The Seifert-Van Kampen Theorem For Global
Sections). Let us suppose that the topological space X is the union
of the subspaces U, and U, which are both open, path connected,
U, = U, n U, # g and U, is also path connected. Let the
groups I'(U,, H,), T(U,, H) and T(U,, H) be known. Then,
i) (The “generators” of I'(X, H)). 1€ s ¢ I'(X, H) is any section, then

n
§ == kH Erii) K where s € F(Uk(k)a };{7\(1())9 l\(k) =1 or 2
=1

i) (The “relators™ or “relations” of I'(X, H)).

n
Let s =11 ity 5k € I'(X, H). Then s == 1 if and only if s can be
ke=1
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reduced to I by a finite sequence of operations each of which inserts
or delates an expression from a certain list.

It we restrict this theorem to any stalk H, < H for any x € X,
we get the known Seifert—Van Kampen Theorem at once such that it
does not depend on the base point.

Theorem 4.2. (The Seifert—Van Kampen Theorem for the funda-
mental groups). Let us suppose that the topological space X satisfy
the conditions mentioned in theorem 4.1 and let the groups T(U
H,), I'(U,, H,) and I'(U,, H,) be known. Then,

i) (The “gcenerators’ of 7, (X,x).) If x € Xis any point and[«] e T,

12°

n
(X, x) is any element, then [a] = kl;ll .09, sx(x), where sy € T’ (U)\(k)_,

Hygg)s 7 (k) =1 or 2.

ii) (The “relators” or “relations’ of = (X, x).)

|

n
Let [«] = I Brx), k(x). Then [a] = [1] if and only if [a]
k=1 :

can be reduced to [1] by a finite sequence of operations each of which
inserts or delates an expression from a certain list.
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