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ABSTRACT

In this paper, space-like ruled surfaces in the Minkowski n-space are defined.
Moreover, some results and theorems related with the Riemannian curvature K and mean
curvature vector H of the (k+1)-dimensional space-like ruled surface are given.

1. INTRODUCTION

We shall assume throughout this paper all manifolds, maps, vector
fields, etc... are differentiable of class C™. Consider a general Scm1 Riemannian
submanifold M of dimension (k+1) of the M1nkowsk1 space R1 (n23).If
D (resp. D) is the Levi-Civita connection of R1 (resp. M) and if X and Y
are tangent vector fileds of M, then we find by decomposing DXY into a
tangent and normal component

D,Y = D,Y + V(X,Y) (1.1)

V(X,Y) is a normal vector filed on M and is symmetric in X and
Y. A vector field Z of M P is called an asymptotic vector field if
V(ZZ) = 0. A curve on M is an asymptotic curve if its tangent vector
field T is an asymptotic vector field along the curve [1].

Let £ be a normal vector filed on M, then, by decomposing D_x§ in
a tangent and a normal component, we find that

Dix = - A(X) + DE 12

which determines, at each point, a self-adjoint linear map, where D" is a metric
connection in the normal bundle x'(M). We use the same notation Ag to show
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the linear map and the matrix of the linear map. A normal vector filed §
on y(M) is called parallel on the normal bundle y'(M) if D;E, =0 for
cach vector field X. A subbundle F of %'(M) is said to be parallel in
xi(M) if for each vector field | of F and each vector field X of x'(M),

Dxn is again a vector field of F, [2].

Suppose that X and Y are vector fields on (M) while § is a normal
vector field, then, if the standard metric tensor of Rr is denoted by {,),

DYE) = (VEDE = (AX).Y). 13)
If &l, &, .. &, constitute an orthonormal base ficld of the normal
bundle x~(M), then we put

(VXYL = VXY) (1.4)

or

VEY) = 3 VXYL,

f=

The mean curvature vector H of M at the point P is given by

k1 A
k-1 %

H='S

. 1.5
2 by (L)

IH)| shows the mean curvature. If H= 0 at each point P of M, then M is
said to be minimal, [1]. Let Rlll be a Minkowski space in the Levi-Civita
connection D. The function,

R IR) X X®) X xR) = xR)
given by
RXY)Z = DyyZ - DDZ + DDZ (1.6)

is a (1,3) tensor field on x(R’ll) called the curvature tensor field of R‘; If
XY € TRn(p) the linear operator
1

Ry TR,I,(p) - TR,I,(p)

sending each Z to RXY is called a curvature operator, [3]. The function
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R: Ty®) X Ty® X Ty X Ty(p) - R
given by
R, X, X,X,) = (X, RX,X)X,) .7

is a covarient tensor field of order 4 on Y(M) called the Riemannian
curvature tensor field of M.

The function given by (1.7), at each point P, is called the
Riemannian curvature and we denote '

K@) = (XRX.Y)Y). (1.8)

If V is the second fundemental form of Semi-Riemannian manifold
M, then we obtain

XREK,Y)Y) = (VX.Y),VXY)) - (VEX).V(Y.Y)). (1.9)

A two-dimensional subspace m of the tangent space Tyy(p) is called a
tangent plane to M at P. For tangent vectors XP,YP € T,(p) defined by

RX Y )X Y
KX,Y) = Y%y (1.10)

2
(XP’XPXY P’Yp) ) <XP’YP>

is caled the sectional curvature of M at P, [3].

2. (k+1)-DIMENSIONAL RULED SURFACE IN Rlll

Let {e,(s), €,(8), .., €(s)} be a system of orthonormal vector fields,
which is deﬁncd for each pomt of a space-like curve o in the
n-dimensional Minkowski space R1 This system spannes a k-dimensional
subspace of the tangent space T (oc(s)) at each point. This subspace is
denoted by E (8), that is

E(s) = Sp{e,(®), e,(s), ... , e (9}

We get a (k+1)-dimensional surface in R1 if the subspace E (s)
moves along the curve o. We call this space a (k+1)-dimensional
gcncrahzed space-like ruled surface in the n-dimensional Minkowski Space
R1 A parametrization of this ruled surface is

dsu,,0) = ofs) + Z ue,(s) 2.1)
i=1
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Throughout this paper E (s) = Sp{e,(s), e,(s), .., e (s)} denotes a
subspace which is a space-like subspace, o is a space-like curve which is
an orthogonal trajectory of the k-dimensional generating space E,(s) k=1.
We denote this ruled surface by M. If we take the partial derivate of ¢
we get

¢, = as) + i ue(s) ,
i=1

¢u.=ei(s),1sisk.

Throughout our paper we assume that the system

k
afs) + Z ue(s) , €, . €

i=1

is linear independent.

Let {e,, €, .., ¢} be an orthonormal base of y(M) (ie. ¢, is the
unit tangent vector of the orthonogal trajectories of the generating spaces).
Suppose thalt timelike subspace {§, &,, ..., § , |} is an orthonormal base
field of T, (). Then {e;, e - €, &, &, . § |} is a base ficld of
T «(p) at the point P € R;I . Then we have
R

(e =168 =0 (o) =8,=10 > 1*] g By=g=21. @2

0°~0 * N\ A L ij 1,i=j’ 75 j : ’

Then M is said to be m-developable if

rank [€),€,, ... €, Deocl,...,Deoek =2k -m (23)

at each point P € M. If m = -1, then the space-like ruled surface M is
called non-developable; if m = k-1, then M is said to be total
developable, [4].

Denote of D the Levi-Civita connection of the Minkowski space Rll1
For the orthonormal base {e,, .., €} of the generating space E (s), we

observe that
De.ej=0,13i,jSk.

Hence, if V denotes the second fundamental form of R!:, we must
have ’

Viee)=0,1<i,j<k. 24)
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Let X= Zae + agy and Y = Zbc + be, be two vector fields of
i=1
xM). So we find that

VX\Y) = 2 @b + ba)V(e,e) + abV(e e) - 2.5)
i=]

The normal subbundle of x'(M) spanned by the normal fields
V(eye,), 1 < i < k is denoted by F.

Theorem 2.1. M is m-developable iff the normal subbundle F is
{(k-m-1)-dimensional.

Proof. Suppose that we have (2.3). Because of (1.1) we can write

D¢ = Do + Vigge) » 1 <isk.

But D, c is a linear combination of the vector ficlds {€p> €5 s o
and so we ‘may replace the fields D e by V(e,e) in (2.3). Now, the
tangent space spanned by e, o € 1s at each point normal to F and
thus we find k+1+dim F = 2k-m or dim F = k-m-1, which completes the
proof of the theorem.

From (2.2) we observe that D < le, and D < L € This means
that D c is a normal vector field or

Deco =V, e), 1 <i<k. 2.6)

Suppose that {§, €, ..., & | ()} is an orthonormal base field of the
normal bundle ¥'(M), then we have the following Weingarten equations

_ k nkl :
D, & = aje, +Zairr+2b;<§s,13j3n-k-1,

€,
0 =1 s=1

k nk-1 .
- i J
Deléj = a1o°o + ST %t 21 b5

2.7
s ;1._.1;:.1.....] ............................
Dck§j= +Zae+5§bks§S
These equation together with (2.4) and (1.3) yield
i i
A = 23)

2=0 1<jsnkl,l<ir<k.

So the matrix of A& has the form

J
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ain o .0 (2.9)

a{k 0 ... 0
and this means det A& =0 if k 2 2, from which we have:

3
Corollary 2.2. If k > 2, then the Lipschitz-Killing curvature of M is
zero at each point in each normal direction.

Corollary 2.3. The matrix Ag of the shape operator of M is of the
form (2.9) and is symmetric. !

Because of the equations (2.7), we get

4 = .5y = -&D.¢) (2.10)
and from (2.6) together with (2.10) we receive

_ n-k-1 — n-k-1 R

D, = V(e + 2 8j<E-'j’Dei°o> & =- 2 Sjag)igj : 2.11)

j=1 i=1
’g‘heorem 24. Let M be a (k+1)-dimensional space-like ruled surface
of IR. Then the Riemannian curvature of M in the two-dimensional
direction spanned by e, and ¢, is given by

e,e)={DeDe) 1<i<k.
i’ 70 eic() eiO

Proof: Let R be the Riemannian curvature tensor field of M. From
(1.10) and (2.2), we find

K€y = (Ree,s )€€ - (2.12)
If we connect (2.12) with (1.9) and (2.4), then we get

K(e, ) = (Vieyey)s Viee)
or

Ke; og) = DD, - @.13)
From (2.11) and (2.13) we receive the following corollary.

Corollary 2.5. The Riemannian curvature of M in the
two-dimensional direction spanned by e, and ¢, can be written with the

entries of the Matrix A& as follows

J
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ikl 2

K(ci’e()) = 2 ej(alh) » 1 <i<k, 6}. = <§J’§J> = %l . (214)
=1

It is easy {'0 see that (1.10) and (2.4) gives

K(c.,c.) =0,1<i,j<k. (2.15)

Theorem 2.6. Let M be a (k+1)-dimensional space-like ruled surface
in Rl and ¢, be the tangent vector field of the base curve of M. The
mean curvaturc is

H=s.m, 8j=<§j’§j>=il'

Tk +1
Proof: From (1.5) we known that
nkl A 3 2.16)
H = .
E‘ k + 1gj

Using (1.4), we can write
) n-k-1
Veok) = g: §j<DeOCO’&j>§j o g =8 =71

Because of the last equation and equation (2.7), we get
nk1

Vegeo) = - Zé (4) &, @17)
For the mamx A‘5 given (29) we find
A, g = aoo . (2.18)

If we substitute (2.17) and (2.18) in (2.16), we observe that

H = 8] k(eb,e(;) Ej = <§j’&j> =

From Theorem 2.6 we have immediately:

Corollary 2.7. The space-like ruled surface M is minimal iff each
orthogonal trajectory of the generating spaces is an asymptotic line of M.

Teorem 2.8. If the (k+1)-dimensional m-developable space-like ruled
surface M is minimal, then M is necessarily a submanifold of an R "

Proof: Because of Theorem 2.1, we already know that the
codimension of M is at least k-m-1 we have two cases:

1) First, 'suppose that the normal subbundle F is zero-dimensional.
Thus
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V(eo,ei)=0,lsisk.
Because of the second fundemental form V is symmetric, we find
Viee) =0,1<i<k.

If we substitute V(e,.c)) = 0 and V(e,e)) =0, 1< i < kin 2.5),
we get

VX,Y) =0 .

This says that the space-like ruled surface M must be totally
geodesic, i.e. M is part of a (k+1)-dimensional linear space.

2) Next assume that the normal subbundle F is not zero. Consider
an orthonormal base field F,l, &.2, . &n_k_l of y'(M) such that &1, &2, s
&kim-l is a base field of the normal subbundle F. Consider the equations
(2.7) in this case. Since (V(e,cp)&) = - a,1<i<k 1<j<nkl we
have immediately

4 =0, 1<i<k km<j<n-k-1. (2.19)
But H = 0 and hence tr AE =0,1<j < nk1 and so we get
J
Ay =..=A =0, (2.20)
k-m okl e

If we set V(X,Y) =2, VJ(X,Y)ﬁJ for each two vector fields X and Y
of M, then we find =l

V. XY)=..=V _ (XY)=0. @21

n-k-1
If R is the curvature tensor of R;l and if X, Y, Z are vector ficlds
of x(M), then the Codazzi equation says

n-k:

o) = E (o) 02 - o) (2 e)
+ Hil VJ(xz)Digj - ngl Vj(YZ)D;f;j )

Put
1 n-kl -kl ) (2 23)
D%'i*:gl*’&h“hmk cf, 1<2<kml 1<isk :
=] -m

Then, from (2.21) and (2.22), we have
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ek =5 (Pvtee) - 1) e

) VAGE)D.E, + Z Viee)D.E, =0, 1Sis<k. @24)

£=1
But V(ei,es) =0,1<is< k and so we find from (2.23) and (2.24)
-1

k-m
2 (ixVK%ps) =0, 1<is <k, km<r< nk-l. (2.25)
A=l

Now, fix in this expression i and r and let s be variable, then we
find a system of k homogencous linear equations with k-m-1 unknows C: »
The matrix of this system is

[Viege)l, 1 £ £ <km-1, 1 <s<k.

and its rank is at each point of M equal to k-m-1 because space-like
ruled surface M is m-developable. So, it is easy to see that (2.25) gives

d

. = 0, 1i<k, 1< 2 <kml, km £r < nk-1. (2.26)

We also have N
(i(eo,ei)eo) = g {(De,"x) (es20) - (D%Vx) (ei,eo)}§ 2
+ kﬁl V&(CO’CO)D:EJZ - k—i‘;l V,e(ei’eo)D:O&,e = 0. (2-27)
A=1 1=1

But V(eo,e&) =0, and 1f we put

D§£_2 CiE + ZC)ZE,r 1<2<kml
h=1 r=k-m

we ﬁnd from (2.27)

2 CVfes) 1<i<k km<r<snkl.

This gives analogously
¢, =0, 1<2<kml, km<rc<nkl. (2.28)

Now, equation (2.26) together with equation (2.28) says that for each
unit normal field M in F and for each vector field X of M, D N has no
component in the complementary subbundle F! i.e. the normal subbundle
F is parallel. If we identify all the tangent spaces of le1th Rlltself,
then, since F is parallel and because of equation (2.20), we see that the
(2k-m)-dimensional subspaces of Rxl1 spanned at each point of M by the
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tangent space and the normal space F, are independent of the choice of
the point P of M, which was to be proved.

Theorem 2.9. If the mean curvature vector H # 0 of the
(k+1)-dimensional m-developable space-like ruled surface M is at each
point of M a vectork(r)nf the normal subbundle F, then M is neccessarily a
submanifold of an R, .

Proof: Take again an orthonormal base field &, &, .., § , , such
that £, §,, ..., § | is a base field of F. Then, since ej(k+1)H = V(e,€,)
€ F we have again

Vi XY)=..=V (XY)=0
for each two vector fields X and Y of y(M).

Next, if we have (2.23), tthr_l we find from (2.24) again (2.26).
Moreover, since the vector fields Deg o 1<i<k, 1< 2 < km-1 have
no components in the complementary subbundle F!, we find because of
(2.27) again (2.28) and this completes the proof.
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