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ABSTRACT

Let M be a hypersurface in (n+1) -dimensional Euclidean space E™' and M be a
parallel hypersurface to M.

The higher order Gaussian curvatures of Mare known ([1], [2]).

In this paper we give the higher order Gaussian curvatures of M by using its principal
curvatures and a new lemma 2.1,

Ali GORGULU’s paper [5] gives the same results. But he uses a different method.
So, our study offers a new and direct method.

1. INTRODUCTION

Normal curvatures, principal curvatures for hypersurfaces and the
relavent higher order Gaussian curvatures are invariants independent of the
choice of coordinates.

There has been some recent studies on the relations between higher
order Gaussian curvatures of a hypersurface M in E™! and that of
another hypersurface M which is parallel to M [5].

These invariants, relavent definitions and theorems are generalized by
replacing E™! with a (n+1) -Riemanniann manifold [7).

Using the definition of Gaussian curvatures in [5] and [7], geometric
interpretations and results along with some relations are obtained.

In this work, although the same definition is used, an original lemma
is stated and proved by induction. Thus, this paper introduces a brand
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new lemma and a new method to give the relations in between the higher
order Gaussian curvatures for the parallel hypersurfaces.

In each step of the induction deals with a unique hypersurface. For
cxample, when n = 5, for the calculations of relations between 3rd degree
Gaussian curvature, we considered a S-dimensional hypersurface in ES.

The new method and the lemma introduced in this work is not only
applicable to the parallel hypersurface pairs but also is applicable to the
pedal hypersurface pairs and invers hypersurface pairs, as well.

Evidently, x? and Kip“, of the lemma, are distinct dimensional i-th
curvatures and there is no doubt about the additions of them, geometricaly
or algebraicaly.

Let M and M be two hypersurfaces in E™!. If N is the unit normal
vector field of M then N is the unit nomLal vector field of M such that N
is parallel translated vector field of N onM, then we have that

n+l a
N = Z a—,
where each a is a ¢” function on M.

If there is a function

M- M

P — EP) = OP + i\.

So, the coefficients of N satisfy that

a(F@) = a(P), VP € M,

ThenMis called a parallel hypersurface to M, where r € IR is a
constant [3].

Theorem 1.1. Let M and Mare two hypersurfaces, such that M is
parallel hypersurface to M. Then for X € (M) and X € X(p), We have

1. EX) = X + 15X) .
2. YFX) = S .

3. If k is a principal curvature of M at the point P in the direction
X, then is the principal curvature of M at the point f(P) in
direction F,(X), that is,
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EX) = 1+k EX)

which means that F preserves principal directinos, where F, is the
diferential of F [4].

) : —m
2. CALCULATIONS OF xj(" IN TERMS OF xj""

Let M and M are two hypersurfaces in E™!, such that M be parallel
to M, where k 1 € j < n are the principal curvatures in directions, X 1
€£j<nat thc point P of M and F,(X) are the principal directions of M

at the point F(P) then we know [6] that
k

$EX) = i FX,

SEX) = lf:kz FX,

~ k
SFX)= —2-FX.
1+rk 1
Thus, we have 1

_ K,
S(F*XJ)-EFXJ 1<j<n,

where S is the shapc operator of M and so

A (1)
J 1+rk

are the prmc1pal cunvatures of M, [4].

According to equation (1) and we know the higher order Gaussian

curvatures of M (1], [2]) by
Kin) = 2 k,
_]—l
()
K, 2 k k

Jl<12=l h

(n)
L 2

j1<j2<...<jp=1

B

Bxg
1}
—

N
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where kj denotes j - th principal curvature functions on M, 1 < i sn

The curvatures KI(“) and Kn(") are the Gaussian and mean curvature
functions on M.

In a similar way, we verify directly that the higher order Gaussian
curvatures of M are defined by:

—m) LIS
K = k;,
Fl
O -
= z k.l kj ’
j1<j2=1 12
—m b - -
K = 2 kk .k,
P . . 1
_]1<_‘2<...<JP—
B
x =11 k,
il
= — — k.
where kj » denotes the j -th principal curvature functions on M andkj = N Jk
. +k.
1<j<n, [4]. 3

As a result of these relations, we give the theorem 2.2 for the
higher order Gaussian curvatures of parallel hypersurfaces, which is
proved by induction method and using the following lemma 2.1.

Lemma 2.1. Let M be a hypersurface of E™!, There are the
following relations between the higher order Gaussian curvature functions
and the principal curvature functions of M:

@ %@ + k, = K®D L, 1<p+l <,
® K +k, =k 1<pH <n,
© x”+k k0= 1<pr <,
Proof:

(a) According to the definition, we have

® —
X ‘k1+k2+°"+kp ,1<p<hn,
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(p+1) -
.3 _k1+k2+...+kp+kp+1,

®
K+ kp+1'

(b) From the definition

® =
x= S kk.k, l<p<n
P . s . hh )
_]1<_]2<...<_]P=1

We multiply both sides of this equation by kP+1 then we have

® P
ko=l 3 Kk.K K,

j1<j2<...<jp
P
= ¥ kk.kk,
j1<j2<...<jp U ) ’
p+l

j j'"kj k.i i
j1<j2<...<jp<jp_1 12 ppd

= (&
p+l }
(c) From the definition we have
pH
= Y kk.k

r L . i3
Ji<ip<<ig=l 172 =

P
@+
= kk .k
K ( 2 Jlkj2 'kJ,)

J1<ip<e<i=1

p \
+ > k k .k ) k
s . hd 5 1

J1<ip<e<hp.q =1 R P

or

which completes the proof.

In this lemma Kr(P) and Kr@”) is not defined on the same manifold.
For example Kr(") and Kr(P”) are defined on p-dimensional and
(p+1)-dimensional manifolds, respectively. We know that p-dimensional
manifold is included in the p+1-dimensional manifold. So we can apply
the calculation rules to these functions at every point of the manifolds.

Now, we can give the following theorem.
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Theorem 2.2. Let M and M be two hypersurfaces in E™!, such that

M is parallel to M. For any natural numbers s, 1 < s < n. Ks(“) and

—
K
s

denote the s-th higher order Gaussian curvatures of M andl\_’l, respectively.

Then we have
o i6-D) ... (i-s+1) is ®
3 __)'(__ £

—m)
K

s

i=s S

L)
1+2r’1«:i!l

=S
Proof: We will apply the induction method to complete the proof.
This method has two steps:

First step: we show that the theorem is true for the cases

(i) s=landn=1,n

(i) s=2andn=2,n=3,n=4

(iii) s=3andn=3n=4,n=5.

Second step: we assume that the theorem is true for s = q, n = p

and then we will show that it is also true for s = q, n = p+1.

At first:

(i) For s = 1, n = 1, then we have

For s =
—2)

L,
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For s = 1, n = 3, then

- - - - = @ -
K =ij=kl+k2+k3=|<1 +k;
=1
35 .10
2K
— _i=l
3
i B
1+Zr1<i
j=1
(ii)) For s = 2, n = 2, we have
(V)]
) 2 - - X,
o= 2 kK sh h=—a—g
<j,=1
HND) 1+r1<l +r
2 .4y
3 i(i-1) 2 @
= =2 2! !
2,
1+2r11<i(2)
i=1
For s = 2, n = 3, we have
—_3 3 _ - - - - -
2 = 2 i j2=kl k2+kl'k3+k2

2 )]
=K, + ——5———— K
1+ rk3
3.,
2 i(i-1) 1-2K:3)
3,
1+ 3 rIKi(a)

i=1

For s = 2, n = 4, we have

@ 4o - - - - - - —
K, = X kk =k .k+k . k+k .k +k
J1<ip=1
e k, o)
= + i
1+rk4
4 . _ i @
¥ id 12 ®
=1=2 2! !
W)

1+ 2 K,
i=1

)
)

5 -

73
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(iii) For s = 3, n = 3, we have
©=- Y EEE-=K.K.K
<ip<ig=1 bk P
&)

® 2 3 3(3)
1+r1< +IK, +TK

2 i(-1)(i-2) 1—3K(3)
_5 3 i
3
1+3 rlKG)

i=1

For s = 3, n = 4, we have
—@ 4 -
K, = 4 2 kj1 ka kj3 = klkzk3 + kl.k.j.k
J1<ip<is=l1
—3 k4 )}

X, +
1+ ok,
é i(G-1)G-2) 3 @
== 3 '
4
1+ r’K()

i=1

|
i

NW'I
Nal
Rall
+
=
Rl

For s = 3,

%
i
Mu- =
1]
I
Rl
Nl
+
N
Rall
N
+
o
Nl
|
+
|
ol
|
+
=1
Bl
i

w
[

+kkk+ kkko+ KRk o+ kK +kkk
-9, kg =@
3 b+rk, 2
5 ., . .
3 1(1-1)(1'2)3-31(@
_ = 3! !
5
1+ rlKi(S)

Second step:

Now, let assume that the theorem is true for s = q,

= p and we
will show that it is also true for s = q, n = p+l.
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This means that
2 i(i-1)..(i-g+1) qlc(p)

o 5«

q o

1+ 2
and we will show that
1
*’Z* iGi-1)..G-q+1) i'qnf"*”

1(P)

]_(.;pﬂ): fry q!
p+l
1+3r ’K(p”
i=1

In the equation
e _ 0 kg -0

q T 1 +rk 9!
p+l

we can write that

2 i(i-1)...G-q+ 1) i qK(P) o i(i-])..(0-q+2) ig+1 ©
E@H) i=q q! kp+l i=ql (gD !
4 P 1 + 1k P
1+ 3 e P+l 1+ 3 rc”
i=l i=1
P .. . .
(1 + ik 1) 2 i(i-1)..(i-q+1) i qK@ + k 12 i(i-1)...(-q+2) 1—q+11c1@>
= pr i=q q i=g-1 (q'l)!
P
1 (P)
(1+1k,) [1 + 21 }
£
@+ +§ (+DIED-.(-q42) j1, @) | PHUPE-D. (pq+2),pq+1 0
4 q| q|

pl

1 1

Z 1 1 (P+ ) IPHK(P‘;)
i=t

Then
"2” iGi-1)...G-q+1) a @D
—_ g q! i
q p+l 1 (P+)

I+ 3Yrk

i=1

which completes the proof in this case.
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Now; we can put q = s and p+1 = n in the last equation, we obtain

3 iGi-1)..(i-s+1) 55 ©
(n) 3

i=s 8!

n .
L+y rlKi(n)

i=1

which completes the proof of the theorem.
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