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ABSTRACT

In [6] it is shown, that weak orders, a subclass of series prallel posets, are represented
by bands. In this paper a representation of series parallel posets is given and it is shown
how all weak ordered finite bands can be constructed. We first want to give a construction
of CDC’s as a set of special n-tuppels of natural numbers. After this we assign to each of
these tuppels a rectangular band and show how weak ordered bands can be thus constructed.
Moreover all weak ordered bands are constructed in this way.

1. INTRODUCTION

In 1986 Mitsch [3] showed that to any semigroup S a natural partial
order can be defined by

a<bifa=bx=yb=ax for some x,y € S.

This order is an extension of the natural partial order on idepotent
elements. In {4] Neggers showed that posets and poset homomorphisms
form a category which is equivalent to the category of pogroupoids. This
idea was carried on in [2], where it is shown that a pogroupoid of a
weak order is a semigroup.

Therefore the following question seemed natural: When is a poset a
natural poset of a semigroup? We also say that a semigroup represents a
poset if the natural poset of the semigroup is isomorphic with the given
poset. Hence we can reformulate the above question: When is a poset
represented by a semigroup? Some classes are known to be represented,
which we want to introduce in this paper.

We use a <btoexpressa<bbuta#b Andifagbandb£a
then we writc a || b. A poset is called a weak order if Il defines an
equivalence relation.
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We need the equivalence J, one of Green’s relation, given by
a ] b if S'aS! = $'bS!.

On the bands we have a J b if a = aba and b = bab [1]. J is used
in theorem 4.1 and in the proof of theorem 4.2 and theorem 4.3.

2, SERIES PARALLEL POSETS

A partial ordered set is called series parallel if it can be constructed
from singeltons using the operations of disjoint sum, denoted by ‘+’, and
linear sums, denoted by ‘®’. For example trees are sericsparallel as well
as weak orders. A known result is:

Theorem 2.1. (Series-parallel-N-Theorem) [5] [9] A finite ordered
sct is series parallel if and only if it contains no subset isomorphic to N.

To prove the maintheorem we need results found in [7]. Special
bands are used there, which are defined as follows:

Definition 2.2. A band (respectively a semigroup) is called a RZ
band (respectively a RZ semigroup) if its set of minimal elements form a
rightzero semigroup.

Theorem 2.3. [7] Let L'SJi, i = 1, 2 be orders which are represented
by RZ bands, then E-)l + @2 is represented by B, v B,, *). The
multiplication is given by

my if xe¢ B, y e B
x ¥ y = 1 i i
Xy else

where m, is a fixed minimal element in Bi.

Lemma 24. [7] Let G}, i = 1, 2 two orders which are represented
by bands B, , i = I, 2 then O © O is represented by (B, v B, %)
where
fx ifx e B,ye B,

y ifxe B,ye B,
\xy clse
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These results show that if two posets are represented by RZ bands,
than also their disjoint and linear sum is represented by a RZ band.
Consequently:

Theorem 2.5. Any series parallel order @ is represented by a RZ
band B.

Proof. Let a be the defining expression of @ If ®is not a singelton
the expression consists of two smaller subexpressions, that are connected
by either ‘+’ or ‘®’. Since we showed that a cardinal sum as well as a
linear sum of orders, which are represented by RZ bands are again
represented by RZ bands and obviously the singelton is represented by a
RZ band, an easy induction argument on the length of the expression a
completes in proof. ‘

Example 2.6. Let a be the defining expression of a series parallel
ordered set @ given by

a=>1®(I+) @ 1 + 1) + 1 & (1+1) @ 1))) ® (1+1)

To distinguish between the elements we rewrite a as:
a=(¢c; ® (((ey+e) D (e, +es )' + (e, @ (ejtey ® e D (ote)
Py

P P

1 2

The Hasse diagram of this order is:

Expression of the form e, + e, are represented by bands with the
following multiplication table:




S
s
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S

Using this for e, and e, we get the table for P,. The tables for P

and P2 are combinations of this table as described above. We get

Finally the complete table is given by:

We recall some definitions and a result found in [6]. Some finite
A Crown

semilattice have a special form and are obviously weakly ordered.
Definition 3.1. A semilattice Y of the form

3. CROWN DIAMONDS CHAINS

is called a crown.
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Definition 32. A semilattice Y of the form

A Diamond
is called a diamond.

Let @, i =1, 2 be two posets such that has @ a greatest element g
and @ has a smallest clement s. Then the glue-linear sum of @ and @
is defined to be

Q@ (§\{s) = (§ \{g) ® G,

Definition 3.3. A semilattice Y is called a crown-diamond-chain if it
is glue-linear sum of chains, diamonds and a crown as last summand or a
glue-linear sum of chains and diamonds.

A Crown-Diamond-Chain

The following theorem gives a description of finite weakly ordered
semilattices:

Theorem 3.4. [6] A finite semilattice Y is weak-ordered if and only
if it is a crown-diamond-chain.
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Since a CDC is weak ordered it is also a series parallel order. The
defining expression of a CDC has the following obvious properties:

1. it doesn’t start with (1 + ... + 1) and

2. it contains no subpart (I + -t )& Q,L,*’_D’ k, k, > 1.

k

Consequently and CDC can be represented by a sequence
X >0 ifiis odd

= (X, X,, ... ith { ! o s
=X %) Wi x> 1if i is even.

Such a seqgence is transformed into a defining expression as follows:
a=(1®.@01H)dd+.+HQ@1®. .02 ..
! % %3
From this it should be clear how to receive a sequence from a defining

expression.

But these sequences do not only describe the general structure of a
CDC. With its help a set of n-tuppels can be given, such that each
element of the given CDC corresponds to one of these tuppels and this
set can be endowed with a multiplication, that yields a CDC structure.

Definition 3.5. Let ¢ = (xl, ey xn) be a sequence that describes a
CDC, then (c) denotes the set of all n-tuppels (t, .., t) such that 0 <
<x; and if t < X, than t., = 0 and max t:i=1,..,n>0.

Lemma 3.6. Let ¢ = (x, ..., x) then Kc)| = Zi=l X,

Proof. We prove this by induction. Let the length of ¢ be one, then
the result follows immediatly. Now we assume that for sequences ¢ with
length k thc result is true. If we take a sequence with length k+1, then
we have 2 X; elements with t,1 = 0. Adding the x_  cases for tk > 0
we get the rcsult Note that if ter > 0 then t = x fori <k

Now that we saw that (c) has exactly the same number than the
CDC which is defined by ¢, we will give a multiplication on {(c) such
that it becomes a CDC with the same defining expression, that means (c)
represents the given CDC and at the same time we saw, that all CDC
can be constructed as a set {c) for some, one, sequence c.
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Theorem 3.7. Let ¢ = (X, ..., x ). If we define on {c) the following
multiplication:

(Spp o 8 * (1 o 1) = (@50 s o [55 1]

where

W] =
[S‘ ‘] min (s;t) clse

then ({(c), *) becomes a CDC.

Oifiisevenandsi;!:ti

Proof. The given multiplication is idempotent and commuttive. We
have to show that it is associative and closed. It sufficies to show hat
[.,.] is associative on the components. We observe the case where i = 2k
and i # 2k.

i # 2k [[a,b],d] = min(min (a,b)d) = min(a ,b.d) = [a,[b,d]]

1717

Now we turn to the even components:

_’[%"E]ifbfdi

o __ ’[ai’di]ifai=bi .
[a,b],d] [a.[b;.d]]:= \la,.01=0if b, # g,

" \0.d]=0ifa #b,

To check whether these products are equal, we have to consider two
cases a = d, and a # d.

If a = d and a, = b, then b, = d, too and [[a,bld] = 2 = [a,
[bi,di]]. If a = di and a # bi then di # bi too and we have [[ai,bi],di] =
[0.d4] = 0 [2,0] = [a,.[b,.d ]]. Now we look after a, v d. In this case all
of the above outcomes ore 0. Consequently the multiplication * is
associative since:

(a*b)*d

((a, b,1.d,)....[[a, b 1.d.]) =
([2,.[b,.4,1].-..[a,b,d 1]) =
a*(b*d)

It remains to show that the multiplication is closed. If a = b than
we know that a*b = a*a = a. Let a # b, then there is an index i,
minimal, such that a # b,, say a < b. Conseqeuently a, < X, and a , =
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0. Moreover a_ = 0 when k > i. All components d.k = [ak,bk] of a*b with
k > i are 0 and the components d_with k < i are a =b. If iis even
then d = 0 and a*b € (c). If i is odd then d, = min(a,b) = a and a*b
is in {c).

This semilattice is obviously a CDC.

4. WEAK ORDERED BANDS

Now we assign to each element of a CDC = ({c),*) a rectangular
band RB,, a € (c) . The rectangular bands RB, are arbitrary except for
the elements a = (Xx’ Xps e Kyt 0, ..., 0). For these elements RBa
consists of only one element, say x,. On the set

W:={@x):ae{) x ¢ RB,}
we define the following multiplication.
(ax) ©(by) = (a * b 6(a, b, x, y))
where 6(a, b, x, y) is defined by
xifa=a*b, a#b

yifb=a*ba#b

0@, b, x, y) =
Y xyifa=>b

X,y €lse

Here X, 18 the only element in RB,,,.
We need the following

Theorem 4.1. [6] A finite band B is weak ordered if and only if
the following properties hold:

1. B/T is a crown-diamond-chain and
2.a<b&o al <b)
to show that

Theorem 42. (W,9) is a weak ordered band.
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Proof. The given multiplication is obvioysly closed and it is easy to
see, that it is idempotent, since

(ax) @(ax) = (a*a, O(a, a, x, X)) = (ax)
Now we show that ©is a associative.
(5,%)) ©(5,%) O(s,x,) =
=(s; *s, 9(s1, S50 Xp» X)) Q(syX,) =
= (5, 8) * 5, 805, * 5,5, 005, 5,0 X0 X X)) (1)
(Sl’xl) o((sz’x2) O(S3,X3)) =
= (Sl’xl) O(S2 * S3, 9(52, Say XZ’ X3)) =
= (5, (5, * 5,0, 0(5,. 5, * 5, X, 6(s,, 5,0 X0 X)) @

So the multiplication is associative if(1) = (2). The left side, this is
(1) depends on 9(sl, $,» X}, X,) hence we get

L1 e(sl, S30 Xp» x3) if s, <8,

L2 0(s,, s,, x,, x;) if s, <8,
=

L4 0(s,

LX) f s Il 's

Sy 835 X x 2
1 2

The right side depend on 9(s2, S5 %5, X,) and we get

R1 9(s1, 8y Xp» Xy) if 5, < 8y

R2 (-)(sl, $30 X x3) if s, <'s,

R3 6(s,, s2, X, Xx) if 5, =5,

R46(sl,s2*s X x )1fs2||s

3’
To check associativity we have to show that Li = Rj Vi,.
LIR1 s, <'s, and s, < s, hence s, <s, and L1 = x = RL.
L1R2 L1 equals R2 indeed.

LIR3 s, <'s, and s, = s, yields s, <'s, hence L1 = x, = R3.
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L1R4 s, < s, and s, || s, yields s, < s, since {c) is a CDC, hence

1 2 3
L1 =x, = R4.
L2R1 s, < s, used in R1 gives x, and s, <'s, yields x, in L2.
L2R2 s, <'s, and s, < s, yields s, <'s hence L2 = x; = R2.

L2R3 s, <8 and 8, = 5,. Hence s, < s, and L2 = x,x; = R3.

3

L2R4 Since s, || s, and because (c) is a CDC we have also s; < s,.

Consequently s, * s, <s; <s, and L2 = x, = R4
2 3
L3Rl s =s, and s, < s, yields s, <'s, hence L3 = xx, = R1.
L3R2 s, =8, and 8, <8, yields s, <8 hence L3 = x, = R2.

L3R3 s, =8, and s, = s, hence L, = (x,x)xy = X, (x,x;) = R3.
L3R4 s, =8, and s, i s yields also s, || s, hence L3 = xsl,,=53 =
X« = R4, since s, * s, < 5, =5,

2 3

L4R1 s, Il s, and s,

- - *
14 = xsl*s2 = R1 because s, * s, <'s, < s,.

<'s, yields s < s, since {c) is a CDC. Hence

3

L4R2 Here we get s, < s, and consequently s, < s

5 1 * S, Hence L4
=X, = R2.

1

L4R3 We have s || s, and s, = s, therefore s, || s, and 14 = xsl;,=Sz

2= S3'

1

R3 since 5, * 8, <8

L4R4 s, II's, and s, I s, yields s, || s, since (c) is a CDC hence s,
= R4,

%
s 2 3 s s_*s

= * _ =
, =8 s, < §;, s,. Consequently 14 = sz*z = x2 :

This proves that (W,®) is a band. It is clear that W/J = (c) and
(ax) < (by) if and only if a < b, hence (W,0) is a weak ordered band
according to theorem 4.1.

Theorem 43. Let B be a weak ordered band, then there are a CDC
({c),*), rectangular bands RB , a € {(c), such that
a

B = (W, 9

where (W,0) is defined as shown above.
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Proof. Since B is weak ordered we know that B/J is a CDC and B

is a CDC of rectangular bands.

NowifeeRBaandfe RBbthancfe RB

a*b’

where ‘*’ denotes

the multiplication in B/J. More precisly if a < b then ef = ¢ = fe, since
e < f if a < b. Now suppose that a |} b.- Then we know that ef < ¢ and

ef < f since a*b < a and a * b < b. Consequently ef = efe

Moreover let ¢’ € RB, and fe RB, then

et = e'ee’l’ = ¢ ef & = ef = ef ff’ = ef.

—
<RB a*b

But we can even show more. Let p € RB,,, then
(el p=psince p<eandp<f

we also have p(ef) = p and therefore
ef = (ehpled) = p

and RB,,, consists only of one element.
These observations showed that B = (W,3 where
W={(ax):ae BJ,x e RB_}

Hence we established the required statement.

Example 44, Let ¢ = (1, 2, 2) be a CDC with

) ={(1,0,0), (1, 1,0), (1, 2,0, (1, 2, D), (1, 2, 2)}.

This CDC is given by the following diagram

c=(122) (W)

= fe.
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what must be a oneelementic set. RB, = {x,y} with xy =

XX =

A. TIEFENBACH

We choose isomorph rectangular bands RB, except for a = (1, 0, 0)
= y and yx
x then we get

w = {((1,0,0), 1),
(1, 1, 0) x), ((1, 1, 0), y), (A, 2, 0), x), ((1, 2, 0), y),
(«, 2, 1, x), (1, 2, D, y),
((1, 2, 2), x), (1, 2, 2), Y} =

= {w0 Wi, Wy, Wy W, W, W, Wo, w8}

The natural partial order i given above. The multiplication table is:

* W, WOW, W, W, W, W, W W
Wo | Wy, W, W, W, W, W, W, W, W
WolW W OW, W W W W, W, W,
Wl W W W, W W W, W, W W,
Wl W W W W, W, W, W W W
wlw oW oW, oW, W, W, W, W, W,
wolwowowW, W W, W, W, W W
We | Wy woow, oW W, W W W, W
W Wy WOW, W, W, W, W, W, W
We | Wy W, W, W, W, W, W, W, W
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