Commun. Fac. Sci. Univ. Ank. Series A1 V. 46. pp. 37-48 (1997)

THE REPRESENTATION OF SERIES-PARALLEL-ORDERED SETS

ANDREAS TIEFENBACH

Department of Mathematics, Middle East Technical University, TURKEY

(Received March 31, 1997; Accepted June 17, 1997)

ABSTRACT

In [6] it is shown, that weak orders, a subclass of series prallel posets, are represented by bands. In this paper a representation of series parallel posets is given and it is shown how all weak ordered finite bands can be constructed. We first want to give a construction of CDC's as a set of special n-tuppels of natural numbers. After this we assign to each of these tuppels a rectangular band and show how weak ordered bands can be thus constructed. Moreover all weak ordered bands are constructed in this way.

1. INTRODUCTION

In 1986 Mitsch [3] showed that to any semigroup S a natural partial order can be defined by

 $a \le b$ if a = bx = yb = ax for some $x, y \in S^1$.

This order is an extension of the natural partial order on idepotent elements. In [4] Neggers showed that posets and poset homomorphisms form a category which is equivalent to the category of pogroupoids. This idea was carried on in [2], where it is shown that a pogroupoid of a weak order is a semigroup.

Therefore the following question seemed natural: When is a poset a natural poset of a semigroup? We also say that a semigroup represents a poset if the natural poset of the semigroup is isomorphic with the given poset. Hence we can reformulate the above question: When is a poset represented by a semigroup? Some classes are known to be represented, which we want to introduce in this paper.

We use a < b to express $a \le b$ but $a \ne b$. And if $a \le b$ and $b \le a$ then we write $a \parallel b$. A poset is called a weak order if \parallel defines an equivalence relation.

We need the equivalence J, one of Green's relation, given by a J b if $S^1aS^1 = S^1bS^1$.

On the bands we have a J b if a = aba and b = bab [1]. J is used in theorem 4.1 and in the proof of theorem 4.2 and theorem 4.3.

2. SERIES PARALLEL POSETS

A partial ordered set is called series parallel if it can be constructed from singeltons using the operations of disjoint sum, denoted by '+', and linear sums, denoted by '\theta'. For example trees are seriesparallel as well as weak orders. A known result is:

Theorem 2.1. (Series-parallel-N-Theorem) [5] [9] A finite ordered set is series parallel if and only if it contains no subset isomorphic to N.

To prove the maintheorem we need results found in [7]. Special bands are used there, which are defined as follows:

Definition 2.2. A band (respectively a semigroup) is called a RZ band (respectively a RZ semigroup) if its set of minimal elements form a rightzero semigroup.

Theorem 2.3. [7] Let \mathfrak{Q}_1 , i=1, 2 be orders which are represented by RZ bands, then $\mathfrak{Q}_1 + \mathfrak{Q}_2$ is represented by $(B_1 \cup B_2, *)$. The multiplication is given by

$$x * y = \begin{cases} m_i y & \text{if } x \notin B_i, y \in B_i \\ xy & \text{else} \end{cases}$$

where m_i is a fixed minimal element in B_i.

Lemma 2.4. [7] Let \mathfrak{Q}_i , i=1, 2 two orders which are represented by bands B_i , i=1, 2 then $\mathfrak{Q}_1 \oplus \mathfrak{Q}_2$ is represented by $(B_1 \cup B_2, *)$ where

$$x * y = \begin{cases} x & \text{if } x \in B_1, y \in B_2 \\ y & \text{if } x \in B_2, y \in B_1 \\ xy & \text{else} \end{cases}$$

These results show that if two posets are represented by RZ bands, than also their disjoint and linear sum is represented by a RZ band. Consequently:

Theorem 2.5. Any series parallel order \circ is represented by a RZ band B.

Proof. Let **a** be the defining expression of $\mathfrak O$ If $\mathfrak O$ is not a singelton the expression consists of two smaller subexpressions, that are connected by either '+' or ' $\mathfrak O$ '. Since we showed that a cardinal sum as well as a linear sum of orders, which are represented by RZ bands are again represented by RZ bands and obviously the singelton is represented by a RZ band, an easy induction argument on the length of the expression **a** completes in proof.

Example 2.6. Let a be the defining expression of a series parallel ordered set Q, given by

$$\mathbf{a} = (1 \oplus (((1+1) \oplus (1+1)) + (1 \oplus (1+1) \oplus 1))) \oplus (1+1)$$

To distinguish between the elements we rewrite
$$\mathbf{a}$$
 as:

$$\mathbf{a} = (\mathbf{e}_1 \oplus \underbrace{(((\mathbf{e}_2 + \mathbf{e}_3) \oplus (\mathbf{e}_4 + \mathbf{e}_5))}_{P_1} + \underbrace{(\mathbf{e}_6 \oplus (\mathbf{e}_7 + \mathbf{e}_8) \oplus \mathbf{e}_9)))}_{P_2} \oplus \underbrace{(\mathbf{e}_{10} + \mathbf{e}_{11})}_{P_3}$$

The Hasse diagram of this order is:

Expression of the form $\mathbf{e_i} + \mathbf{e_j}$ are represented by bands with the following multiplication table:

$$\begin{array}{c|cccc} * & e_i & e_j \\ \hline e_i & e_i & e_j \\ e_j & e_i & e_j \end{array}$$

Using this for e_{10} and e_{11} we get the table for P_3 . The tables for P_1 and P_2 are combinations of this table as described above. We get

*	$\frac{e_2}{e_2}$	e ₃	e ₄	e ₅	 *	e ₆	e ₇	e ₈	e ₉	
\mathbf{e}_{1}	e_2	e_3	e_2	e_2	e ₆	e ₆	e_6	e ₆	e ₆	
e_2	e ₂ e ₂	e_3	e_3	e_3	e ₇	e_6	e_7	e ₈	e_7	
e ₃	e ₂	e_3	e_4	e_{5}	e ₈	e_6	e_7	e_8	e_8	
e ₄	e ₂	e_3	e_4	e_5	e ₉	e ₆	e_7	e_8	e_9	

Finally the complete table is given by:

*	e ₁	e ₂	e ₃	e ₄	e ₅	e ₆	e ₇	e ₈	e ₉	e ₁₀	e ₁₁
e ₁	\mathbf{e}_{1}	$\mathbf{e}_{_{\mathbf{l}}}$	$\mathbf{e}_{\mathbf{l}}$	$\mathbf{e}_{\mathbf{l}}$	\mathbf{e}_{1}	e ₁	e	e	e ₁	e ₁	e ₁
$\overline{e_2}$	e ₁	e ₂	e ₃	e_2	\mathbf{e}_{2}	e ₆	e ₆	e ₆	e ₆	e_2	e ₂
e_3	e ₁	e ₂	e_3	e_3	e_3	e ₆	e_6	e_6	e ₆	e ₃	e_3
e ₄	e ₁	e ₂	e_3	e_4	e ₅	e ₆	e ₆	e_6	e ₆	e ₄	e_4
e ₅	e	e_2	e ₃	e_2	e ₅	e ₆	e_6	e_6	e ₆	e ₅	e_5
e ₆	e	e_2	e ₃	e_2	e_2	e ₆	e ₇	e ₆	e ₆	e ₆	e ₆
e ₇	e _i	e_2	\mathbf{e}_{3}	e_2	e_2	e ₆	e ₇	e_8	e ₇	e ₇	e ₇
e ₈	e ₁	e ₂	e_3	e_2	\mathbf{e}_{2}	e ₆	e ₇	e_8	e ₈	e ₈	e_8
e ₉	e ₁	\mathbf{e}_2	e_3	e_2	e_2	e ₆	e_7	e_8	e ₉	e ₉	e_9
e ₁₀	e _l	\mathbf{e}_{2}	e_3	e ₄	e ₅	e ₆	e ₇	e ₈	e ₉	e ₁₀	\mathbf{e}_{ll}
e ₁₁	e ₁	e_2	e_3	e ₄	e ₅	e ₆	e ₇	e ₈	e ₉	e ₁₀	\mathbf{e}_{11}

3. CROWN DIAMONDS CHAINS

We recall some definitions and a result found in [6]. Some finite semilattice have a special form and are obviously weakly ordered.

Definition 3.1. A semilattice Y of the form

A Crown

is called a crown.

Definition 3.2. A semilattice Y of the form

A Diamond

is called a diamond.

Let Q_i , i=1, 2 be two posets such that has Q_i a greatest element g and Q_2 has a smallest element s. Then the glue-linear sum of Q_1 and Q_2 is defined to be

$$\bigcirc \bigoplus_{i} \oplus (\bigcirc_{i} \setminus \{s\}) = (\bigcirc_{i} \setminus \{g\}) \oplus \bigcirc_{2}.$$

Definition 3.3. A semilattice Y is called a crown-diamond-chain if it is glue-linear sum of chains, diamonds and a crown as last summand or a glue-linear sum of chains and diamonds.

A Crown-Diamond-Chain

The following theorem gives a description of finite weakly ordered semilattices:

Theorem 3.4. [6] A finite semilattice Y is weak-ordered if and only if it is a crown-diamond-chain.

Since a CDC is weak ordered it is also a series parallel order. The defining expression of a CDC has the following obvious properties:

- 1. it doesn't start with (1 + ... + 1) and
- 2. it contains no subpart $\underbrace{(1+\ldots+1)}_{k_1} \oplus \underbrace{(1+\ldots+1)}_{k_2}$, $k_1, k_2 > 1$.

Consequently and CDC can be represented by a sequence

$$c = (x_1 \ x_2, \dots x_n)$$
 with
$$\begin{cases} x_i > 0 \text{ if } i \text{ is odd} \\ x_i > 1 \text{ if } i \text{ is even.} \end{cases}$$

Such a sequence is transformed into a defining expression as follows:

$$\mathbf{a} = \underbrace{(1 \oplus \dots \oplus 1)}_{\mathbf{x}_1} \oplus \underbrace{(1 + \dots + 1)}_{\mathbf{x}_2} \oplus \underbrace{(1 \oplus \dots \oplus 1)}_{\mathbf{x}_3} \oplus \dots$$

From this it should be clear how to receive a sequence from a defining expression.

But these sequences do not only describe the general structure of a CDC. With its help a set of n-tuppels can be given, such that each element of the given CDC corresponds to one of these tuppels and this set can be endowed with a multiplication, that yields a CDC structure.

Definition 3.5. Let $c = (x_1, ..., x_n)$ be a sequence that describes a CDC, then $\langle c \rangle$ denotes the set of all n-tuppels $(t_1, ..., t_n)$ such that $0 \le t_1 \le x_1$ and if $t_1 < x_1$ than $t_{i+1} = 0$ and max $(t_i : i = 1, ..., n) > 0$.

Lemma 3.6. Let
$$c = (x_1, ..., x_n)$$
 then $|\langle c \rangle| = \sum_{i=1}^n x_i$

Proof. We prove this by induction. Let the length of c be one, then the result follows immediatly. Now we assume that for sequences c with length k the result is true. If we take a sequence with length k+1, then we have $\sum_{i=1}^{n} x_i$ elements with $t_{k+1} = 0$. Adding the x_{k+1} cases for tk > 0 we get the result. Note that if $t_{k+1} > 0$ then $t_i = x_i$ for $i \le k$.

Now that we saw that $\langle c \rangle$ has exactly the same number than the CDC which is defined by c, we will give a multiplication on $\langle c \rangle$ such that it becomes a CDC with the same defining expression, that means $\langle c \rangle$ represents the given CDC and at the same time we saw, that all CDC can be constructed as a set $\langle c \rangle$ for some, one, sequence c.

Theorem 3.7. Let $c = (x_1, ..., x_n)$. If we define on $\langle c \rangle$ the following multiplication:

$$(s_1, ..., s_n) * (t_1, ..., t_n) = ([s_1, t_1], ..., [s_n, t_n])$$

where

$$\begin{bmatrix} s_i, t_i \end{bmatrix} := \begin{cases} 0 & \text{if i is even and } s_i \neq t_i \\ \min & (s_i, t_i) & \text{else} \end{cases}$$

then $(\langle c \rangle, *)$ becomes a CDC.

Proof. The given multiplication is idempotent and commuttive. We have to show that it is associative and closed. It sufficies to show hat [.,,] is associative on the components. We observe the case where i = 2k and $i \neq 2k$.

$$i \neq 2k [[a_i,b_i],d_i] = min(min (a_i,b_i),d_i) = min(a_i,b_i,d_i) = [a_i,[b_i,d_i]]$$

Now we turn to the even components:

$$[[a_{i}, b_{i}], d_{i}] := \begin{cases} [a_{i}, d_{i}] \text{ if } a_{i} = b_{i} \\ [0, d_{i}] = 0 \text{ if } a_{i} \neq b_{i} \end{cases} [a_{i}, [b_{i}, d_{i}]] := \begin{cases} [a_{i}, d_{i}] \text{ if } b_{i} = d_{i} \\ [a_{i}, 0] = 0 \text{ if } b_{i} \neq d_{i} \end{cases}$$

To check whether these products are equal, we have to consider two cases $a_i = d_i$ and $a_i \neq d_j$.

If $a_i = d_i$ and $a_i = b_i$ then $b_i = d_i$ too and $[[a_i,b_i],d_i] = a_i = [a_i,[b_i,d_i]]$. If $a_i = d_i$ and $a_i \neq b_i$ then $d_i \neq b_i$ too and we have $[[a_i,b_i],d_i] = [0,d_i] = 0$ $[a_i,0] = [a_i,[b_i,d_i]]$. Now we look after a_i v d_i . In this case all of the above outcomes ore 0. Consequently the multiplication * is associative since:

$$(a*b)*d = ([[a_1,b_1],d_1],...,[[a_n,b_n],d_n]) =$$

$$= ([a_1,[b_1,d_1]],...,[a_n,[b_n,d_n]]) =$$

$$= a*(b*d)$$

It remains to show that the multiplication is closed. If a = b than we know that $a^*b = a^*a = a$. Let $a \ne b$, then there is an index i, minimal, such that $a_i \ne b_i$, say $a_i < b_i$. Consequently $a_i < x_i$ and $a_{i+1} = a_i$

0. Moreover $a_k = 0$ when k > i. All components $d_k = [a_k, b_k]$ of a*b with k > i are 0 and the components d_k with k < i are $a_k = b_k$. If i is even then $d_i = 0$ and $a*b \in \langle c \rangle$. If i is odd then $d_i = \min(a_i, b_i) = a_i$ and a*b is in $\langle c \rangle$.

This semilattice is obviously a CDC.

4. WEAK ORDERED BANDS

Now we assign to each element of a CDC = $(\langle c \rangle, *)$ a rectangular band RB_a, $a \in \langle c \rangle$. The rectangular bands RB_a are arbitrary except for the elements $a = (x_1, x_2, ..., x_{2k+1}, 0, ..., 0)$. For these elements RB_a consists of only one element, say x_a . On the set

$$W := \{(a,x) : a \in \langle c \rangle, x \in RB_a\}$$

we define the following multiplication.

$$(a,x) \odot (b,y) = (a * b \theta(a, b, x, y))$$

where $\theta(a, b, x, y)$ is defined by

$$\theta(a, b, x, y) := \begin{cases} x & \text{if } a = a * b, a \neq b \\ y & \text{if } b = a * b, a \neq b \\ xy & \text{if } a = b \\ x_{a*b} & \text{else} \end{cases}$$

Here x_{a*b} is the only element in RB_{a*b} .

We need the following

Theorem 4.1. [6] A finite band B is weak ordered if and only if the following properties hold:

- 1. B/J is a crown-diamond-chain and
- 2. $a < b \Leftrightarrow aJ < bJ$

to show that

Theorem 4.2. (W,O) is a weak ordered band.

Proof. The given multiplication is obviously closed and it is easy to see, that it is idempotent, since

$$(a,x) \odot (a,x) = (a*a, \theta(a, a, x, x)) = (a,x)$$

Now we show that O is a associative.

$$((s_{1},x_{1}) \odot (s_{2},x_{2})) \odot (s_{3},x_{3}) =$$

$$= (s_{1} * s_{2}, \theta(s_{1}, s_{2}, x_{1}, x_{2})) \odot (s_{3},x_{3}) =$$

$$= ((s_{*} s_{2}) * s_{3}, \theta(s_{1} * s_{2}, s_{3}, \theta(s_{1}, s_{2}, x_{1}, x_{2}), x_{3}))$$

$$(1)$$

$$(s_{1},x_{1}) \circ ((s_{2},x_{2}) \circ (s_{3},x_{3})) =$$

$$= (s_{1},x_{1}) \circ (s_{2} * s_{3}, \theta(s_{2}, s_{3}, x_{2}, x_{3})) =$$

$$= (s_{*} (s_{2} * s_{3}), \theta(s_{1}, s_{2} * s_{3}, x_{1}, \theta(s_{2}, s_{3}, x_{2}, x_{3})))$$

$$(2)$$

So the multiplication is associative if (1) = (2). The left side, this is (1) depends on $\theta(s_1, s_2, x_1, x_2)$ hence we get

L1
$$\theta(s_1, s_3, x_1, x_3)$$
 if $s_1 < s_2$

L2
$$\theta(s_2, s_3, x_2, x_3)$$
 if $s_2 < s_1$

L3
$$\theta(\underline{s_1}, s_3, x_1, x_2x_3)$$
 if $s_2 = s_3$

L4
$$\theta(s_1^{-s_2} * s_2, s_3, x_{s_1^*s_2}, x_3)$$
 if $s_1 \parallel s_2$

The right side depend on $\theta(s_2, s_3, x_2, x_3)$ and we get

R1
$$\theta(s_1, s_2, x_1, x_2)$$
 if $s_2 < s_3$

R2
$$\theta(s_1, s_3, x_1, x_3)$$
 if $s_3 < s_2$

R3
$$\theta(s_1, \underbrace{s_2}_{-2}, x_1, x_2x_3)$$
 if $s_2 = s_3$

R4
$$\theta(s_1, s_2^{s_3} * s_3, x_1, x_{s_2 * s_3})$$
 if $s_2 \parallel s_3$

To check associativity we have to show that $Li = Rj \ \forall i,j.$

L1R1 $s_1 < s_2$ and $s_2 < s_3$ hence $s_1 < s_3$ and L1 = $x_1 = R1$.

L1R2 L1 equals R2 indeed.

L1R3 $s_1 < s_2$ and $s_2 = s_3$ yields $s_1 < s_3$ hence L1 = $x_1 = R3$.

L1R4 $s_1 < s_2$ and $s_2 \parallel s_3$ yields $s_1 < s_3$ since $\langle c \rangle$ is a CDC, hence L1 = x_1 = R4.

L2R1 $s_2 < s_1$ used in R1 gives x_2 and $s_2 < s_3$ yields x_2 in L2.

L2R2 $s_2 < s_1$ and $s_3 < s_2$ yields $s_3 < s_1$ hence L2 = x_3 = R2.

L2R3 $s_2 < s_1$ and $s_3 = s_2$. Hence $s_3 < s_1$ and $L2 = x_2x_3 = R3$.

L2R4 Since $s_2 \parallel s_3$ and because $\langle c \rangle$ is a CDC we have also $s_3 < s_1$. Consequently $s_2 * s_3 < s_3 < s_1$ and $L2 = x_{s_1 * s_2} = R4$.

L3R1 $s_1 = s_2$ and $s_2 < s_3$ yields $s_1 < s_3$ hence L3 = $x_1x_2 = R1$.

L3R2 $s_1 = s_2$ and $s_3 < s_2$ yields $s_3 < s_1$ hence L3 = $x_3 = R2$.

L3R3 $s_1 = s_2$ and $s_2 = s_3$ hence $L_3 = (x_1x_1)x_3 = x_1(x_2x_3) = R3$.

L3R4 $s_1 = s_2$ and $s_2 \parallel s_3$ yields also $s_1 \parallel s_3$ hence L3 = $x_{s_1 * s_3} = x_{s_2 * s_3} = x_{s_3 * s_3} = x_{s_3$

L4R1 $s_1 \parallel s_2$ and $s_2 < s_3$ yields $s_1 < s_3$ since $\langle c \rangle$ is a CDC. Hence L4 = $x_{s_1 * s_2} = R1$ because $s_1 * s_2 < s_2 < s_3$.

L4R2 Here we get $s_3 < s_1$ and consequently $s_3 \le s_1 * s_2$. Hence L4 = x_3 = R2.

L4R3 We have $s_1 \parallel s_2$ and $s_2 = s_3$ therefore $s_1 \parallel s_3$ and L4 = $x_{s_1 * s_2} * s_3 * s_4 * s_5 * s_5 * s_5 * s_5 * s_6 * s_6 * s_6 * s_7 * s_7 * s_7 * s_8 * s_8 * s_9 * s_9$

L4R4 $s_1 \parallel s_2$ and $s_2 \parallel s_3$ yields $s_1 \parallel s_3$ since $\langle c \rangle$ is a CDC hence $s_1 * s_2 = s_2 * s_3 < s_1$, s_3 . Consequently L4 = $x_{s_1 * s_2} = x_{s_2 * s_3} = R4$.

This proves that (W, \circ) is a band. It is clear that $W/J \cong \langle c \rangle$ and (a,x) < (b,y) if and only if a < b, hence (W, \circ) is a weak ordered band according to theorem 4.1.

Theorem 4.3. Let B be a weak ordered band, then there are a CDC $(\langle c \rangle, *)$, rectangular bands RB_a, $a \in \langle c \rangle$, such that

 $B \cong (W, \circ)$

where (W,O) is defined as shown above.

Proof. Since B is weak ordered we know that B/J is a CDC and B is a CDC of rectangular bands.

Now if $e \in RB_a$ and $f \in RB_b$ than $ef \in RB_{a*b}$, where '*' denotes the multiplication in B/J. More precisly if a < b then ef = e = fe, since e < f if a < b. Now suppose that $a \parallel b$. Then we know that ef < e and ef < f since a*b < a and a*b < b. Consequently ef = efe = fe. Moreover let $e' \in RB_a$ and $f' \in RB_b$ then

$$e'f' = e'ee'f' = e'\underbrace{ef'}_{\in RB_{a*b}} e' = ef' = ef'ff' = ef.$$

But we can even show more. Let $p \in RB_{a*b}$ then

$$(ef)p = p \text{ since } p < e \text{ and } p < f$$

we also have p(ef) = p and therefore

$$ef = (ef)p(ef) = p$$

and RB_{a*h} consists only of one element.

These observations showed that $B \cong (W,9)$ where

$$W = \{(a,x) : a \in B/J, x \in RB_a\}$$

Hence we established the required statement.

Example 4.4. Let c = (1, 2, 2) be a CDC with

$$\langle c \rangle = \{(1, 0, 0), (1, 1, 0), (1, 2, 0), (1, 2, 1), (1, 2, 2)\}.$$

This CDC is given by the following diagram

We choose isomorph rectangular bands RB_a except for a = (1, 0, 0) what must be a one-elementic set. $RB_a = \{x,y\}$ with xy = yy = y and yx = xx = x then we get

$$W = \{((1, 0, 0), 1), \\ ((1, 1, 0) x), ((1, 1, 0), y), ((1, 2, 0), x), ((1, 2, 0), y), \\ ((1, 2, 1), x), ((1, 2, 1), y), \\ ((1, 2, 2), x), ((1, 2, 2), y)\} = \\ = \{w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7, w_8\}$$

The natural partial order i given above. The multiplication table is:

*	\mathbf{w}_{0}	$\mathbf{w}_{_{\! 1}}$	\mathbf{w}_{2}	\mathbf{w}_{3}	W_4	\mathbf{w}_{5}	\mathbf{w}_{6}	w ₇ _	w ₈
$\overline{\mathbf{w}_0}$	\mathbf{w}_{0}	\mathbf{w}_0	\mathbf{w}_0	\mathbf{w}_{0}	\mathbf{w}_0	\mathbf{w}_0	\mathbf{w}_{0}	\mathbf{w}_0	\mathbf{w}_0
\mathbf{w}_{1}	\mathbf{w}_0	\mathbf{w}_{1}	\mathbf{w}_{2}	\mathbf{w}_0	\mathbf{w}_{0}	\mathbf{w}_{1}	\mathbf{w}_{1}	$\mathbf{w}_{\mathbf{l}}$	$\mathbf{w}_{_{\! 1}}$
\mathbf{w}_2	\mathbf{w}_0	\mathbf{w}_{1}	\mathbf{w}_2	\mathbf{w}_0	\mathbf{w}_{0}	\mathbf{w}_{2}	\mathbf{w}_{2}	\mathbf{w}_{2}	\mathbf{w}_{2}
\mathbf{w}_{3}	\mathbf{w}_{0}	\mathbf{w}_{0}	\mathbf{w}_{0}	\mathbf{w}_{3}	W_4	\mathbf{w}_{3}	\mathbf{w}_{3}	\mathbf{w}_{3}	\mathbf{w}_{3}
\mathbf{w}_{4}	\mathbf{w}_0	\mathbf{w}_{0}	\mathbf{w}_{0}	\mathbf{w}_{3}	$\mathbf{w}_{_{4}}$	$\mathbf{w}_{_{4}}$	\mathbf{w}_{4}	\mathbf{w}_{4}	\mathbf{w}_{4}
\mathbf{w}_{5}	\mathbf{w}_{0}	\mathbf{w}_{1}	\mathbf{w}_{2}	\mathbf{w}_{3}	\mathbf{w}_{4}	\mathbf{w}_{5}	\mathbf{w}_{6}	\mathbf{w}_{5}	\mathbf{w}_{5}
\mathbf{w}_{6}	\mathbf{w}_{0}	\mathbf{w}_{l}	\mathbf{w}_{2}	\mathbf{w}_{3}	\mathbf{w}_{4}	\mathbf{w}_{5}	\mathbf{w}_{6}	\mathbf{w}_{6}	\mathbf{w}_{6}
\mathbf{w}_7	\mathbf{w}_{0}	\mathbf{w}_{1}	\mathbf{w}_{2}	\mathbf{w}_{3}	W_4	\mathbf{w}_{5}	\mathbf{w}_{6}	\mathbf{w}_7	\mathbf{w}_{8}
w ₈	\mathbf{w}_0	\mathbf{w}_{1}	\mathbf{w}_{2}	\mathbf{w}_{3}	$\mathbf{w}_{_{\!\!4}}$	\mathbf{w}_{5}	\mathbf{w}_{6}	\mathbf{w}_7	\mathbf{w}_8

REFERENCES

- [1] J.M. HOWIE. An Introduction to Semigroup Theory. Academic Press, London, 1976.
- [2] H.S. KIM and J. NEGGERS. Modular posets and semigroups. Semigroup Forum, 53:57-62, 1996.
- [3] H. MITSCH. A natural partial order for semigroups. Proc. Amer. math. Soc., 97:384-388, 1986.
- [4] J. NEGGERS. Partially ordered sets and groupoids. Kyungpook Math. J., 16:7-20, 1976.
- [5] I. RIVAL. Stories about order and the letter n. Contemporary Math., 57:263-285, 1986..
- [6] A. TIEFENBACH. On weak orders and finite bands, submitted.
- [7] A. TIEFENBACH. Folded chains and special cardinal sums. unpublished, 1996.
- [8] J. VALDES, R.E. TARJAN, and E.L. LAWLER. The recognition of series parallel digraphs. Siam J. Computing, 11:298-313, 1982.