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ABSTRACT

The taxicab metric, of course, was known before the taûcab geometry was introduced 
in 1975. Since then, the studies have shown that the taxicab geometry is better model in 
urban world. The defînition of inner-product and norm in taxicab geometry are given in [1]. 
In this paper, we will discuss some properties of taxicab norm and the isometries of taxicab 
geometry.

1. INTRODUCTION
2

Although we can define various metrics on the plane R , we can

1State the most common three of them as follows: Given A = (x^, yp, 
B = yp in R^

b) = + (Yi - yj
cGa, B) = nıax{|x, - , jy^ - yj}
(ÇA, B) = |x, - + ly^ - yj.

The first one is known universally and named by Euclidean metric, 
second one is known as the maximum metric. The third metric arises in 
the problem of travel within a city which has a set of parallel roads 
which intersects a set of parallel avenues at right angles.

By using this metric, named by taxicab metric, E.F. Krause [3] has 
defîned a new geometry, taxicab geometry. He mentioned in his book, 
Taxicab Geometry, that the taxicab geometry is a non-Euclidean geometry. 
It has the same coordinate plane as far as the points andlines are 
conccmed. Only the distance function is different. Intuitively the taxicab 
distance from a point (a^, ap to a point (b^ bp is suggested by the
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route a taxicab might use. It satisfies ali thirteen axioms of Euclid, except 
One, the side-angle-side axioms [5].

There are, of course, some differences betvveen the taxicab and
Euclid geometry which is studied in [2]. Basically, the graphs are
different, and while = 3,14 in Euclid geometry, n. = 4 in taxicabT
geometry. The inner-product and the norm in taxicab geometry is defined 
in [1], We will recall these definitions here and then we win discuss 
some properties of norm and finally we will describe the isometries of 
taxicab geometry.

2. SOME PROPERTIES OF TAXICAB NORM.

2 2Let us denote the taxicab-plane by R .j, = (R , dp.

Definition 1. Given a = (a , a ) and P = (b , b ) in R^ ,
V 1’ 2^ ^12^ T

the taxicab inner-product by
we define

<a, = eja bj + eja^bj

where e. = 1, ab. > 0
-1, ab. < 0

1 1

, i = 1, 2.

Definition 2. Given a = (a , a ) in , we define the taxicab normV 1’ 2-^ T 
of a by

||a||.j, = V<a, oo^ + 2 la^aj.

It is clear that ||a||.j, = d^(0, a).

As it is well known, every inner-product induces a metric, but the 
inverse is not true. Namely, every metric may not be induced by an 
inner-product [4]. We shall prove that the taxicab metric can not be 
induced by any inner-product.

Theorem 1. The taxicab metric, d^, can not be induced by any 
inner-product.

Proof, We know that if the norm were induced by an inner-product, 
<, >, it would hold the polarization identity,

<a, P> = 7 illa -ı- Pl| - ||a - pi| J.
4
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So, for the taxicab norm, it should be true that
<a, P> = (ila + PllJ - lla - Pll^).

It is straightforward computation that for Standard vectors, e^ = (l,0) 
and e^ = (0, 1),

<e,, e,> = J-
1 ’ 4

12 2\(lK2, 0)11^, -11(0, 0)ııJ = 1 ,

<£2. e2> =

<e,. =

(2 2^
11(0, 2)11^ - IKO, 0)||J =

i 2 2\i (11(1, DIİJ - IKI, -DilJ =

1 ,

o ,

<0^, e,> = 1 (iKl, 1)||J - ||(-1, ı)ığ = o .

For a = (0, 1) = e^, and P = (1, 2) = e^ + 2 e^, while

<a, P> = <e^, e + 2e > = 2, *^ 2 1 2

it is true, on the other hand, that
/ 2 2\

<a, p> = 1 bO, 3)11 - lK-1, -1)11) = 3
4

which implies that it does not hold the polarization identity.

3. ISOMETRIES OF TAXICAB GEOMETRY

Önce we have a metric, we may ask the question about the 
isometries which preserves the distance. We shall prove that the isometries 
of taxicab metric are ali translations, T(2), and the orthogonal group 0^(2), 
consisting of four reflections and four rotations defined below.

3. 1. Translations

,2Let T : R- ,2R‘ such that T (P) = a -F P be translation function
2as in Euclidean plane R . For P = (p^, p^), Q = (qp 6 R we have

d^(T (P), T (Q)) = d^(a + P, a + Q)

= d^(P. Q) .

So, is an isometry. Thus, we proved the following theorem:
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Theorem 2. Ali translations are isometries in taxicab geometry.

3.2. reflections

We have only four reflections, S, that preserves the distance. Namely,

S = {(x, y) I X = 0, y z= 0, y = x, and y = -x} .

To see this we give the following theorems.

Theorem 3. Let P = (a, b). A point on a 
line y = mx, m 1, with minimum taxicab 
distance from P, is either B = (b/m, b) or 
C = (a, ma). For ra = 1, any point on the 
line segraent [BC] has the minimum taxicab 
distance from P (Figüre 1).

X

Let us define the reflection by a line in 
2

R . In Euclidean geometry, we found the 
Figüre 1

reflection of a point A by a line Z, by drawing an orthogonal line [AH], 
H 6 Z, from A to Z and then in other side of the line Z, with the same 
Euclidean distance on the line [AH], we get A', the reflection of A. We
define the reflection of a point in R^^ as follows:

Deflnition 3. Consider the point C with minimum taxicab distance 
from P to the line Z, and draw the line [PC]. Then choose the point P' 
in the opposite side of the line Z with respect to P such that d^(P, C) = 
d^(P', C). The point P' is called the reflection of P.

It is easy to show that ali reflections in taxicab plane don’t preserve 
the taxicab distance. In fact, we shall prove that the only reflections, 
preserving the taxicab distance are the reflections S.

Theorem 4. Let y = mx, m # ±1. Then, a reflection by the line y 
= ınx is an isometry iff m = 0 or m —>

Proof, Since f ; R^, 
can be defined by

2
‘ T is a reflection by the line y = mx, fR'T

I (x, 2mx - y
f(x, y) =

2y - mx 
m

0 < m < 1

> y m > 1
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Suppose, no w, f is an isometry. Then,

dÇ((x, y), (a, b)) = d^(f(x, y), f(a, b)).

For 0 < m < 1,

|x - a| + ly - b| = |x - a| + |2ma - b - 2mx + y|

which implies m = 0.

For m > 1,
|x - a| + |x - b| = 1=2b - ma 

I m
. -. «yEj + |y . b|

m Im

which implies m oo.

Corollary 5. The isometries of reflection by a line with the slope m 
±1, are the reflections by the lines x = 0 and y = 0.

Now, we daim that the other isometric reflections are the reflections 
by the lines y = x and y = -x.

Given a point P, there are more than one 
points with minimum taxicab distance from P 
to the line y = x. Thus, the reflection by the 
line y = X is well defined for each of such
points. A. horizontal line y b, passing
through the point P = (a, b) intersects the line 
y = X at the point C = (b, b), and the 
vertical line intersects, it at B = (a, a) (Figüre 2). O X

Any point on [BC] has the minimum 
taxicab distance to the point P, with a distance 

/__ J
yc=(bb) P={a,b)

Figıre2

|b - a|. Consider, now, a point H = (u, u) e [BC]. For 0 < X < 1, we 
can write u = b + X(a - b). On the line [PH], for a point P such that 
d (P, H) = d (P', H), we can also write

T T

f(P) = P' = (-a + 2b + 2A.(a - b), b + 2A,(a - b)).

It is clear that
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d^Cr, H) = dT((-a + 2b + 2U.a - b), b + 2Â(a - b)), (u, u)) 
= l-a + 2b + 2Â(a - b) - (b + Â(a - b))| +

|b + 2Â(a - b) - (b + Â(a - b))|
= |-b + a - Â(a - b)| + |-Â(a - b)|
= |1 - Â| |a - b| + |-Â| |(a - b)| 
= (1 - A,) |a - b| + Âla - b| 
= la - b|

; 0 < A. < 1

Thus, P' is the reflection of P with respect to H.

Notation: We will denote such a reflection by H^.

Theorem 6. H - reflection by the line y = x is an isometry iff Â = —
2

Proof. Suppose an - reflection f : R‘ 
Since

,2
■ T is an isometry.' T

f(x. y) = (-X + 2y + 2A,(x - y), y + - y)), 

'fjc have

d^(f(x, y), f(a, b)) = |-a + 2b + 2Â (a - b) - (-x + 2y + - y))|
+ |b + 2Â(a - b) - (y + - y))|.

On the other hand,

((X, y), (a, b)) = |x - a| + |y - b|.

Thus, solving the equation

dT(f(x, y), f(a, b)) = d^((x, y), (a, b))

we getÂ = —, as clairaed. Clearly, the converse is also tnıe. 
2

Corollary 7. An isometric reflection of a line y = x is H
1reflection with Â = i .
2

The same argument is true for the line y = -x.

As a result, we have the set of reflections

S = {(x, y) I X = 0, y = 0, y = X, and y = -x} .
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In matrix form, we can write the reflections as
-1 0
0 1

33. ROTATIONS

Let us, now, search for the rotations. We daim that there are only 
four rotations that preserves the taxicab distance in taxicab geometry.

9
Theorem 8. The isometric rotations in R“ are consists of T

Re = {m 0 = k , k = o, 1, 2, 3 .

Proof. Let P = (1, 0) and Q = (0, 1).

Rotating P with an angle 0, we get A (P) 0
= (cos^0, sin^0) on the unit circle. If we also 
rotate Q with the angle 0, we get A (Q) = 
(-sin^0, cos^0) (Figüre 3). Since we want to 
rotation that preserves the distance and since
4j(P.Q) = 
A/Q)) =2.

2, we need to have d (A (P), T 0

l\

Thus

|cos^0 + sin^0| + |sin^0 + cos^0| = 1 + |sin^0 - cos^0| = 2

which implies

|sin^0 - cos,j.0| = 1.

It follows that

sin 0 - cos 0=1 or sin 0 - cos 0 = -1.

S =

2

1

T T T T

y

I

O

1

Thus,

COS 0 = 0 
T

or sin 0 = o .T

That means 0 = (0, , n, as claimed.1 2 2 i
Not that this argument is true for arbitrary P and Q.
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We can also write the isometric rotations in matrix form as
1 0
0 1

«8 =

Thus, we have the orthogonal group, consisting of four reflections 
and four rotations,

O (2) = R„ S. 1 o

Now, we would like to prove that ali isometries of taxicab plane are 
T(2), 0^(2), and no others.

Theorem 9 (Main Theorem). Let F : R,2
' T

,2
‘ T be an isometry.

Then, there exists a unique T^ g T(2) and C e 0^(2) such that F = T^ o C.
R

To prove this theorem which is, in fact, the aim of this paper, we 
give the following definitions and theorems;

Definition 4. Let A = (a^, ap, B = (b^, bp be two points in R^^ . 

The line segment from A to B, denoted by [AB], is defined by

[AB] = {P I P = (ap ap + t(b. »j, - ap , 0 < t < 1}.1 1

Definition 5. Let A = (a , a ), B = (b , b ) the two points in R . 
The Standard rectangle with diagonal [AB], denoted by AB, is defined by

AB = {P I d^CAP) + d^(P, B) = d^(A,B)}.

Corollary 10. Let A = (a^, ap, B = (b^ bp 6 R^^. Then,

= [a^, bp X [a^, bp.

Note: If the line segment [AB] is horizontal or vertical, then we 
define

= [AB] .

Theorem 11. Let F : R'
Standard rectangle. Then,

,2
‘ T R'.2" T

□
be an isometry and let AB be the

□ □
F(AB) = F(A)F(B) .
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Proof. Let P g F(Xh). Then, 

P G F(;&) «=>3CGy»^3P = F(C)

def 4
dj(A, C) + dj,(C, B) =dr(A, B) 

F ISO.

dr(F(A), F(Q) + dj,(F(C), F(B)) = dpCFfA), F(B))
drf 4 n

P = F(Q G F(A)F(B) .

Corollary 12. Let F : R‘ T —> be an isometry and let be the
Standard rectangle. Then, F preserves to be a comer point and preserves 
the circumference of

Theorem 13. Let f : R^.

Then, f g R or f g S. 0

R',2‘ T be an isometry such that f(0) = 0.T

Proof. Let A = (1, 0), B = (0, 1) and consider the Standard 
rectangle cS).

y

L,

_______ , D 

i

O
M. /A

f
i'İKUf* 4

It is clear form the Figüre 4 that

f(A) G [AB] or f(A) g [BE] or f(A) G [EF] or f(A) G [AF] .

CASE 1. Suppose f(A) g [AB] and suppose f(A)#A and f(A)/B.

Since

cÇ(A, B) = 2 and d/O. B) = 1,

it follows that

d^(f(A), f(B)) = 1 and d^(f(O), f(B)) = 1.
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Therefore f(B) e [EF], Also,

1 = d^(O, , f(B)) = d^(f(B), K) + d^(K, O) 

which implies that d^(K, O) < 1,

On the other hand, since D is a corner of A^i, by Theorem 6 and 
□

Corollary 7, f(D) is a corner of f(A)f(B). Also, since d^(K, O) < 1 and 
d^(O,D) = 2, it follows that f(D) H and thus f(D) = L. (The other 
corner is in ABEF. Why?). Finally, since d^(K, O) < 1 and

d^(L, K) = d^(K, O) = d^(O, L) = d^(O, D) = 2 

it follows that d^(L, K) > 1. Notice also that

1 > d^(M, f(A)) = d^(L, K)T

which is a contradiction. This implies that

f(A) = A or f(A) = B.

If f(A) = A., then f is an identity function which is a rotation with 0 = 0 
or a reflection by x-axes. Thus, f g or f g S.

Suppose, no w, f(A) = B. Then,

f(B) = A or f(B) = E or f(B) = F .

Subcase 1. If f(B) = A, then f is a reflection by the line y = x. 
Thus, f G S.

K
Subcase 2. If f(B) = E, then f is a rotation of 0 = -i. Thus, f e R .

2 ®
Subcase 3, We shall prove that f(B) F .

Proof. Suppose f(B) = F. Since 

f(J?B) = f(A)f(B) = [BF]

it follows that f(D) e [BF] which implies d^(O, f(D)) < 1. But, v/c have

2 = d^(O, D) = d^(O, f(D)) 

which is a contradiction. Therefore, f(B) F.
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Finally, we note that there are three more cases:

f(A) e [BE] or f(A) e [EF] or f(A) e [AF] 

which will give us the rest of the cases of R^, and S.

We again note that this is true for arbitrary A and B. Finally, let us 
prove the main theorem, Theorem 5.

Proof of Theorem 5.

Let F(0) = a. Define C = o F. Obviously, C is an isometry and 
C(0) = 0. Then, it follows from Theorem 8 that C e 0^(2) and thus.

F = T o C. a
Uniqueness is trivial.
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