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ABSTRACT

In this paper, the area vectors of the closed spherical indicator of a unit dual sphere 
and the parallel projection areas of the planar regions surrounded in the lines space of these 
the closed spherical indicators are calculated in terms of the components of G, Koenigs 
screw. In addition, a orihonormal trihedron fıxed to the striction point X of an initial nıled 
surface and some relations were obtained for the parallel projection areas of the spherical 
indicator of this trihedron.

1. INTRODUCTION

After the work of Steiner [12] and H. Holditch [6] the first study 
about spherical motions was given by E.B. Elliott [2,3]. Blaschke defıned 
the Steiner point and the Steiner vector for one-parameter closed spherical 
motions and gave an area formula equivalent to that of Steiner for the 
case of a sphere [1]. The parallel projection area of a closed spatial curve 
formed under the motion B(cp defined along the closed spherical curve c^ 
was given in [11]. The oriented lines in E’ are one-to-one 
correspondence with the points of the dual unit sphere İD (E. Study). A 
dual point of ID corresponds to a line in E ; two different points of 
ID^ represent two skew-lines in E^. A differentiable curve on the unit 
dual sphere represents a ruled surface in E’. In section II we give the 
basic concepts of this method.

II . BASIC CONCEPTS
ey

If a and a* are real number and e = 0, the combination A = a-ı-ea* 
is called a dual number. An oriented line in may be given by two
points on it, X and y . If X is any nonzero constant, the parametric 
equation of the line can be given in the form y = x + Azı, where a is
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the direction vector of the line. If ö* denotes the moment of the vector a 
with respect to the origin O we have lı* = \/\a = y/\a, where a

denotes the exterior product of the vectors. This means that the direction 
vector a of the line and its moment vector a* are independent of one 
anothcr; they satisfy the following cquations:

= 1 and = 0 (ILI)

where ( , ) denotes the scalar points of the vectors. The six components
a. and a.* (i = 1,2,3) of a and a* are Plückerian homogeneous line
coordinates. Hence the vectors a and a*determined the oriented line. The
set of oriented lines in E^ is one-to-one correspondence with pairs of
vectors in subject to the condition (11.1), and so we may expect to 
represent it as a certain four dimensional set in E® of six tuples of real 
numbers; we may take the space ID^ of triples of dual numbers with
coordinates X
Each line in ’l?

9
+ Ex *, X, = x^ 4- ex^*, X, = X + ex *, z = 0.12 2 2 3 3_»3j

İS represented by the dual vector A = a -ı- ea* ,
+ e\*,

1

(A/l) = = 1 in ID^. The norm of a dual vector A = a + ea*
.......... ■ i ,
is the dual number ||A1| = ((AA/ = I 11^11 , e , a * 0 . 

Hail /

Thus the following Theorem of E. Study can be given [4]:

“The oriented lines in E^ ar5_^in one-to-one correspondence with the
,3 „points of the dual unit sphere (AA) = 1 in ID^.’

Let X be a point on the line a = (a^*) and x be its position vector 
with respect to a fixed point O. Then,

a* = X A fl (11.2)

where a denotes the exterior product of the vectors. If the point X is 
also on the line b = (b,b*) then

^b*) + (a*,b) = 0

This is called the Klein Form or the reciprocal product. This gives us a 
necessary condition for intersection of the lines (o/ı*) and (b,b*). In the 
Euclidean space the set of ali the line (axı*) which satisfies the following 
equation
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is cailed linear line complex. The dual unit vector p = _Q_ = p + ep* of
11^1

the dual vector Q = q + eq* is cailed the axis of the linear line complex.
Aftcr this the P and Q we will be denoted such that P = (p,p*) and Q = 
(q.q*), respeetively. Where

Ilqll
P* _ q* - kg 

llqll (11.3), k = <q.q*> 
(5.^

and k is the pitch of the linear üne complex [8],

The pair (s,s*), which are formed by the integral vectors 

s q dt and s* = q* dt (11.4)

is cailed G. Koenigs screw [8],

A surfaee which is generated by the motion of a straight line is 
cailed a ruled surfaee. The infinitude of straight lines which thus lie on 
the surfaee are cailed its “generators”. Sitnple examples of ruled surfaces 
are cones, cylinders, hyperboloids of one sheet, surfaces formed by the 
tangents, principal normals or binormals of a curve in space. If the ruled 
surfaee

(p: I X R e’

(tA) (pCtA.) = r(t) + Xa(t) 

satisfîes the condition

(p (t + 2jc,A.) = <p(t,Â.) , for Vtel 

then the ruled surfaee is cailed closed ruled surfaee, where I is an 
interval in E.

ni. THE PROJECTION AREA IN THE LINES SPACE

Let R and R* be two spaces in the 3-dimensional Euclidean space. 
Let B = R/R* denote the motion of R with respect to R*, where R is
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moving space and R is fixed space. We may represent these spaces with 
1 .»1 ..1 ^.1

the frames {O; e^, e^} and {O ; e^ e^}, respeetively. At the initial

0 = 0^ and e. =
.1

e., i = 1,2,3.

Let {O; Cj, e^} be the frame then it is a moving frame of the 
moving space R and this frame be of enough order differentiable with
respect to t. 0 < t < T. During the space motion B = R/R' the point
X e R draws a trajectory with absolute velocity \ in a fixed space R\ 
According to the velocity law

X = Xp + X a t I (III.l)

where Xf is the sliding velocity of the point X and is also the relative 
velocity of X. If X is a fixed point in moving space R then

X a Xj = X (111.2)

If we consider a helical motion around the axis P with the parameter k, 
this helical motion can be formed by a rolling around the axis P with 
Darboux rolling vector q and a sliding along the axis which has the
sliding vector k 4 .^Here 11411 is the rotation angle around the Darboux 
vector q and k = feÜL .

llqll

Let M be a point on the axis P such that OM = m (see Fig. 1).

P = M

M
♦ X

m
X

'P O
p

Fig. 1
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p* = m A -3- and from formula (11.3) we obtain 
llqll

m A q = q* - kq

Let X be a point that makes helical motion around the axis P. The 
trajectory of this point is an ordinary helix, The velocity vector x of the 
point X can be formed by only the velocity component of the sliding 
which occurs along the axis P; i.e..

X = X. + X, 
d k

where Xj is rotation velocity and is sliding velocity. Rotation velocity is

X, = q A (X - m) 

since MX = OX - OM = x = kq. Therefore,m . It is obvious that
the velocity of the point X e R during the motion B = R/r’ can be 
obtained as

,1.
dx = x^ = X = q* + q A X (IIL3)

Let the straight line a = (o/z*) be any normal of the helical trajectory of 
the point X. Then we get

^*) + (a*,^ = 0

since a* = X A a and ^*,xp = 0. Now we can give the following theorem.

Theorem in.l. A helical motion is connected to a İinear line complex 
and vice-versa. The axis of the complex is coincident with the axis of the 
helix. The parameter of the complex and the parameter of the helix are 

3 same. «> lines of a iinear complex are formed by ali normals of the 
trajectory at points which are suitable for helical motion of [9].

Let us consider a fixed line a = (a/ı*) in the moving space R. During the 
closed spatial motion B = R/R^ the velocity components of this line are

a = aa S
= a and a * = = d* (111.4)

a

Let q be a Darboux rotation vector then
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a = q A a and a* = q* a a + q a a* (III.5)

The line a = (a/ı*) in the moving space R draws a ruled surface A. during 
the closed spatial motion B = R/R'. At the same time, the unit vector a 

draws spherical indicator c(A). Let X be a point in the moving space R 
and curve c(X) be the curve drawn by X, during the closed spatial 

1motion B = R/R . The area vector of the curve c(X) in the fıxed space
R^ is

VX X A X dt (IIL6)

[10], where x is the position vector of X and the integration is taken 
along the closed curve c(X) on r\ Thus the following Theorem can be 
given [9]:

Theorem 111.2. Let c(X) be the trajectory of a fîxed point X of the 
moving space E in the fixed space The projection area of the planar 
region produced by taking orthogonal projection onto a plane in the 
direction of the unit vector n of c(X) is

= <ÎÎ,V^> . (in.7)

is the
On the other hand, if F

produced by taking orthogonal projection onto a plane and F „ 
projection area of the planar region happened by projecting onto a plane

is the projection area of the planar region

in any direction, then

= cos 9 F 
x'-P

where (p is the angle between two image planes. Hence the area vector of 
the spherical indicator c(A) can be obtained as

= s - (IIL8)

Let us consider a, b and c trihedron which is fixed to a point X on the 
striction curve. Here the vectors a, b and c of a curve are dominator, 
Central normal and Central tangent vectors; respectively. Let A be an 
initial ruled surface which is formed by the line a = (a/J*) during the

1motion B = R/R . The trihedron a, b and c on the striction point X of 
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the ruled surfaee A can be defined as follow [8]

q A aab =
V O - (<^)

c = a A b = q -
V (q,q> - «a^)

(111.9)

where a is the dominator of the ruled surfaee A.

During the closed spatial motion B = R/R* the vectors a, b and c 
form the initial ruled surfaee A, the Central ruled surfaee B and the 
Central tangent ruled surfaee C, respeetively. During the same motion, the 
spherical indicators corresponding to these trihedron are c(A), c(B) and 
c(C).

Theorem III3. Let a trihedron be a, b and c which is fixed to striction 
point X of the initial ruled surfaee A. During the closed spatial motion 
B = R/R*, the area vectors of the spherical indicator which corresponds to 
this trihedron are

V, = s - a(a^

v„ = s (III.IO)B
Vç, = 

respeetively, where s is the Steiner vector of the motion B = R/R* [7],

Now we can give the follovving corollary:

Corollary 111.4. Let c(A), c(B) and c(C) be the spherical indicator of the 
trihedron a, b and c during the closed spatial motion B=R/R . If the area 
vectors of these spherical indicator denoted V^, Vg and respeetively, 
then the Steiner vector s of the motion B = R/R^ can be obtained as

î = i (v, + + vj2 V A B <_✓

since = 0 we can give the fonowing theorem.



70 H.B. KARADAĞ, S. KELEŞ

Theorem III.5. Let a be the dominator vector, b be the Central normal 
vector and c be the Central tangent vector on the striction curve. Let 
c(A), c(B) and c(C) be their spherical indicator formed during the closed 
spatial motion B = R/R’. If the area vectors of these spherical indicator 

are denoted V^, and V^. then the projection of each of them on the 
Central normal vector b is zero.

In addition, if the spherical indicators c(A), c(B) and c(C) is projected as 
parallel on a plane have the following corollary.

Corollary III.6. Let c(B) be the spherical indicator of the Central normal 
vector b. Then

,P
+ F n . 

eP

and Fwhere F , F and F are oriented parallel projection area of spherical 
a” b" q

indicator c(A), c(B) and c(C), respectively.

Let A be an initial ruled surface and 3 be a torus drawn by the 
straight lines a = {aft*} and g = (g,g*), respectively. Moreover surrounded 
the ruled surface A by the torus 3.

Let (p be the angle between the generator of the ruled surface A and 
the dominator vector of the torus 3. Hence, the vector g can be denoted 
by 

g = sin (p b + cos ç c , (p = constant

on the plane (b,c). During the closed spatial motion B = R/r’, the 
spherical indicator c(G) is drawn on the sphere as unit vector g forms the 
torus 3 which surrounds the ruled surface A. The area vector of the 
spherical indicator c(G) is

Vq = sin Vg + cos^(.

Thus, we can give the following theorems:

Theorem 111.7. Let us consider the planar region, which is formed by the 
parallel projection of spherical indicator c(G), on a plane. İts oriented
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projection area F
gP is

"o-
• 2. c= sın (p F 

b',P
2

+ cos (p F
cP

Theorem 111.8. The projection of the area vector of the spherical 
indicator c(G) on the Central normal vector b is zero.

Corollary 111.9. If c(B) = c(C) then F 
g' T"iP

—> -►
Now let us consider the unit vector h on the plane (a,b). h can be 

denoted

h = sin 0 a + cos 0 b 0 = constant

In the line space, during the one-parameter closed spatial motion 
B = R/R , while vectors a, b, c and h draws the ruled surfaces A, B, C 
and H, respectively, the end point of each of these vectors also draws the 
spherical indicator c(A), c(B), c(C) and c(H) on the sphere, respectively. 
Then the area vector of the spherical indicator c(H) can be obtained as

Vjj = sin^0V^ + cos^0Vg
A

Consider a unit vector w on the plane (a,c), such that w generates a torus
Q which surrounds the Central normal ruled surface B. The vector w can 
be given by

w = cos a a + sin a c a = constant

In the line space, during the one-parameter closed spatial motion B = 
R/R , while vectors a, b, c and w draws the ruled surfaces A, B, C and 
£2, respectively, the end point of each of these vectors also draws the 
spherical indicator c(A), c(B), c(C) and c(W) on the sphere, respectively. 
Then, the area vector of the spherical indicator c(W) can be obtained as

2-* 2 -* 1 -*
= cos aV^ + sin aV^A

Hence we can give the following corollary.

Corollary in.lO. Let us consider the planar region, which is formed by 
the parallel projection of the spherical indicator c(H), on a plane. its
oriented projection area F

hP is
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L..P = sin^öF , 
a'

+ cos^öF 
b',PP

Corollary ffl.ll. Let us consider the planar region, which is formed by 
the parallel projection of the spherical indicator c(W), on a plane. Its
oriented projection area F 

w'
İS

rP

,P
= cos^aF 

a’P
-t- sin^aF

d’
Corollary in.12. If Vjj and are the area vectors of the spherical 

indicators c(H) and c(W) then = 0 and (b,V^) = 0.

Corollary III.13. c(B) = c(C) then F 
w‘rP ,P'
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