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ABSTRACT

In this paper we establish some results relating the concept of k—convexity of regions in
the Luclidean 3-space E* with the sectional curvature of their boundaires. Relation between
k-convexity and strict convexity is considered. Focal points of the boundary of a k-convex
region are also studied. ’

INTRODUCTION

Convexity in the Kuclidean n-space EN(n =>2) is defined as
follows: A subset A = EM is convex if for each pair of points p, qeA
the closed segment [pq] joining p and q is contained wholly in A.
Other types of convexity such as strong, strict as well as weak con-
vexity in general Riemannian manifolds are given in [1].

From now on a region Q < En will be taken as an open subset
of EM with the property that any two points of Q) may be joined by a
curve in (), i.e.a region is an open arcwise connected subset of En,

The concept of a k—convex region Q with boundary 2Q in E2 is
defined for the first time in a remarkable paper [4] by D. Mejia and
D. Minda in the following way:

Suppose k € [0, ). A region Q < K2is called k-convex provided
d (a, b) < i— for any pair of points a, beQ (where d denotes the

distance function) and E2 [a,b] < Q. E2 [a, b] is the intersection
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two closed disks of radius % having a, b on their boundaries (see [4]).

The above mentioned concept of convexity has not yet been
generalized for regions in Euclidean 3-space E3. Consequently, this
paper is devoted to study such a case.

Let a, b be any twe points in E3 with distance d (a, b) < ——2k—

apart for some positive real k and D be a closed flat disk of radius

~11;— such that a, b are on the circular boundary oD. The closed line

segment [ab] divides D into two areas one of them is smaller than the
«r

other. Rotate the smaller area about the straight line ab through a

and b. Then the resulting closed volume from this rotation will be

denoted by E3y [a, b]. We also take E3, [a, b] to be the closed line
segment [ab]. If we allow the distance between a and b to satisfy

p —_ b
d (a, b) = Ti_, E3g [a, b] will be the closed geodesic ball By x (_a—; )
with center - ath and radius L For 0 <k'< k < _ one can

2 k a+b
can easily see that E3y, [a,b] < E¥ [a, b]. We can also see that
oE3%, [a,b] n ¢E3 [a,b] = {a, b}.
Definition 1.

Suppose that k e [0, o). A region Q in E3 is called k-convex
if for each pair of points a, beQ

() d(a b) < and (i) E3 [a,b] = Q.

w[w

From this definition we can easily prove the following results:

(a) An open ball in E3 of radius € > 0 is a k—convex region,

k

(b) o—convexity is exactly the convexity defined above,

(c) The intersection two k-convex regions is k-convex,
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(d) For the two regions Q; and Q, (none of the them is included in the
other) which are k;—convex and kj—convex, respectively, where
k; > k, we have that Q; n Q, is a ky—convex region in E3,

(¢) Every k-convex region Q < E3 is k’~convex for k' < k. Heuce,
every k-convex region £ (k > 0) is o-convex. In other words
every k—convex region is convex.

For a smooth surface M < E3 let us write K (x, M) to denote the
sectional (Gaussian) curvature of M at the point x ¢ M.

The following proposttion gives sufficient conditions for k—convexity.

Proposition 2. Suppose that € is simply connected region in E3
bounded by the smooth surface ¢ diffeomorphic te the unite sphere
52 and K (¢, 9€2) > k2 > 0 forevery ¢ € 8Q. Suppose that when the
circle C (p, 1) of center p and radius A > 0 lies locally at q € C (p, 2)
in Q implies that the sphere S (p, 2) lies locally at q in Q. Then Q
is k—convex.

Proof: The hypotheses imply that Q is convex according to the
following result proved by R. Sacksteder [5].

Let M be a complete, Riemannian n-manifold (n > 2) and let
x: M - Entl be a Cn+1 isometric immersion. Suppose that every sec-
tional curvature of M is non—negative, and at least one is positive. Then
the image x(M) is the boundary of a convex body in Entl,

Notice that the last condition of Sacksteder’s result is satisfied
as 90 is a compact hypersurface of E3.

First we show that if B is any closed geodesic ball that is contained

in the closure Q of Q, then the radius of B is at most 1 [ x-

Suppose B = {xeE3: d(x,a) < r} where acQ and § ==3Q(a)
the distance from a to 6. Since E < Q, then r < § and so it sufficies

als

to show that § <C

Suppose that ¢cdQ n {z:d(z,a) =3}. The geodesic sphere
Ss(a) = {z € Q:d (z a) =38} lies inside of or on 2Q and consequently
Ss(a) and 8Q intersect tangentially at c. According to a well known
result of convexity (see [2]) the tangent hyperplane T_(2Q) of 8Q at

¢ represents a global support of Q (see Fig. (1)). Utilizing the height
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Fig. (1)

function concept of both ¢ and Sg(a) at ¢ with respect to T, (0Q)

1

(see [2]) we can prove that k3 < K (¢, Q) < K (¢, S5 (a)) = 52

Consequently 3 < *

Next we show that 3k [a, b] is contained in Q for arbitrary
points a, beCQ.

Since ( is convex, then [ab] < Q. Because Q is open there exists

a real number k' > 0 such that E3; [a,b] < Q. Let l; =sup {k':
E3, [a,b] = Q}. Note that E3 [a, b] is contained in the closurc of

~

Q. Since k' < 71—(;2—-5)— for all admissible k', we must have k <
2 b

—d—(——l)— . Now we discuss these two possibilities separately.
a, b

~ 9 o b
(M) Mk == jj » then the closed geodesic ball B, /5 <_a 5 )
centered at :) with radius —1T lies in Q. From the first part
- k
. 1 : ~ .
of the proof we obtain —— = 5 or k << k. In this way

k2
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and as mentioned before E3; [a,b] < Eé [a, b] which imlies
that E3 [a,b] < Q.

P

(ii) The other possibility is k < @)

Let ce0Qc 3 [a, b], ¢ % a, ¢ £ b. By hypothesis we can easily

1 ;
draw a sphere S of radius — which containes E; fa, b] inside

I
and intersects 8E£, [a, b] tangentially at c. Using the height function

concept again at ¢ for hoth S and 0Q we have

k2 < K (¢, Q) < K (c, ) = k2.
Hence k < k and E3y [a,b] < E,; [a, b].

To complete the proof it remains to show that E3 [a, b] < Q.

Let ab be the straight line through a and b as before. Select distinct

points a’, b'e (Q n (aﬁ))) \.[ab] such that[ab] = [a’b’]. In the light
of the above discussion E3 [a’, b’'] < Q. Since E3 [a, b] is contained
in the interior of E3y [a’, b'], then E3; [a,b] < Q and the proof is
complete.

In the following we show that the converse of Proposition 2 is
valid. We first need to prove the following result.

Lemma 3. (i) Supose that  is a k-convex region in E3. Then
for any acQ and cedQ, Elx [a, ¢] \ {¢} = Q.

(i) If a, ccoQ, then Int E3 [a,c¢] < Q.
Proof: Since Q is k-convex then Q is convex, It is not difficult to

show that any geodesic ray emanating from acQ intersecting 9Q will mect
04} transversally at a single point. Consequently the half open segment

fac) will be contained in Q. Note that d (a, ¢) < % since d (a, ¢) =

2 . . .
- would imply that there exist a’e{) near a and c¢’€Q near ¢ with



54 M. BELTAGY - 1.A. SAKR

2
d(a’,c¢') = T which violates the definition of k—convexity.

As a second step we show that Int E3; [a, ¢] © Q. Take ¢, € [ac)
such that ep - c¢. Now ¢y €Q, so by k-convexity of Q we have E3y
[a, cn] < Q for all n. Hence Int E3 [a,c] © U E3 [a, cn] < Q.

Select a’eQ such that ae(a’c). By the first part of the proof we get
Int E3 [a’, ¢] = Q. Because E3 [a, c]™ {c¢} < Int E¥ [a’, c] then
E3 [a, c] N\ e} . = Q.

(i) Let ap €Q with ay - a. From (i) E3g [a, ¢] \ {¢} © Q for all n.
Hence Int E3; [a,c] © Q.

Preposition 4. Suppose that £ is a region in E3 bounded by a
smooth hypersurface 6 diffeomorphic to S2. If Q is k—convex, then
K(e, 0Q2) = k2 > 0 for all c=0Q.

Proof: Since Q is k—convex, then for any two points a, cc@(2 we have
Int E3 [a,c] © Q (Lemma (3)-(ii)). Let us consider all sufficiently
small curves on 0Q starting from c¢ and resulting from the intersection
of 2Q with normal planes to ¢Q through c. Let y be one of these curves
and ¢y, €2,..., €y,... €Y a sequence of points such that ¢y — c. In the
light of the above discussion we have Int E3 fe,, ¢] © Q for all n.
Repeating this process with all the above mentioned curves we finally

obtain a sphere S of ralius —}li— tangent to 8Q at ¢ which lies locally

in E3 /£ as indicated in Fig. (2).

(We shall prove (proposition (6) that S lies globally in E3 X\ Q).
Using the height function concept at ¢, we have that.

e %)

hY
( !)« e /
. ,
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[
)

K (c, 8Q) > K (c,S) =k2 >0 for all ecQ and the proof is
complete.

1
Lemma 5. Suppose that D is an open geodesic ball of radius —— , B is

k
an open ball (or half-space of E£3) such that ccoB n éD and B and D are

externally tangent at c. If d (a, ¢). << -]2;— and a ¢ D,then (E3y [a, ¢]™_le})

nB=£o.

Proof: Let e be the center of the geodesic ball D and H the hyperplane
determined by the triple a, ¢, ¢. The intersection of H with both I and
B (D and B, respectively) will lead to a situation in H similar to that
given in lemma (0) [4]. Consequently, (K3 [a, ¢]/{c}) N B# o.
Rotating E2¢ [a, ¢] about [ac] we obtain E2 [a, c] satisfying (E3
[a,c]/{e}) 0B — o

Proposition 6. Suppose that ( is a k—convex region in 3. Assume that
acQ, ccoQ such that d (a, ¢) = d (a, Q) =3 (a) = 3. If D is thc open

ball of radius ,_11{__ whose boundary ¢D is tangent to the sphere 53(a)

at ¢ and that D contains a in its interior, then Q<D.

Proof. Let H = T _6Q be the hyperplane of E3 which is tangent
to Q at ¢ and E the open half-space determined by H that docs not
contain a (Sce Fig. (3)).

Fig. (3)
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As O is convex then Q 0 E = &. Assume on contrary to the
proposition that Q & D,ie QD = . Then there exists a point
be) \\D. Because € is open, we may take heQ) \f). Since Q is k—convex,

then d (b, ¢) <~ —. Using lomma (3) we have

bl

By [b, e] N\ {e} © Q while lemma (5) gives that
(B [b, e]\{e}) n E# o
contradicting Q n E = ». This contradiction shows that Q < D.

Strict convexity in Euclidean space may be defined as follows:
An open subset B < Eb(n > 1) is strictly convex if

(i) B is convex.

(i) ¥or each pair of points a, b € B, (ab) < B.

In what follows we establish the relation between the k—-convexity
and strict convexity in 3. It will become clear in the light of the follow-
ing discussion that k-convexity (k > 0) is stronger than strict con-
vexity.

Propesition 7. Every k-convex region (k > 0) in E3 is a strictly
convex subset.

Let € be a k-convex region E3. Assume on contrary that Q is
not strictly convex. Consequently there exists a pair of points p,
G € 0Q such that [pq] < 0£. Let ¢ be a point on the open segment
(pg). It is an easy exercise to show that K (e, Q) = 0 contradicting
proposition (4).

The converse of the above proposition is not necessarily true
according to the following example.

Let Q be a region in L3 with smooth boundary 9Q =8, y S,
where S, is a part of a spherc and S, is the regular path (See Fig. (4))
X (w, v) = (u, v, (u2 4 v2)2), u2 4 v2 < 1. Clearly Q is a strictly
convex subset of K3 while K (0, 0Q) = 0.

Proposition §. Let Q be a k—convex region (k > 0) in E3 and L
the inner normal ray starting {rom p € 9Q. Take p; ¢ L such that

d (p, py) = l% . Then there are two focal points of 9Q on [pp,].
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¥
<

Proof. Since Q is k—convex, p € ¢£2, then by propesition (6) the

. . 1 .
open ball B, (vg) centered at ), with radius 5 contains () and
k

ped Q n 31(1’0-) The point p is a global strict maximum point
k

of the distance function d(p’,.) from cach p’ to 9Q where p'el,
. 1
d(p,p') > T Then L contains two focal points on the segment [pop |-

If the two focal point coincide, we have a focal point of (pgp] of
multiplicity 2, [3].
Notice that the condition k > 0 in the last Proposition 8 is

essential as in the above example there are no focal points of &£ on
the z—axis.

Propesiiion 9. Let Q be a k-convex region in B3, Then every plane
scetion of £ is a k-convex region in F3.
Proof. Let T be a plane in E3 such that Q n1ls4 @. Take Q NIl =
. . . . 1
Q* Let a, b be arbitrary points in Q* Henee d (a, b) < W
a, b e Q).
Since Qisk—convex, E3; < Q. Also K3 [a,b] N T1 =E2 [a,b] <

Q* which completes the proof that Q*is a k—convex region in E2 = II.
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