ON CR-SUBMANIFOLDS HAVING HOLOMORPHIC VECTOR FIELDS ON THEM

B. ŞAHİN, R. GÜNEŞ and A.İ. SİVRİDAĞ

Department of Mathematics, Inönü University, Malatya, TURKEY
(Received Jan. 5, 1998; Accepted March 30, 1998)

Abstract

This paper studies the CR-submanifolds of a Kaehlerian manifold which have holomorphic vector fields on them. It is shown that a CR-submanifold having holomorphic vector fields on it is a CR-product.

1. INTRODUCTION

The notion of a CR-(Cauchy-Riemann) submanifold of a Kaehlerian manifold was firstly introduced by A. Bejancu [1]. Afterward a lot of authors concerned with the subject. In this study, it is considered the notion of holomorphic vector field (given in [3]) for CR-submanifolds having vector fields on them. We may discuss the integrability conditions of distrubutions and the necessary conditions of the leaves of the distributions to be totally geodesic.

2. BASIC CONCEPTS

In this section we give the fundamental concepts concerning with the study

Let \bar{M} be a Riemann manifold and M be a submanifold of \bar{M}. The Riemannian metric g on $\overline{\mathrm{M}}$ induces a Riemannian metric on M. Let TM and TM^{\perp} denote tangent and normal bundle, respectively, and $\bar{\nabla}$ and $\bar{\nabla}$ be the Levi-Civita connections on \bar{M} and M , respectively, Then for $\mathrm{X}, \mathrm{Y} \in$ Γ (TM) we have

$$
\begin{equation*}
\bar{\nabla}_{\mathrm{X}} \mathrm{Y}=\nabla_{\mathrm{X}} \mathrm{Y}+\mathrm{h}(\mathrm{X}, \mathrm{Y}) \tag{2.1}
\end{equation*}
$$

where $\Gamma(\mathrm{TM})$ is the module of differentiable sections defined on the bundle TM and h is the second fundamental form of M. The equation (2.1) is called as the Gauss formula. V being an element of $\Gamma\left(\mathrm{TM}^{\perp}\right)$ the Weingarten formula is given by

$$
\begin{equation*}
\bar{\nabla}_{\mathrm{x}} \mathrm{~V}=-\mathrm{A}_{\mathrm{V}} \mathrm{X}+\nabla_{\mathrm{x}}^{\perp} \mathrm{V} \tag{2.2}
\end{equation*}
$$

where A_{v} is the fundamental tensor of Weingarten with respect to the normal section V, and ∇^{\perp} is the normal connection on M. It is well known that

$$
\begin{equation*}
\mathrm{g}(\mathrm{~h}(\mathrm{X}, \mathrm{Y}), \mathrm{V})=\mathrm{g}\left(\mathrm{~A}_{\mathrm{V}} \mathrm{X}, \mathrm{Y}\right) \tag{2.3}
\end{equation*}
$$

for any $X, Y \in \Gamma(T M), V \in \Gamma\left(\mathrm{TM}^{\perp}\right)$.
Let \bar{M} be a Riemannian manifold. Let g and J be Riemannian metric and a tensor field of type $(1,1)$ on \bar{M} and M, respectively. Then \bar{M} is called a Kaehlerian manifold if the following conditions are satisfied.

1) $J^{2}=-I$
2) $g(J X, J Y)=g(X, Y), X . Y \in \Gamma(T \bar{M})$
3) $\left(\bar{\nabla}_{X} \mathrm{~J}\right) Y=0$
where I denotes the identity transformation of $\Gamma(\mathrm{TM})$ [2]. The vector field X on \bar{M} is called as holomorphic vector field if $L_{X} J=0$ where $L X$ is the Lie derivative with respect to X [3].

A vector field X is holomorphic if and only if

$$
\begin{equation*}
\mathrm{J} \bar{\nabla}_{\mathrm{V}} \mathrm{X}=\bar{\nabla}_{\mathrm{JV}} \mathrm{X} \tag{2.4}
\end{equation*}
$$

where X and V belong to $\Gamma(\mathrm{T} \overline{\mathrm{M}})$ [3].
Let \bar{M} be a Kaehlerian manifold and M be a real submanifold of \bar{M}. It is said that M is a CR-submanifold of \bar{M} if there are distributions D and D^{\perp} satisfying the conditions [1].

1) $T_{M}(p)=D_{p} \oplus D_{P}{ }^{\perp}$
2) $J(D)=D \quad, J\left(D^{\perp}\right) \subset T M^{\perp}$
we denote p and q the complex dimension of the distribution D and the real dimension of the distribution D^{\perp}, respectively, then for $q=0$ (resp. $\mathrm{p}=0$) a CR-submanifold becomes a complex submanifold (resp. totally real submanifold). M is called as anti-holomorphic submanifold if $\operatorname{dimD}_{X}{ }^{\perp}$ $=\operatorname{dim}_{M}{ }^{\perp}(x)$. For CR-submanifolds it can be written

$$
\begin{equation*}
\mathrm{JX}=\phi \mathrm{X}+\omega \mathrm{X} \tag{2.5}
\end{equation*}
$$

where $\phi \mathrm{X}$ and $\omega \mathrm{X}$ are the tangential part and the normal part of JX, respectively [1]. v being the orthogonal complement of JD^{\perp} i.e. $\mathrm{TM}^{\perp}=$ $\mathrm{JD}^{\perp} \oplus \mathrm{v}$, for each $\mathrm{V} \in \Gamma\left(\mathrm{TM}^{\perp}\right)$ we can with

$$
\begin{equation*}
J V=B V+C V \tag{2.6}
\end{equation*}
$$

where $B V \in \Gamma\left(D^{\perp}\right)$ and $C V \in \Gamma(v)$. It is well known that the distribution D is integrable if and only if $[\mathrm{X}, \mathrm{Y}] \in \Gamma(\mathrm{D})$ for any X, Y $\in \Gamma(D)[4]$.

Theorem 2.1. Let \bar{M} be a Kaehlerian manifold and M be a CRsubmanifold of \bar{M}. Then the distribution D is integrable if and only if the second fundamental form of M satisfies [2], for $X, Y \in \Gamma(D)$

$$
\begin{equation*}
h(X, J Y)=h(J X, Y) . \tag{2.7}
\end{equation*}
$$

3. CR-SUBMANIFOLDS OF A KAEHLERIAN MANIFOLD HAVING HOLOMORPHIC VECTOR FIELDS ON THEM

First we give the lemma
Lemma 3.1. Let \bar{M} be a Kaehlerian manifold and M be a CR-submanifold of \bar{M} such that there are some holomorphic vector fields defined on M. Then, for $X, Y \in \Gamma(D)$ and $Z \in \Gamma\left(D^{\perp}\right)$, we have

$$
\begin{equation*}
\mathrm{g}(\mathrm{~h}(\mathrm{X}, \mathrm{Y})+\mathrm{h}(\mathrm{JX}, \mathrm{JY}), \mathrm{JZ})=0 \tag{3.1}
\end{equation*}
$$

Proof. By using (2.1) and (2.4) we get

$$
\begin{equation*}
\nabla_{\mathrm{JY}} \mathrm{X}+\mathrm{h}(\mathrm{JY}, \mathrm{X})=\mathrm{J} \nabla_{\mathrm{Y}} \mathrm{X}+\mathrm{Jh}(\mathrm{Y}, \mathrm{X}) \tag{3.2}
\end{equation*}
$$

thus, we have

$$
\begin{aligned}
\mathrm{g}\left(\nabla_{\mathrm{JY}} \mathrm{X}, \mathrm{Z}\right) & =\mathrm{g}\left(\mathrm{~J} \nabla_{\mathrm{Y}} \mathrm{X}+\mathrm{Jh}(\mathrm{Y}, \mathrm{X}), \mathrm{Z}\right) \\
& =-\mathrm{g}(\mathrm{H}(\mathrm{Y}, \mathrm{X}), \mathrm{JZ})
\end{aligned}
$$

for any $Z \in \Gamma\left(D^{\perp}\right)$. Hence we obtain

$$
\begin{aligned}
\mathrm{g}(\mathrm{~h}(\mathrm{Y}, \mathrm{X}), \mathrm{JZ}) & =\mathrm{g}\left(\mathrm{~J} \bar{\nabla}_{\mathrm{JY}} \mathrm{JX}, \mathrm{Z}\right) \\
& =-\mathrm{g}\left(\bar{\nabla}_{\mathrm{JY}} \mathrm{JX}, \mathrm{JZ}\right)
\end{aligned}
$$

or

$$
\mathrm{g}(\mathrm{~h}(\mathrm{Y}, \mathrm{X}), \mathrm{JZ})=-\mathrm{g}(\mathrm{~h}(\mathrm{JY}, \mathrm{JX}), \mathrm{JZ})
$$

this completes the proof of the lemma.
Theorem 3.1 Let \bar{M} be a Kaehlerian manifold and M be a CR-submanifold of \bar{M} having holomorphic vector fields on it. Then D is integrable and each leaf of D is totally geodesic on M.

Proof. Since M has holomorphic vector field on it we have

$$
\mathrm{J} \bar{\nabla}_{\mathrm{X}} \mathrm{Y}=\bar{\nabla}_{\mathrm{JX}} \mathrm{Y}
$$

for any $X, Y \in \Gamma(T M)$. Considering

$$
\bar{\nabla}_{\mathrm{JX}} \mathrm{Y}=\bar{\nabla}_{\mathrm{X}} \mathrm{JY}
$$

we may write

$$
\nabla_{\mathrm{JX}} \mathrm{Y}=\mathrm{h}(\mathrm{JX}, \mathrm{Y})=\nabla_{\mathrm{X}} \mathrm{JY}+\mathrm{h}(\mathrm{X}, \mathrm{JY}) .
$$

Hence we get

$$
h(J X, Y)=h(X, J Y)
$$

threfore, from theorem (2.1), D is integrable. Now we are going to show that leaves of D are totally geodesic on M. For $Z \in \Gamma\left(D^{\perp}\right)$ we have

$$
g\left(\nabla_{X} Y, Z\right)=g\left(\bar{\nabla}_{X} Y, Z\right)
$$

or

$$
\mathrm{g}\left(\nabla_{\mathrm{X}} \mathrm{Y}, \mathrm{Z}\right)=\mathrm{g}([\mathrm{X}, \mathrm{Y}], \mathrm{Z})+\mathrm{g}\left(\nabla_{\mathrm{Y}} \mathrm{X}, \mathrm{Z}\right)
$$

since D is integrable we get

$$
\begin{aligned}
g\left(\nabla_{\mathrm{X}} \mathrm{Y}, \mathrm{Z}\right) & =\mathrm{g}\left(\nabla_{\mathrm{Y}} \mathrm{X}, \mathrm{Z}\right) \\
& =\mathrm{g}\left(\bar{\nabla}_{\mathrm{Y}} \mathrm{JX}, \mathrm{JZ}\right)
\end{aligned}
$$

or

$$
\mathrm{g}\left(\nabla_{\mathrm{X}} \mathrm{Y}, \mathrm{Z}\right)=-\mathrm{g}\left(\mathrm{JX}, \bar{\nabla}_{\mathrm{Y}} \mathrm{JZ}\right)
$$

From (2.2) we obtain

$$
\begin{aligned}
g\left(\nabla_{\mathrm{X}} \mathrm{Y}, \mathrm{Z}\right) & =\mathrm{g}\left(J X, A_{\mathrm{JZ}} \mathrm{Y}\right) \\
& =\mathrm{g}\left(\left(A_{\mathrm{JZ}} \mathrm{JX}, \mathrm{Y}\right)\right. \\
& =-\mathrm{g}\left(\bar{\nabla}_{\mathrm{JX}}^{\mathrm{JZ}, \mathrm{Y})}\right. \\
& =-\mathrm{g}\left(\bar{\nabla}_{\mathrm{JX}} \mathrm{JZ}, \mathrm{Y}\right) \\
& =-\mathrm{g}\left(\bar{\nabla}_{\mathrm{X}} \mathrm{JZ}, \mathrm{Y}\right) \\
& =\mathrm{g}\left(\bar{\nabla}_{\mathrm{X}} \mathrm{Z}, \mathrm{Y}\right) \\
& =-\mathrm{g}\left(\mathrm{Z}, \bar{\nabla}_{\mathrm{X}} \mathrm{Y}\right)
\end{aligned}
$$

or

$$
g\left(\nabla_{X} Y, Z\right)=-g\left(\nabla_{X} Y, Z\right)
$$

from the last equation, we see that

$$
\mathbf{g}\left(\nabla_{X} Y, Z\right)=0
$$

This implies that $\nabla_{\mathrm{X}} \mathrm{Y} \in \Gamma(\mathrm{D})$, which proves the assertion.
From Theorem 3.1 we obtain the following result:
Corollary 3.1. Let \bar{M} be a Kaehlerian manifold and M be a CR-submanifold of \bar{M} having holomorphic vector fields on it. Then each leaf of D is totally geodesic on \bar{M} if and only if we have

$$
\left(\mathrm{L}_{\mathrm{v}} \mathrm{~g}\right)(\mathrm{X}, \mathrm{Y})=0
$$

for any $X, Y \in \Gamma(D)$ and $V \in \Gamma(v)$.
Proof. From Theorem 3.1 we have

$$
g\left(\nabla_{X} Y, Z\right)=g\left(\bar{\nabla}_{X} Y, Z\right)=0
$$

for any $X, Y \in \Gamma(D)$ and $Z \in \Gamma\left(D^{\perp}\right)$. Since D^{\perp} is anti-invariant under J, there exist a nonzero vector field $W \in \Gamma\left(D^{\perp}\right)$ such that $\xi=J W$ for $\xi \in$ $\Gamma\left(\mathrm{JD}^{\perp}\right)$. Thus we obtain

$$
\begin{aligned}
\left.\mathrm{g} \bar{\nabla}_{\mathrm{X}} \mathrm{Y}, \xi\right) & =\mathrm{g}\left(\bar{\nabla}_{\mathrm{x}} \mathrm{Y}, \mathrm{JW}\right) \\
& =-\mathrm{g}\left(\bar{\nabla}_{\mathrm{X}} \mathrm{JY}, \mathrm{~W}\right) \\
& =0 .
\end{aligned}
$$

On the other hand, since the Levi-Civita connection of $\overline{\mathrm{M}}$ is given

$$
\begin{aligned}
2 \mathrm{~g}\left(\bar{\nabla}_{\mathrm{X}} \mathrm{Y}, \mathrm{~V}\right)= & \mathrm{X}(\mathrm{~g}(\mathrm{Y}, \mathrm{~V}))+\mathrm{Y}((\mathrm{~V}, \mathrm{X}))-\mathrm{V}(\mathrm{~g}(\mathrm{X}, \mathrm{Y}))+ \\
& \mathrm{g}([\mathrm{X}, \mathrm{Y}], \mathrm{V})+\mathrm{g}([\mathrm{~V}, \mathrm{X}], \mathrm{Y})-\mathrm{g}([\mathrm{Y}, \mathrm{~V}], \mathrm{X})
\end{aligned}
$$

we have

$$
2 \mathrm{~g}\left(\bar{\nabla}_{\mathrm{X}} \mathrm{Y}, \mathrm{~V}\right)=-\mathrm{V}(\mathrm{~g}(\mathrm{X}, \mathrm{Y}))+\mathrm{g}([\mathrm{~V}, \mathrm{X}], \mathrm{Y})+\mathrm{g}([\mathrm{~V}, \mathrm{Y}], \mathrm{X})
$$

for any $X, Y \in \Gamma(D)$ and $V \in \Gamma(v)$. Hence

$$
2 \mathrm{~g}\left(\bar{\nabla}_{\mathrm{X}} \mathrm{Y}, \mathrm{~V}\right)=-\left(\mathrm{L}_{\mathrm{V}} \mathrm{~g}\right)(\mathrm{X}, \mathrm{Y})
$$

This proves our assertion.
Theorem 3.2. Let \bar{M} be a Kaehlerian manifold and M be a CR-submanifold of \bar{M} having holomorphic vector fields on it. Then each maximal integral manifold of D^{\perp} is totally geodesic on M.

Proof. $Z, W \in \Gamma\left(D^{\perp}\right)$ and $X \in \Gamma(D)$ we have

$$
\begin{aligned}
g\left(\nabla_{w} Z, X\right) & =g\left(\bar{\nabla}_{w} Z, X\right) \\
& =g\left(\bar{\nabla}_{w} Z, J X\right)
\end{aligned}
$$

or

$$
\begin{aligned}
g\left(\nabla_{W} Z, X\right) & =g\left(\bar{\nabla}_{W} J Z, J X\right) \\
& =W g(J Z, J X)-g\left(J Z, \bar{\nabla}_{W} J X\right)
\end{aligned}
$$

since $\mathrm{JZ} \in \Gamma\left(\mathrm{TM}^{\perp}\right)$ and $\mathrm{JX} \in \Gamma(\mathrm{D})$ we obtain

$$
\begin{aligned}
g\left(\nabla_{W} Z, X\right) & =-g\left(J Z, \bar{\nabla}_{W} \mathrm{JX}\right) \\
& =-\mathrm{g}\left(\mathrm{JZ}, \mathrm{~J} \bar{\nabla}_{\mathrm{W}} \mathrm{X}\right) \\
& =-\mathrm{g}\left(\mathrm{JZ}, \bar{\nabla}_{J W} \mathrm{X}\right) \\
& =-\mathrm{JWg}(\mathrm{JZ}, \mathrm{X})+\mathrm{g}\left(\bar{\nabla}_{\mathrm{JW}} \mathrm{JZ}, \mathrm{X}\right) \\
& =\mathrm{g}\left(\bar{\nabla}_{J W} \mathrm{JZ}, \mathrm{X}\right) \\
& =-\mathrm{g}\left(\nabla_{\mathrm{W}} Z, X\right)
\end{aligned}
$$

or

$$
2 g\left(\nabla_{W} Z, X\right)=0
$$

Because of the last equation we have $\nabla_{W} Z \in \Gamma\left(D^{\perp}\right)$ which implies that each maximal integral manifold of D^{\perp} is totally geodesic on M .

Combining Theorem 3.1 with Theorem 3.2 we have the following Corollary.

Corollary 3.2. Let \bar{M} be a Kachlerian manifold and M be a CR-submanifold of \bar{M} having holomorphic vector fields on it. Then M is a CR-product.

Proof. Let M_{1} and M_{2} be the maximal integral manifold of D and D^{\perp} on CR-submanifold, respectively. The locally Riemann product $\mathrm{M}_{1} \times$ M_{2} is called as a CR-product. $M_{1} \times M_{2}$ is a locally Riemann product if and only if both distributions D and D^{\perp} are integrable and the maximal integral manifolds of them are totally geodesic in $\mathrm{M}[2]$. By virtue of Theorem (2.1) and Theorem (3.2) and Lemma 3.3 in [5], $M_{1} \times M_{2}$ is a CR-product.

REFERENCES

[1] BEJANCU, A., CR-submanifolds of a Kaehler manifold I, Proc. Amer. Math. Soc. 69 (1978) 135-142.
[2] BEJANCU, A., Geometry CR-submanifolds, Reidel, Dordrecht, (1986).
[3] POOR W.A., Differential Geometric Structures McGraw-Hill Book (1981).
[4] CRAMPIN, M., and PRANI, F.A.E. Applicable Differential geometry, London Mathematical Society Lecture 59 (1986).
[5] CHEN, B.Y., CR-submanifolds of a Kaehler manifold I. Journal Diff. Geo. 16 (1981) 305-322.

