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ABSTRACT

This paper studies the CR-submanifolds of a Kaehlerian manifold which have 
holomorphic vector fîelds on them. İt is shown that a CR-submanifold having holomorphic 
vector fîelds on it is a CR-product.

1. INTRODUCTION

The notion of a CR-(Cauchy-Riemann) submanifold of a Kaehlerian 
manifold was firstly introduced by A. Bejancu [1]. Aftenvard a lot of 
authors concemed with the subject. In this study, it is considered the 
notion of holomorphic vector fîeld (given in [3]) for CR-submanifolds 
having vector fîelds on them. We may discuss the integrability conditions 
of distrubutions and the necessary conditions of the leaves of the 
distributions to be totally geodesic.

2. BASIC CONCEPTS

In this section we give the fundamental concepts conceming with the 
study

LetM be a Riemann manifold and M be a submanifold of M. The 
Riemannian metric g on M induces a Riemannian metric on M. Let TM 
and TM'*' denote tangent and normal bundle, respectively, and V and V be 

the Levi-Civita connections on M and M, respectively, Then for X, Y e 
r(TM) we have

V^Y = V^Y + h(X, Y) (2.1)
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where r(TM) is the modüle of differentiable sections defined on the 
bundle TM and h is the second fundamental form of M. The equation 
(2.1) is called as the Gauss formula, V being an element of HTM'*’) the 

Weingarten formula is given by

V^V = - AyX + V-^^V (2.2)

where A^ İS the fundamental tensor of Wcingartcn with respect to the 
r±normal section V, and is the normal connection on M. It is well 

known that

g(h(X, Y), V) = g(A^X, Y) 

for any X, Y e r(TM), V e r(TM'‘').

(2.3)

LetM be a Riemannian manifold, Let g and J be Riemannian metric 
and a tensor field of type (1, 1) on M and M, respectively. Then M is 
called a Kaehlerian manifold if the following conditions are satisfıed.

1) = -I

2) g(JX, JY) = g(X, Y), X.Y e r(TM)

3) (VjjJ)Y = 0

where I denotes the identity transformation of r(TM) [2], The vector field
X on M is called as holomorphic vector field if L^J = 0 where LX is the 
Lie derivative with respect to X [3],

A vector field X is holomorphic if and only if 

jVyN = VV' (2.4)

where X and V belong to HTm) [3].

LetM be a Kaehlerian tnanifold and M be a real submanifold of M. 
It is said that M is a CR-submanifold of M if there are distributions D 
and D satisfying the conditions [1],

') T^(P) = D • D]p
2) J(D) = D , J(D^) c TM-^ 
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we denote p and q the complex dimension of the distribution D and the 
real dimension of the distribution respectively, then for q = 0 (resp. 
p = 0) a CR-submanifold becomes a complex submanifold (resp. totally

I ■‘- 
X

real submanifold). M is called as anti-holomorphic submanifold if dimD. 
I

= dunTj^ (x). For CR-submanifolds it can be writtcn

JX = <|>X + Û)X (2.5)

where (j)X and (oX are the tangential part and the normal part of JX, 
r±respectively [1]. v being the orthogonal complement of JD"*" i.e. TM 

JD"*" ® V, for each V g EfTM"^) we can with

JV = BV + CV 

where BV g rfD"*") and CV g Tfv). It is well known that the 

distribution D is integrable if and only if [X, Y] g TfD) for any X, Y 
G r(D) [4].

Theorem 2.1. Let M be a Kaehlerian manifold and M be a CR- 
submanifold of M. Then the distribution D is integrable if and only if 
the second fundamental form of M satisfies [2], for X, Y e r(D)

h(X, JY) = h(JX, Y).

3. CR-SUBMANIFOLDS OF KAEHLERIAN MANIFOLDA
HAVING HOLOMORPHIC VECTOR FIELDS ON THEM

First we give the İcrama

Lemtna 3.1. Let M be a Kaehlerian manifold and M be a 
CR-submanifold of M such that there are some holomorphic vector fîelds 
defmed on M. Then, for X, Y e r(D) and Z g r(D'’'), we have

g(h(X, Y) + h(JX, JY), JZ) = 0 . (3.1)

Proof. By using (2.1) and (2.4) we get

+ h(JY, X) = JVyX + Jh(Y, X),

thus, we have
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g(VjYX, Z} = g(JVYX -h Jh(Y, X), Z)Y'

= -g (H(Y, X), JZ)

for any Z g r(D'’'). Hence we obtain

g(h(Y, X), JZ) = g(JV,YJX, Z)

= -g(VX, JZ)

or

g(h(Y, X), JZ) = -g(h(JY, JX), JZ) 

this completes the proof of the lemma.

Theorem 3.1 Let M be a Kaehlerian manifold and M be a
CR-submanifold of M having holomorphic vector fıelds on it. Then D is 
integrable and each leaf of D is totally geodesic on M.

Proof. Since M has holomorphic vector field on it we have 

JV Y = V Y
X JXJX

for any X, Y g r(TM). Considering

VjxY = V^JY 

we may write

V,^Y = h(JX, Y) = V JY + h(X, JY). JX X

Hence we get

h(JX, Y) = h(X, JY) 

threfore, from theorem (2.1), D is integrable. Now we are going to show 
that leaves of D are totally geodesic on M. For Z e rCD"^) we have

g(V^Y, Z) = g(V Y, Z) 

or

g(V^Y, Z) = g([X. Y], Z) + g(VYX, Z), 
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since D is integrable we get

g(V Y, Z) = g(V X, Z) 
A I

= g(V JX, JZ)

or

g(V Y, Z) = -g(JX, V JZ). A I Y'

From (2.2) we obtain

g(V Z) = g(JX, A^Y)

= g((Aj^JX, Y) 

= -g(V^JZ, Y) 

= -g(Vj^JZ, Y) 

= -g(JVjZ, Y) 

= g(V/, Y) 

= -g(Z,V^Y)

or

g(V^Y, Z) = -g(V^Y, Z) 

from the last equation, we see that

g(VJ, Z) = 0.

This implies that g r(D), which proves the assertion.

From Theorem 3.1 we obtain the following result:

Corollary 3.1. Let M be a Kaehlerian manifold and M be a 
CR-submanifold of M having holomorphic vector fields on it. Then each 
leaf of D is totally geodesic on M if and only if we have

(L^g)(X, Y) = 0
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for any X, Y g r(D) and V e r(v).

Proof. From Theorem 3.1 we have

g(V Y, Z) = g(V Y, Z) = 0 A A
.1for any X, Y g TfD) and Z g rfD'*'). Since D"*" is anti-invariant under J, 

there exist a nonzero vector fîeld W g r(D''‘) such that = JW for g 
rfJD"^). Thus we obtain

Ö = g(V’

= -g(V^JY, W) 

= 0.

On the other hand, since the Levi-Civita connection of M is given

2g(V^Y, V) = X(g(Y, V)) + Y((V, X)) -V(g(X, Y)) +

g([X,Y], V) + g([V, X], Y) - g([Y, V], X)

we have

2g(VxY, V) = -V(g(X,Y)) + g([V, X], Y) + g([V, Y], X) 

for any X, Y g r(D) and V g r(v), Hence

2g(V^Y, V) = -(L^g)(X, Y) .

This proves our assertion.

Theorem 3 Let M be a Kaehlerian manifold and M be a 
CR-submanifold of M having holomorphic vector fîelds on it. Then each 
maximal integral manifold of D'*’ is totally geodesic on M.

Proof. Z, W G r(D'*') and X g TfD) we have

g(V^Z, X) = g(V^Z, X)

= g (J^Z, JX)

or
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g(V^Z, X) = glVyZ, JX)

= Wg(JZ, JX) - g(JZ, V^X) 

since JZ e HTM"^) and JX e r(D) we obtain

g(V^Z, X) = -g(JZ,V^JX) 

= -g(jz, jV X) 

= -g(JZ,V^X) 

= -JWg(Jz, X) + gcy^JZ, X) 

= gCV^JZ, X) 

= -g(V^, X)

or

2g(V^Z, X) = 0.

Because of the last equation we have e rCD"*") which implies that 
each maximal integral manifold of D"*" is totally geodesic on M.

Combining Theorem 3.1 with Theorem 3.2 we have the following 
Corollary.

Corollary 3.2. Let M be a Kaehlerian manifold and M be a 
CR-submanifold of M having holomorphic vector fields on it. Then M is a 
CR-product.

Proof. Let and be the maximal integral manifold of D and 
D'*’ on CR-submanifold, respectively. The locally Riemann product x 

is called as a CR-product. M x M is a locally Riemann product if 
and only if both distributions D and are integrable and the maximal 
integral manifolds of them are totally geodesic in M[2]. By virtue of 
Theorem (2.1) and Theorem (3.2) and Lemma 3.3 in [5], x is a 
CR-product.
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