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INTRODUCTION

Simplicial groups model all connected homotyp types. In particular
certain simplical groups, namely those with vanishing Moore complex in
dimensions greater than n, provide algebraic models for n-types of
simplical groups. This result has been crucial in development of
homological algebra in the last thirty years.

R. Brown and J.L. Loday [5] examined that if the second dimension
G, of a simplicial group G is generated by the degenerate elements, that
is elements coming from lower dimensions, then the image of the second
term NG, of the Moore complex (NG, d) of G by the differential, 9, is

(Kc:rdl , Kerdo]

where the square brackets denote the commutator subgroup. An easy
argument then shows that this subgroup of NG, is generated by elements
of the form (sodl(x)ysodl(x)'l(xy‘lx‘1) and that it is thus exacly the Peiffer
subgroup of NG,, the vanishing of which is equivalent to 81: NG, - NG,
being a crossed module. For implicial algebras, this was carried out by
the author ([2]).

In this paper we give a generalisation of the Peiffer elements for the
group cases to dimensions 2, 3 and obtain partial results in higher
dimensions. In order to present this argumert, we will need to examine
part of the hypercrossed complex structure of the Moore complex (cf.
Carrasco and Cegarra [7]). More precisely, we have:



226 Z. ARVASI

Let G be a simplicial group with Moore complex NG and for n>1,
let D be the normal subgroup generated by the degenerate clements in
dimension n. If Gn = Dn, then

0 (NG) = d(N)) for all n > 1

where N is a normal subgroup in G, generated by an explicitly given
fairly small set of elements.

If n = 2, 3, then the image of the Moore complex of the simplicial
group G can be given in the form

9(NG) = [1[K; K]
{15
for @21, Jcm-1]=1{0,1,..,n1} with I UJ = [n-1], where

KI ﬂKerd and K ﬂKad

iel jel
In general for n > 3, we can only prove
[1 [ K] < 9,(NG)
{1}
but suspect the opposite inclusion holds as well.

Finally Curtis [9] stated that if G is simplicial group and if x € nP(G)
and y € nq(G) with X € Gp, y € Gq, then
x, y1 =] [sbi, saﬂ
{ab}
where (a;b) varies over all shuffles. The normal subgroup N_is generated
by the component within NG of these [sX, syl

1. DEFINITIONS AND NOTATION

A simplicial group G is a sequence of groups, G ={G,G,,...G, ..},
together with face and degeneracy maps

d

1

d:G, -G ,.0<i<n(@#0)

S, = G—>G 0<i<n

i n+1’

These maps are regired to satisfy the simplicial identities
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dd; =4 4, for i <j
fsj'ldi for i < j
ds, = /identity fori=jj+1
\deu fori>j+1
55 T SaS for i<J.

G can be completely described as a functor G: A® — Grp where A is
the category of finite ordinals [n] = {0 < 1 < .. < n} and increasing
maps.

We recall the following notation and terminology referring the reader
to the work of Carrasco and Cegarra [7] for more motivation and some
related results.

For the ordered set [n] = {0 < 1 < ... < n}, let o’: [n + 1] — [n]
be the increasing surjective map given by

ocf(j) _ P ifj<i

j-1 ifj>i

Let S(n, n-1) be the set of all monotone increasing surjective maps
from [n] to [n-r]. This can be generated from the various a“i by
composition. The composition of these generating maps is subject to the
following rule ooy = o0, with j < i. This implies that every element
o€ S(n, n-r) has a unique expression as O = o 00 0. 00 with

. . are the clements of [n]
at which {i,, - i} = {i: a(i) = a(i+1)}. We thus can identify S(n, n-r)
with the set {(i, .i)) : 0 <i <i < ..< i < n-1}. In particular, the
single element of S(n, n), defined by the identity map on [n], corresponds
to the empty O-tuple ( ) denoted by © . Similarly the only element of
S(n, 0) is (n-1, n-2, ..., 0). For all n > 0, let

Smy = U S, no).

0<r<n

We say that o0 = (i, .., 1) < B = Gy - j,) in S(n)

0<i < 12 <. < ir < n-1, where the indices i

if 4 = j, e i =j buti >j (k20 or

ifil=j1,...,i=jrandr<s.
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This makes S(n) an ordered set. For instance, the order in S(2) and in
S(3) are respectively:

S2) = {@, < (1) < O < (1, Ok
$@) = {2, <@ < () < @1 < O < 2,0 < (1,0) < 2,1,0)}.

We define o N as a set of indices which belong to both of them and
will take the Moore complex (NG, d) of a simplicial group G to be
defined by

n-1

NG), = M Kerg
i=0

with an: NG, - NG, induced from d by restriction. Its homology gives
the homotopy groups of the simplicial algebra.

The Moore complex, NG, carrics a hypercrossed complex structure
(see Carrasco and Cegarra [7]) which allows the reconstruction of the
original G. We recall briefly some of the aspects of this recontruction
which we will need later.

The Semidirect Decomposition of Simplicial Group. The
fundamental idea behind this can be found in Conduché [8]. A detailed
investigation of this for the case of a simplicial group is given in
Carassco and Cegarra [7].

Lemma 1.1. Let G be a simplicial group. Then G, can be
decomposed as a semidirect product:

G, = Kerd, % 57 (G, ).
Proof: The isomorphism can be defined as follows:
8:G, — Kerd % s"(G)

g (£'s,0e 5,,08)

Since we have the isomorphism G = Kerd % s , G ,, we can
repeat this process as often as necessary to get each of the G as a
multiple semidirect product of degeneracies of terms in the Moore

complex.
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We can thus decompose G as follows:
Proposition 12. If G is a simplicial group, then for any n 2 0
G, = (. (NG, ®s NG )X.%s, .. s,NG )

(.. (s, NG s ;s NG )M ..xs 5, .. s,NGy).

The bracketting and the order of terms in this multiple semidirect
product are generated by the sequence:

G, = NG, # s)NG,
G, = (NG, ¥ sNG)) # (5,NG, s,5,NGy)
G, = (NG, % s,NG,) ¥ (s,NG, « SzS1NG1)) «
((s,NG, ® 5,3NG,) % (s,5NG, % 5,,5,NGy).
and
G, = ((NG, # s,NG)) % (s,NG, ® 5,5,NG))
(NG, ® 5, NG,) % (5,5 NG, % 5;5,s NG))) =
s, (decomposition of G,).
Note that the term corresponding to a0 = (ir, ves i1) € S(n) is
sa(NGn_#a) =8 il(NGH_M) =8 . sil(NGn_#a),
where #a0. = r. Hence any element x € G, can be written in the form

x=y JI sf{x) Wwithye NG andx & NG,
ae S
Crossed modules of groups. A crossed module, (M, P, d), is a
group homomorphism d: M — P, together with an action (m, p) — mP
of P on M satisfying the two rules:

(CM1) o(mP) = p! A(m)p
(CM2) m’nm = n°®

for all m, n € M, p € P. The last condition CM2 is called the Peiffer
identity. Examples of crosed modules are: an ordinary P-module, when 0 =0;
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a normal subgroup, when 0 is an inclusion. There are lots of good
examples of crossed modules. The notion is due to JH.C. Whitchead
[17].

The proposition above can be considered a ‘lifting’ of a result of
Conduché stated in the next section.

2. HIGHER ORDER PEIFFER IDENTITIES

The following lemma is noted by Conduché [8]. A proof is included
for completeness.

Lemma 2.1. For a simplicial group G, there is a bijection between
n-1 _®

NG = M Kerd, and I\K}n = (M Kerd

i=0 i#r

in Gn.

Proof. The bijection is given as follows;

—0
¢ : NG — NG,
q (~1)k'1
g o =g l(I'IO s, dg -

Note that ¢ is not a homomorphism. The following is an elemantary
consequence of 2.1 (cf. Carrasco and Cegarra[7]).

Lemma 2.2. Given a simplicial group G then we have the following

d(I\K}) =d (ﬁf’)

n n.

Proposition 2.3. Let G be a simplicial group, then for n > 2 and,
LIch-1withl ulJ=in-1]

[m Kerd , M Kcrdj} < ING,

iel jel

Proof: For any J c [n - 1], T # &, let r be the smallest element of
J.If r = 0, then replace J by I and restart, and if 0 € I n J, then
redefine r to be tha smallest nonzero element of J. Otherwise continue.
Letg, € M KerdJ and g, € M Kerd, one obtains

jeT iel
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di[sr_1 gy srgl] =1fori#r
—0
and hence [s g, sg] € NG . It follows that

—0
[g08,] = d[s .8 s8] € dr(NGn) = d NG, by the provious lemma,
and this implies
[m Kerd, , M Kerd] c ING .
iel jel !
Writting the abbreviations
KI= (\KerdlandKJ= ﬁKad,
iel jel !
then 2.3., becomes
H [KI’ I(J] < anl\IGn
aLn
for 3z, Jcm-1]andlul=[n-1]

Corollary 24. Let G be a simplicial group and let G’ be the
corresponding truncated simplicial group of order n - 1, so we have the
canonical morphism G — G’. Then G’ verifies the following property:

For all nonempty sets of indexes (I#J) I, J<[n-1]withIU J=[n-1],
AKerd , N Ked' | = 1.

i€t jel
Proof: Since d NG’ = 1, this follows from proposition 2.3.

Hypercrossed complex pairings: In the following we will define a
normal subgroup N . First of all we recall from Carrasco [6] the
construction of a useful family of pairings. We define a set P(n)
consisting of pairs of elements (a, B) from S(n) with o N B = & and
B < o where o = (i, . i) B =Gy i€ S(n). The pairings that
we will need,

{F,5: NG, ,, X NG, ,4 = NG, : (&, B) € P, n 2 0}

are given as composites by the diagrams
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NG, XxNG Fap NG
n- #d n~#{3_-) n
Saxslj P
Gy XGp =t 3»- G,y
where
Su =8 0 8 NG, .., G, g =8 -8 ¢ NGn_#[3 - G,

P : G, & NG, is defined by composite projections p = p,, - P, Where
p(2) = zsjdj(z)‘1 with j = 0, 1, ..., n-1
and L G, x G, - Gn is given by commuttor. Thus
Fa ﬁ(xavy’3) = Pll(Sa X Sﬁ) (Xa’ Yﬁ)
= pls, (%) s3Gp)-

We now define the normal subgroup N to be that generated by elements
of the form

Fa,ﬁ(xa,yﬂ)

where x € NG
o n-

4o and Yp € NG

n-#§°
We illustrate this normal subgroup for n = 2 and n = 3 to show
what it looks like.

Example. For n = 2, suppose B = (0), o
Kerd,. It follows that

(1) and x, y € NG, =

Ep o ¥) = ppy(ls,(0)s s,()])
= p,[8,(x), 5,()]
= [8,x), s, [5,(y), 5,(x)]

which is a generator element of the normal subgroup N,.
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For n = 3, the linear morphisms are the following

F F

(1, 02y’ F

@ 0y @, HEy

F F F

0 @y Lo

For all x € NG,, y € NG,, the corresponding generators of N, are:

Fy & ¥ = [5,5500, ;01,0 5,5,

F oy ®s ) = [8,8000, 8,01 [5, ), 5,8, 015,58, (x), 5,01 s,(9): 5,8,()]
and x € NG,, y € NG,

Fono® ) = [5,8,00, s[5, 5,8,®][s,8,&), s,0];
whilst for all x,y € NG,

Foo® ¥ = [5,), ss0Mlls,0). s,®]s,x), 5,01,

Fopo® ¥) = [5,®), M,

Fon® V) = [5,&), ssM]ls,, s,®)].

In the following we analyse various types of eclements in N and
show that products of them give elements that we want in giving an
alternative description of d NG_ in certain cases.

Lemma 2.5. Given x € NG, . yg € NGu-#B with o0 = (i, ..., i),
B = (Gponi) € S@. f anP=0 with B < o and v = [s,(x.) Sp(yp)]’
then

() if k < i, then p (u) = u,

@ if k>i +1ork>j + 1, then p(u) = u,

@iii) if k € {jj, - j j;+1} and k = i, + 1 for some £, then
P = [5,(x)s 847918, @)

v if ke {i, .,i,j + 1} and k = i, + 1 for some m, then
P = [5,(%,)s 350915, 3)",

where z € G , and 0 < k < n-1.

k
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Proof: Assuming f < o and oo N B = & which implies i
the range 0 < k £ i

, <J-In

1,
P = [5,(x0)s 5] since dyyp) = 1.
Similarly if k > i + 1, then p,(u) = [sa(xu), Sﬁ(yﬁ)] since d, (x,) = 1.
Clearly the same sort of argument works if k > i+ L
Ifke {j,..j,j+1} and k=1,

[s, (x> sB(yﬁ)]sk(zk)'l where z_ = [s_(x_), sﬁ,(yﬁ,)] € G_, for new strings
o/, P’ as it is clear. The proof of (iv) is same so we will leave it out.

+ 1 for some £, then p (u) =

Lemma 2.6. If o nB= @ then,
nl K
Py - P8 5509] = [3,5) 5,09] [T 82"
k=1

where z, € G ..
n-1

k

Proof: We prove this by using the induction hypothesis on n. Write
u = [sa(xa), sﬁ(yp)]. For n = 1, it is clear to see that the equality is
verified. We suppose that it is true for n - 2. It then follows that

n2 ~
Py - D@ = p,, (UH sk@k)l)
k=1

n2 R
= p,,® p,, (H 5,2) )
k=1

1 e
Next look at p,,®) = usn_l(dn.lu ) = usn_l(z) and

z

n2 1 n2 1 n2 n .
P H ,(z) ) = H (=) Su.1(H 8,z) )
k=l k=1 k1 ’

n2 _ 1

= [1s@)'s, (7).

Thus =
P, ;- Py

n2 B 5
uH s(z) 1sll‘l(z’z”) 1.
k=1 e e

Zn1

n2 1 1
un Sk(Zk) Sn»l(zn-l»)
k=1

n2 1
o[ T s, -
k=1

as required.
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Lemma 2.7. Let x, € NG_ with o, B € S(). If

oan P =0, then

' ¥g € NG!L#[5

-#a
[Sa(xa)’sﬁ(}'ﬁ)] = Sqﬁﬁ(zmﬁ)

where 7 _q has the form [sa,(xa),sﬁ,(yﬁ)] and o NP =D.

Proof: If o' N’ %, then this is trivially true. Assume #(oaNP) = ¢,
with t € N. Take o = (i, .., i) and B=(, .., j) with o N B =
&y - k),

Su{Xy) = S o S sil(xa) and sﬁ(yﬁ) =8 S Sjl(yﬁ)‘

Using repeatedly the simplicial axiom ss;, = sgs , for d < e until

s, is at beginning of the string, one gets the

btaining that
0 g that s '

following
s, (x,) = Sy, kl(sm,xm) and sﬁ(yﬁ) = 8y skl(sﬂ,yﬁ).
and take the commutator

[s,(x) sﬁ(yﬁ)] = [skt skl(sa,xa), S - skl(sﬁ,yﬁ)]

8 - S L8 sp(vp)]

where z, = [s,(x,) sB',(yB)] €6, yan g and where oNoin B=o, Panp

= B’. Hence o' NP’ = &. Moreover o < o and B’ < B as #o’ < #o and
#B < #P.

Proposition 2.8. Let G be a simplicial group and n > 0, and D the
normal subgroup in G generated by degenerate elements. We suppose G
= D, and let N be the normal subgroup generated by elements of the
form

Fogty Y9  With @) € P@)

where X, € NGn_#a, Yg € NGH_#I5 with 1 < rs £ n. Then

9 (NG) = 3 (N).
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Proof: From proposition 1.2, G, is isomorphic to

NG s NG ®s NG #H. Hs
n n-1 n-1 n-2 n-1
nl

here NG, = N\ Kerd, and NG, = G,. Hence any element x in G can be
written in thé™Yollowing from

SoNGo’

n-lsn-Z

_ ’
X = gnsn—l(xn»l) Sn—Z(X n—l)sn-lsn«2(xn»2) Sn-lsu-2 SO(XO)’

with g € NG, x_, x' | € NG ,,x , € NG

v X X, € NG, etc.

n-2’

We start by comparing N, with NG . We show NG, = N_. It is

n

enough to prove that, equivalently, any element in G /N can be written

14
Sn—l(xn—l) Sn-Z(X n-l) Sn—lsn-Z(xn-Z) Sn~lsnA2 SO(XO)I\In

which implies, for any b € G,

BN =5 (X ) s (X ) s 8 o o S;XIN.

for some x ; € NG_, etc.

1

If b e G, it is a product of degeneracies so first of all assume it
to be a product of degeneracies and that will suffice for the general case.

If b is itself a degenerate element, it is obvious that it is in some
semidirect factor s (G, , ). Assume therefore that provided an element b
can be written as a commutator of k-1 degeneracies it has the desired
form mod N , now for an element b which needs k degenerate elements

b = [sﬁ(yB),b'] with y, € NG,
where b’ needs fewer than k and so

BN, = [s,yp b N,

[5508: 8 8,50 - 81800 — SEIN,
I1 [su(xa), sB(yB)]Nn.

ae S(n)
Next we ignore this product for a moment and just look at

5, 55091 .

We check this commutator case by case as follows:
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If anp = O, then there exists by lemma 2.5 and 2.6, an element

-l =
(5,5 5509] T 8@
k=1

in N with z € G . and k € o so that
n k n-1

-l

[sa(xa), sB(yﬁ)] = [[s@ modN,.

k=1
If anfP = <, then one gets from lemma 2.7, the following

[Sa(xa)’ SB(Y ﬂ)] = San B(Za A [5)

where z = [5,0x)> sﬂ,(yﬁ)] € G , @B with #{oonp) = t € N.

anB ~
Since o NP’ = &, we can use lemma 2.6 to from an equailty

ol
[sa(xa), sﬁ(yﬂ)] = k]:[1 s/z,) mod N

where z, € E_|. It then follows that

K
San ﬁ(za N ﬂ) = San B[Sa'(xa) ’ SB'(Yﬁ)]

n-1
= 1;11 SargSe(@)  mod N

Thus we have shown that every commutator which can be formed in the
required form are in N . Therefore dv(N)) = d,(NG).
3. THE CASES n =2 AND n =3

3.1. Case n = 2

We know that any element g, of G, can be expressed in the form

g, = bsys;xs,u
with b € NG, x,y € NG, and u € s/G,. We suppose D, = G,. For
n =1, we take B = (1), « = (0) and x, y € NG, = Kerd,. The normal
subgroup N, is generated by elements of the form

Fro® Y = [s&), s;Ms, @), s,®].

The image of N, by d, is known to be [Kerd, Kerd)] by direct
calculation. Indeed,
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4,[F 0 M1 = d,([s,®), s,M1s, (), 5,0])
= [5,d,(), ylly. x]

where y € Kerd, and x‘lsodl(x) € Kerd, and all elements of Kerd, have
this form since lemma 2.1.

The uscfulness of the above for us is that it gives us a way of
constructing a crossed module directly from a simplicial group.

We consider the truncated simlicial group of order 2.
d d
G : GANG, =—= G,
So

To get a crossed module we merely have to divide NG, by 82NG2
(which is the same as [Kcrdl, Kcrdo]). The crossed module is

8 : NG,/a,NG, - NG,

where 8 is induced by d,. NG, acts on NG,/d,NG, by multiplication via
s, i.e.

0
NG,/8,NG, x NG, —> NG/3)NG,

- x 1

(X y) 'y = sy y)xs,y)
where X denotes the corresponding element of NG /d,NG, whilst
X € NGl.(NGl/azNGz, NG, &) is the crossed module. We note:

For all xd,NG,, yo,NG, with x, y € NG,

%N (yo,NG,) = 599NG)(yg NG, )

_ dx

= x( ’yazNGz

= sodl(x)ysodl(x)'182NG2 by the action
xyx'9,NG,  mod 9,NG,
(x9,NG,)(y9,NG,)(x '9,NG,)

]

as required.
32.Case n = 3

This subsection provides analogues in dimension 3 of the Peiffer
clements.
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Proposition 3.1.
33(NG3) = g;[} [Kl’ KJ] ([K{Ol}’ K{O,l)] [K{ll}’ K{OZ}] [K{IZ}’ K{OJ}])

where TuJ =[2],In]T =@.

Proof: By proposition 2.8, we know the generator clements of the
normal subgroup N, and d,(N,) = 9d,(NG,). For each pair o, B e SG3)
with @, < oo < B and anP = J, we take x € NG, , .,y € NG, ,4
and set Fa,p(x’ y) = papzpl[sa(x), sﬁ(y)] where p(g) = gsi_ldig‘l. This
element is thus in NG,. The valid pairs together with their corresponding
pairing functions is given in the following table:

o | B |Fu® )

(1, 0) @) | [s,5,00 ;M5 5,5,)]

2| @, 0| @) | Ls,5,008,M1[s,)5,5,0][5,5,0).5,0][5,3).8,5,)]
31@, 1| © ] [s,5,00, ;5,3 5,5,0][s,8,®), 5,)]

41 @ | O[5, s;WMls,»s 5,)]

5| @ | O[5, s,m]

6| ® | ©|,m. ,®Is,0. s,®Is,®, 5,0]

p—

The explanation of this table is the following:

Row 1. Firstly we look at the case of oo = (1, 0) and B = (2). For
x € NG, and y € NG,,

4,(Fy gy 1) = dy5,5,), 8,0[,)s 8,5,(0]
= [5,5,d,0), ylly, 8,0]
and so
4,(F g% M) = [5,8,d,(®), ylly, s,®)] € [Kerd), Kerd, N Kerd,].

We have denoted [Kerd,, Kerd, n Kerd,] by [K
and J = {0, 1}.

oy K{O,l)] where 1 = {2}
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Row 2. For o = (2, 0) and B = (1) with x € NG,, y € NG,,
d3(F(2p)(1)(x 7Y))= d3 [sto(x) qSI(Y)] [Sl(}’) ’stl(x)] [SZSI(X) 952(Y)] [Sz(Y)’sto(x)]

= [5,®). s,d,0]ls,4,®), 5,015, ylly, 5,01

and so

d3(F(2 p)(l)(x, y)) € [Kerd , Kerd, N Kerd,] = [K{l}, K{0 2}].
Row 3. For o = (2, 1) and B = (0) with x € NG, y € NG,,
4(F 10 ®s 1) = d([5,8,®.5,0][s, ) 8,5,®][s8,(%).5,(5])

[5,(%), s,d,]s,d,(y), s,(0][s,(x), y]

and hence

dS(F(Z,l)(O)(X’ y) € [Kerd, n Kerd,, Kerd ] = Koy Kyl
Row 4. For B = (1) and o = (2) with x, y € NG, = Kerd nKerd ,
dy(F )% 1) = d([s,(05,0)][8,).5,01)
= [X, Sldz(}’)][y, x].
It follows that
d3(F(2)m(x, y)) € [Kerd, N Kerd,, Kerd) N Kerd ]
[K{o,z}’ K{O,l}]'
Row 5. For p = (0) and o = (2) with x, y € NG, = Kerd "Kerd ,
= [x, s,d,»)]
We can assume, for x, y € NG,,
-1
X € Kerd0 N Kcrd1 and ¥8,d,(¥)s,d,(¥)" € Kerd, n Kerd,

and
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[x, ys,d,s,d,)7] = [x, yllx, xs,d,(]ls,d,y, x]
= [Xa SleY] [Y, X][X, Sod2Y]
and so
S [Kyap KonllKgay Kepl-
Row 6. For B = (0) and oo = (1) and %, y € NG, = KerdnKerd,,
4(F 0% 9) = d([s,00.5,0][s, )5, 01s,0).5,5)])
[Sldz(x)’ Sodz(y)][sldz(y)7 Sld2(x)][x’ y]

We can take the following elements
xs,d,(x)'s;d,(x) € Kerd, N Kerd, and s,d,(y)y"' € Kerd, N Kerd,
When taking the commutator of these elements, one get
-1 A7 =
[xsldz(y) s Sld2(Y)y ] =
Y ([y, x84, (5,4, 8,4, [s,d,(), 5,d,M]ly, x1)
_ -1
&Iy, xls,4,), yIF {ly, xilx, s, 4,01}
- -1
(5,4, )y 1% { [xs,d,x) ™ 5,4,(0),8,d,0)y T {[s,d,0).y]ix.y1} }
[s,d,(x).ylly.x]
and hence
dy(Fj0%: ¥)) € (K 12K 10, 1K 0.2y K01y (K ) 2K 9 210K (9 5, K 0.1
So we have shown
83(NG3) < g[} [KI’ KJ]([K{OJ}’ K{O,l}][K(12}’K{02}][K{I,Z}’K{O,l}]) :

The opposite inclusion can be verified by using proposition 2.3. Therefore
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33(NG3) = [Kerd,, KcrdO N Kerd J[Kerd,, Kerd, N Kerd ]
[Kerd, N Kerd,, Kerd ][Kerd; M Kerd,, Kerd, N Kerd ]
[Kerd NKerd,, Kerd MKerd,][Kerd, N Kerd, Kerd, n Kerd,].

This completes the proof of the proposition.

4. APPLICATIONS TO 2-CROSSED MODULES AND CROSSED
SQUARES

Generating elements of d,NG, allow us to examine the identities to
be satisfied in truncated simplicial groups of order 3, ie.

dd d, g4
G? : G,BNG, ‘;—if G, == G,

8,8 S5
Dividing NG, by ang3 gives a 2-crossed module of commutative
groups. Before verifying this we recall from {8] the definition of

2-crossed module:

Definition 4.1. A 2-crossed module of groups consists of a complex

of C,-groups
d 0

C,—> C —L G,
and d,, , morphisms of C-groups, where the group C; acts on itself by
multiplication such that 82:C2 — C, is a crossed module. Thus C, act on
C2 via C0 and we require that for all x € C2, y € C1 and z € CO, there
is a C-bilinear function, i.e. the Peiffer lifting, giving

{,):CxC > C,

which verifies the following axioms:

PLL: vyt = oy Yy v

PL2: {0,(x), 9,(x)} =[x, X1

PL3: {y, 9, )H9,®, y} = Iyxxt,

PL4: Yy, = v {y,y,)
PLS: Oy, Yo = o{y Yy Yoy, b
PL6: vt = ek

for all x, x, € Cp, y,,¥,,Y, € C, and z € C,
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Proposition 4.2. Let G be a simplicial group with the Moore
complex NG. Then the complex of groups

NG,3,NG, "D,) —%->NG, —% > NG,

is a 2-crossed module of groups, where the Peiffer map is defined as
follows:

{ » }: NG, x NG, - NG,/,(NG,nD,)

given by (x, y} (soxslysox'l) (slxsly_lslx.l)

Proof: We will show that all axioms of a 2-crossed module are
verified. It is readily checked that morphism

9,: NG,/3,(NG, nD,) — NE,

is a crossed module (see proposition 3.4). In the following calculations we
display the elements omitting the overlines as:

PL1:
R AR X (CRA AN ARSI ANARRAD),
= (5,d, 50,54, ¥ DGy, v D
= oy, yoy, Yy
PL2: From

d3(F(1)(0)(X1' X)) = [s,d,(x)), 5,d,(x)][s,d,(x)), 5,d,x)][x,5 x)]

€ J,(NG, N D,), one obtains

{0,(x)), 9,(x,)} = (s,,(%)s,d,(3)s,d,x)(s,d,(x)s, d,y"s, d x7)
= [x,, x,] mod d,(NG, N D,)

PL3: a) From d3(F(0)(2,1)(Y,X))=[SOdZ(Y)Sl(X)][SI(X)SIdZ(Y)][Y,Sl(x)]
€ 9,(NG, nD,),

{3,(x). y}

[s,(), x] mod 9,(NG, N D,)
s,(y)xs, (y) 'x!
(x)x! by the definition of the action
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and b) since d3(F(1 oa® y)) and d (F (%, y)) are in 9,(NG, N D,)

2,0)1)
{y, 00} = 5,y65,d,x5,y"s,y5,d,x s,y
= (5,0)xs,0) N5, )x"s,y)") mod 9,(NG, N D,)
= (3,5,d, (¥)%8,5,0, (1) N5, '5,(¥)") mod ,(NG, N D,)
= G:9xyx! by the definition of the action
and thus
{y, ,00H{9,(), y} = 4¥xx!
PL4: The following equalities are easily verified:
Vo Y135} = 8,005, 8,38,
8,508, ) 15,7, s, (3,)"
= 8,58, (7087 '8, ()8, ¥ ) ', (v !
8,508, (Y )8, (30 8,8, (¥,)8, ()"
8,008, (9, '8, (¥p) s, (7)s, 0 ) '8, (!
NARNARN AN AN AR
= {Jp 7,397 {35 ¥,}.
PL5:
oY1 Yad = 8,008, )8, ()8, '8, 3p) ™
$,(Yp)s, ()8, () '8, () s () !
A A ATARTS XA
$,(Y )8, ) '8,(Y )8, (v ))s, (¥ s, (v )
84(00)8, )8, (¥ )8, (3,8, () ' ()

= 30y, v,000 Y,Y,9, -
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PL6:
W ¥i} = SISO(Z)SOYOSIyISOyO_lSISO(Z)-XSlSO(Z)SlyOSlyl_lslyO-lslso(Z)—l
= {ZyO’ zy1}~
where X, X, X, € NG2/83(NG3 ND), Y, ¥ ¥p» ¥, € NG, and z € NG,

This completes the proof of the proposition.

Crossed squares of groups are another type of 2-dimensional crossed
module defined by D. Guin-Walery and JL. Loday [12]. Thus we show
that NG,/d,(NG, N D,) occurs in the crossed square.

A crossed square of groups is a commutative diagram of groups.

L—" >N

M——>» P

together wtih actions of P on L, M and N. There are thus actions of M
onL and N via d,and Nacton L and N via @’ and a function h MxN —L
such that, for all m, m’ € M, n,n" e N,pe P, £ € L; '

1. each of the maps 3, &, 9, &’ and the composite 80 = 00" are
crossed modules

2. the maps 6, & preserve the action of P
3. h(mm’.;n) = ™h(m’, n) h(m, n)
4. h(m, nn’) = h(m, n)" h(m, n)
5. Ph(m,n) = h(’m, Pn)

6. dh(m, n) = ®nn’!

7. &h(m, n) = m"m’*

8. h(m, 81) = ™28

9. h(31, n) = 2287,
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Proposition 4.3. The following diagram

NG2/<93(NG3 N Da)———a—-—> NG,

W}l 3 >» G1
is a crossed square. Here NG, = Kerdlo and I:I_E}_1 = Kerdll.

Proof: Since G, acts on NG,/9,(NG, N D,), NG, and NG,, there are

actions of l\Y}l, on NG,/d,(NG, N D,) and NG, via, 9, and NG, act on

NG,/d,(NG, nD,) and NG, via &', As d and o are inclusions, all actions
can be given by conjugation. The h-map is

NG, x NG, - NG/d,(NG, n D,)
—_ -1 -1 -1
(x ) - hes, D) = (5,005,F)5,0 5,056 5,00 NG, D,
Yv_t_nere X and y are in NG, as there exists a bijection between NG, and

NG, (by lemma 2.1). It is routine to check that the axioms of crossed
sqare holds.

To summarise we have:

Theorem 44. Let n = 2, 3 and let G be a simplicial group with
Moore complex NG in which Gn = Dn, Then
an(l\Gn) = H [KI’ KI]
a3
forany I,J c [n-1]withlu J = [n-1], I=[n-1]- {o} and

J=1[n - 1] - {B}, where (a, B) € P(n).

Theorem 4.5. If Gll # D , then

9(NG, " D) = {l;[}[K" K] withn =2, 3.



MOORE COMPLEX OF SIMPLICIAL GROUPS 247

REFERENCES

[u

{2}

{3

[ 4]

(3]

[ 6]

(71

[8]

[ 9]

[10]

{i1]

{12}

[13]

(14]

[15]

(16]

{171

M. ANDRE, Homotologie des algébres commutatives, Springer-Verlag, Die
Grundlehren der mathematicshen Wissenschaften in Einzeldarstellungen Band 206
(1974).

Z. ARVASIL Applications in commutative algebra of the Moore complex of a
simplicial algebra. Ph. D. Thesis, University of Wales, (1994).

Z. ARVASI and T. PORTER. Simplicial and crossed resolutions of commutative
algebras. J. Algebra, 181, (1996) 426-448.

HJ. BAUES. Combinatorial homotopy and 4-dimensional complexes. Walter de
Gruyter, (1991).

R. BROWN and JL. LODAY. Van Kampen theorems for diagram of spaces.
Topology, 26 (1987) 311-335.

P. CARRASCO. Complejos hipercruzados, cohomologia y extensiones. Ph.D. Thesis,
Univ., de Granada, (1987).

P. CARRASCO and AM. CEGARRA. Group-theoretic algebraic models for
homotopy types. Journal Pure Appl. Algebra, 75 (1991) 195-235.

D. CONDUCHE. Modules croise generalises de longueur 2. Journal Pure Appl.
Algebra, 34 (1984) 155-178.

E.B. CURTIS. Simplicial homotopy theory. Adv. in Math. 6 (1971), 107-209.

G.J. ELLIS. Higher dimensional crossed modules of algebras. Journal Pure Appl.
Algebra, 52 (1988) 277-282.

AR. GRANDJEAN and M.J. VALE. 2-Modulus cruzados en la cohomologia de
André-Quillen. Memorias de la Real Academia de Ciencias, 22 (1986) 1-28.

D. GUIN-WALERY and JL. LODAY. Obstructions 2 lexcision en K-théorie
algebrique. Springer Lecture Notes in Math. 854 (1981) 179-216.

L. ILLUSIE. Complex cotangent et deformations I, II. Springer Lecture Notes in
Math., 239 (1971) II 283 (1972).

S. LICHTENBAUM and M. SCHLESSINGER, The cotangent complex of a
morphism, Trans. Amer. Math. Soc., 128 (1967), 41-70.

T. PORTER, Homology of commutative algebras and an invariant of Simis and
Vasconcelos, J. Algebra, 99 (1986) 458-465.

D. QUILLEN, On the homology of commutative rings, Proc. Sympos. Pure Math,
17 (1970) 65-87.

J.H.C. WHITEHEAD. Combinatorial homotopy 1I. Bull. Amer. Math. Soc., 55 (1949)
213-245.





