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ABSTRACT

In order to define the generalised Euler formula in a dual manner, we studied the angles
between two hyperplanes in R™+! and we obtained that the Gauss curvature can be expressed

by the normal curvature and its dual form.

1. INTRODUCTION

In Euclidean space R0*1 of dimension n + 1 we consider an n-
dimensional hypersurface M given by a local coordinate system {ut, u?,
...,ut}. Let {x;, x3,...,Xny;} be an orthogonal coordinate system
of Rnt+l, We assume that the x;'s are C*— functions of u®’s and that
1<i<n-+11<a<n. Let X be a vector whose orthogonal comp-
onents are (X;,. .., Xn,4), then the hypersurface M can be characterized
by a vector function

X =X (%, « =1,..., 1. (L.1)

Let us denote by N the unit normal vector field of the hypersurface M,
oX

then it satisfies the conditions <<N,N> =1 and <N, At 0. Now

let us introduce an orthonormal frame in R1*! by e;, and using this
frame we can write that

Nty
N — N; e; (L.2)
i=1
and that
oX o4l
— = iEI (xk)iep k =1,...,n, (1.3)

where N =N; (u*), e« =1,...,n, 1 <i<n -+t
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1I. PRELIMINARIES

Let v denote a tangent vector of the tangent space Ty(m) at the

. g 1
point m of hypersurface M. In this direction the curvature — of the

R
hypersurface M is defined by
1 I\ )
=" < v, %T} > = ha,@ uw” uk (IL.1)

where hyp is the second fundamental tensor of M and defined as

02X _ @oN X
hyg = <N, Tou*oad > =< u® > gud <

The principal curvatures at a point of M are the eigen values of the
second fundamental tensor evaluated at this point. Hence they are
the roots of the characteristic equation as follows

1 1 1
det [ g - —%J = (-1)" det (gm( E) (_ﬁ _ R_,)
1 1 n 1 1 1
o ( Rn Ro—t ii—Al Rn 1] <i2 RilRiz
1. 1 .
R ii<...<in_1 Ril cte Riu—1 » Rl [ Rn
(11.2)

where g,5’s are the coefficients of the first fundamental form of the
hypersurface M. The principal directions always exist and we can
find an orthonormal system of principal directions.

Now let 6, denote the angles between the direction v and the prin-
cipal directions, where « runs from 1 to n. If we denote the principal
directions by t,,..., ty, then 0; & (t;, v),..., 0y == < (tp, V).

1 .
The curvature - in this direction v can be expressed in terms

R
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.o 1
of the principal curvatures ——, i = 1,..., n, by means of Euler’s

R;
formula

T E e sinfL 1.3
R (11-3)

Now let us define a kind of normal curvature which we will denote by
R and will be thought as a dual corresponding of R. This will be
defined at the image point of m under the normal projection in the
direction v of M. This concept has been defined by A. Mannheim (see
{1] and [4]). From this dual viewpoint the Euler formula may be
constructed as

. n
R = X R* sin; (11.4)

i=1

g 1 1
where R*; shows the dual principal curvature corresponding to ST
i
Denoting by v; the reciangular components of the unit vector v we
write that
1
v = X vie. (I1.5)
i=1
Also we have that cos §; = < v, e; >, i =1,..., n. On multiplying
both members of (I1.5) by ey we find that vi= < v, ex > and that vy
==c¢os 0, i = 1,..., n. Consequently we have

n n
v = 2 ¢ cosj or X cos2y == 1. {11.2)
i=1 i=]

111. ANGLES BETWEEN HYPERPLANES IN Rnti

Let us consider two n-dimensional tangent vectors T;%, To? which
are n—planes in euclidean space R"*! and t; and t, be the tangent
vectors of the normal sections of T2, and TP, with hypersurface M.
Also define the angles between the vectors ty, 1, and any vector in
tangent space Ty(m). To find this angles we will follow the procedure
which has been given by H. Gluck [2]. The angle between a pair of
lines in euclidean space Rnt1 is the smaller of the two possible angles
between any vectors parallel to these lines. The angle between a line
and a hyperplane (that will be consider as a tangent vector to M) is
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the smallest angle between this line and any line in hyperplane. This
is the same as the angle between a line and its orthogonal projection
in hyperplane, or 7w/ 2 in case this orthogonal projection degenerates
to a point. Let us consider now a pair of hyperplanes of n—dimensional
Ty and Ty" in Re+1 Suppose that among all pairs of lines, one from T»
and one from T,?, the Jines t; and t, make the smallest possible angle,
wy, with cach other, Let T2~1 and T,%71 be the orthogonal complements
of 1y and t; in T|® and T, respectively. Then it is easily seen that t;
iz orthogonal not only to T "1 but also to T,01, and similarly t, is
orthogonal not olny to Ty2~! but also to Tn—L. If we itcrate this
procedure with T;n~1 and T,21 in the roles of T;" and T,?, we get
another angle w, = w,;. Doing this n-times we get n angles 0 < w,

/

< wy < ... < wyp < /2 This angles depend only on T2 and T,n,
and not on the various choices possible during the above procedure,
and these angle are called the principal angles between the hyperplane
T and Too, If we choose two orthonormal bases {ul,. - un} and
{¥is- -, v} for the subspaces V|0 and V,? parallel to T;? and T,n
such that <(uj, vi> = coswifor 1 <i << nand <uy,v;>=0 fori #j.
Note that the orthogonal projection of v; into V,0 is (cosw;) vi and
the orthogonal projection of vi into V;? is (cosw;)u;. Suppose that it is
desired to find a single angle which might reasonably be called the
angle between Ti® and T,0. If one is forced to choose from among
the principal angles, onc would have to select the largest principal
angle wy for such a role, in order to insure that T 1 and T,® are parallel
if and only if the angle between them is zero. To arrive at the right

Then there is just one principal angle w; between the lines t, and t,
and it coincides with the ordinary angle 6 between these lines. This
angle 0, lying between 0 and =/2, has the following property. If U
is any measurable subset of t, with one-dimensional measure s(U),
then the orthogonal projeciion of U into t, is also measurable and
has one-dimensional measure (cosf) s (U) in t,. Similarly, if U’ is a
measurable subset of t, with measure s(U’), then the orthogonal pro-
jeetion of U’ into t; has measure (cos0) s (U’) in t;. Thus the angle 0
between t; and t, may be defined as that angle between 0 and =/ 2
whose cosine is the reduction factor for one-dimensional measure under
orthogonal projection of t, into t,, then (1x1) matrix of the orthogonal
projection of V1, into Vi, has a determinant whose absolute value
is cosll. So we can give the following definition directly.
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Definition III.1. Let T;» and T, be hyperplanes in Rotl, Let
the number p, 0 < p < 1, be the reduction factor for n—dimensional
measure under orthogonal projection of T ® into T, Then the unique
angle 0, 0 <0 <w/2 such that cosh == p, will be called the angle
between T'? and T, The following theorem gives us the relation bet-
ween the angle 0 and the principal angles wy,..., wn.

Theorem M{I.1. Let T2 and T, be hyperplanes in Rv¥l, and
let wy <<wy < ... <w, be the principal angles between them.
Then the angle O between T and T, is given by cosf = cosw,
coswy. For a proof of this theorem see the paper [2]. To give a practical
technique for computing the angle between two hyperplanes we will
express the following theorem:

Theorem III.2. Let T\» and T,* be hyperplanes in Rn*l, and
let {uy,..., up} and {v{>---» vn} be arbitrary bases for V8 and V,o,
respectively. Then the angle 0 between the hyperplanes is given by
the formula

| det (a;. vj) |

«\/ det (ui. uj) \/det (Vi. Vj) ’
This formula is the generalisation of the formula known for one dimen-

sional two vectors in a vector space. Now we will give a classical con-
cept which is called Dupin indicatrix.

cosh =

(I11.1.)

Definition II{.2. Dupin indicatrix I, at each point m in M is
the subset of Ty (m) consisting of all vectors z such that <<Sz,z> =+ 1
and Sz = D,N, where S is the weingarten map and D is the natural
connection defined on Ro+1, [3]. Now let t,..., tn be an orthonormal
set of eigen vectors of the map $* which will be assumed as dual corres-

n
ponding of the weingarten map S. Then z = X ait; and we write
i=1

n n
<S¥z 2> = <3 alS*, I alt)> =
i=1 i=1

T M=

(al)2 <S*, t;>
1

1
R¥, ... R% ... R%,

— 3 (al)2 (IT1.2)
=1

where R*; indicates that the R*; is omitted as an argument.

Now let Q be a point in the intersection of I, and T%,, then we
illustrate the following figure in dimension 2.
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Figure ITI 1.

By using figore 1I1.1. for n-dimension we might infer that

\/_-R sin } . .

I At B < n, I1I.3.

sin (2 0j) l=i=n ( )
i

where 6;’s are defined as in the Theorem II1.1. Putting (I11.3) into

(I11.2) we get from (I1.4) that

sin2 (% 05 sin2 6, sin? 0, .
R ~ R* R*, ... R%, + R* R*, ... R* ' '
sin? Oy

e
"R .. R%,  RY, (I11.4)

CONCLUSION
For the special case X 0 =7n/2 wehave R; =Ry*, 1 <i<n,
j

so the expression (II1.4) changes into (I1.3), but there is a slight
difference that we will omit it here. (II1.4) gives us a dual form of
generalised Euler formula. Thus we get a relation between R and R
by using (I1T.4) and (I1.4). To get this we will use that

5 1 . . :
R* ... R¥ ... R¥ = (K is the Gaussian curvature), so

KR7 -

we have that
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sin2 (£ 0;) (R* sin20, + ... + R*, sin20y)
J

R R =
sin20, sin20,
TR S
sin? (% 6;)
or K= ——— . And finally for the special case X 0; == /2
RR ' j

we find that

REFERENCES
[1] BLASCHKE, W., “Kreis and Kugel,” Leipzig 1916 p. 118.

[2] GLUCK, H., “Higher curvatures of curves in Euclidean space, II” Monthly, (1967),
1049-1056.

[3] HICKS, N.J., “Notes on differential geometry, Van Nostrand Reinhold Company, London
(1974).

[4] SCHAAL, H., “Ein Beitrag zur konstruktiven differential geometrie” LXV Band mit
3 textabbildungen, Wien (1961), 265-269.





