ON THE DUALITY OF GENERALISED EULER FORMULA FOR EUCLIDEAN HYPERSURFACES

MEHMET ERDOĞAN

Department of Mathematics. First University, Elaziğ / TURKEY.

ABSTRACT

In order to define the generalised Euler formula in a dual manner, we studied the angles between two hyperplanes in Rⁿ⁺¹ and we obtained that the Gauss curvature can be expressed by the normal curvature and its dual form.

I. INTRODUCTION

In Euclidean space R^{n+1} of dimension n+1 we consider an n-dimensional hypersurface M given by a local coordinate system $\{u^1, u^2, \ldots, u^n\}$. Let $\{\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_{n+1}\}$ be an orthogonal coordinate system of R^{n+1} . We assume that the \mathbf{x}_i 's are C^{∞} -functions of \mathbf{u}^{α} 's and that $1 \leq i \leq n+1, 1 \leq \alpha \leq n$. Let X be a vector whose orthogonal components are $(\mathbf{x}_1, \ldots, \mathbf{x}_{n+1})$, then the hypersurface M can be characterized by a vector function

$$X = X (u^{\alpha}), \ \alpha = 1, \dots, n. \tag{I.1}$$

Let us denote by N the unit normal vector field of the hypersurface M, then it satisfies the conditions <N,N>=1 and <N, $\frac{\partial X}{\partial u^{\alpha}}>=0$. Now

let us introduce an orthonormal frame in \mathbf{R}^{n+1} by $\mathbf{e_i}$, and using this frame we can write that

$$\mathbf{N} = \sum_{i=1}^{n+1} \mathbf{N_i} \mathbf{e_i} \tag{I.2}$$

and that

$$\frac{\partial X}{\partial \mathbf{u}^k} = \sum_{i=1}^{n+1} (\mathbf{x}_k)_i \ \mathbf{e}_i, \ k = 1, \dots, n, \tag{I.3}$$

where $N=N_i$ (u^{\alpha}), $\alpha=1,\ldots,n,\ 1\leq i\leq n+1$.

II. PRELIMINARIES

Let v denote a tangent vector of the tangent space $T_M(m)$ at the point m of hypersurface M. In this direction the curvature $\frac{1}{R}$ of the

hypersurface M is defined by

$$\frac{1}{R} = - \langle v, \frac{\partial N}{\partial u^k} \rangle = h_{\alpha\beta} \ u^{\alpha} \ u^{\beta} \eqno(II.1)$$

where $h_{\alpha\beta}$ is the second fundamental tensor of M and defined as

$$h_{\alpha\beta} = \, < N, \,\, \frac{\partial^2 X}{\partial u^\alpha \partial u^\beta} > = \, - \, < \frac{\partial N}{\partial u^\alpha} \,\, , \,\, \frac{\partial X}{\partial u^\beta} > .$$

The principal curvatures at a point of M are the eigen values of the second fundamental tensor evaluated at this point. Hence they are the roots of the characteristic equation as follows

$$\begin{split} \det \left[h_{\alpha\beta} \, - \, \frac{1}{R} \, g_{\alpha\beta} \right] &= (-1)^n \, \det \, (g_{\alpha\beta}) \left(\frac{1}{R} \, - \, \frac{1}{R_1} \right) \, \ldots \, \left(\frac{1}{R} \, - \, \frac{1}{R_n} \right) \\ &= (-1)_n \det \, (g_{\alpha\beta}) \left\{ \frac{1}{R^n} \, - \, \frac{1}{R^{n-1}} \left((\sum_{i_1 = 1}^n \, \frac{1}{R_{i_1}}) + \, \frac{1}{R^{n-2}} \left(\sum_{i_1 < i_2}^n \, \frac{1}{R_{i_1} R_{i_2}} \right) \right. \end{split}$$

$$+...+ (-1)^{n-1} \frac{1}{R} \left(\sum_{i_1 < ... < i_{n-1}} \frac{1}{R_{i_1} ... R_{i_{n-1}}} \right) + (-1)^n \frac{1}{R_1 ... R_n} \left. \right\} = 0$$
(II.2)

where $g_{\alpha\beta}$'s are the coefficients of the first fundamental form of the hypersurface M. The principal directions always exist and we can find an orthonormal system of principal directions.

Now let θ_{α} denote the angles between the direction v and the principal directions, where α runs from 1 to n. If we denote the principal directions by t_1, \ldots, t_n , then $\theta_1 \leqslant (t_1, v), \ldots, \theta_n = \leqslant (t_n, v)$.

The curvature $\frac{1}{R}$ in this direction v can be expressed in terms

of the principal curvatures $\frac{1}{R_i}$, $i=1,\ldots,n$, by means of Euler's formula

$$\frac{1}{R} = \sum_{i=1}^{n} \frac{1}{R_i} \sin^2 \theta_i. \tag{II.3}$$

Now let us define a kind of normal curvature which we will denote by \overline{R} and will be thought as a dual corresponding of R. This will be defined at the image point of m under the normal projection in the direction v of M. This concept has been defined by A. Mannheim (see [1] and [4]). From this dual viewpoint the Euler formula may be constructed as

$$\overline{R} = \sum_{i=1}^{n} R^*_{i} \sin^2 \theta_{i}$$
 (II.4)

where R^*_i shows the dual principal curvature corresponding to $\frac{1}{R_i}$.

Denoting by v_i the rectangular components of the unit vector \mathbf{v} we write that

$$\mathbf{v} = \sum_{i=1}^{n} \mathbf{v}_i \mathbf{e}_i. \tag{II.5}$$

Also we have that $\cos \theta_i = < v, \ e_i >, \ i = 1, \ldots, \ n.$ On multiplying both members of (II.5) by e_k we find that $v_k = < v, e_k >$ and that $v_i = \cos \theta_i, \ i = 1, \ldots, n.$ Consequently we have

$$\mathbf{v} = \sum_{i=1}^{n} \mathbf{e}_{i} \cos \theta_{i} \text{ or } \sum_{i=1}^{n} \cos^{2} \theta_{i} = 1. \tag{II.2}$$

III. ANGLES BETWEEN HYPERPLANES IN Rn+1

Let us consider two n-dimensional tangent vectors T_1^n , T_2^n which are n-planes in euclidean space R^{n+1} and t_1 and t_2 be the tangent vectors of the normal sections of T^n_1 and T^n_2 with hypersurface M. Also define the angles between the vectors t_1 , t_2 and any vector in tangent space $T_M(m)$. To find this angles we will follow the procedure which has been given by H. Gluck [2]. The angle between a pair of lines in euclidean space R^{n+1} is the smaller of the two possible angles between any vectors parallel to these lines. The angle between a line and a hyperplane (that will be consider as a tangent vector to M) is

116 M. ERDOĞAN

the smallest angle between this line and any line in hyperplane. This is the same as the angle between a line and its orthogonal projection in hyperplane, or $\pi/2$ in case this orthogonal projection degenerates to a point. Let us consider now a pair of hyperplanes of n-dimensional T_1^n and T_2^n in \mathbb{R}^{n+1} . Suppose that among all pairs of lines, one from T_1^n and one from T₂ⁿ, the lines t₁ and t₂ make the smallest possible angle, W_1 , with each other. Let T_1^{n-1} and T_2^{n-1} be the orthogonal complements of t_1 and t_2 in $T_1{}^n$ and $T_2{}^n$, respectively. Then it is easily seen that t_1 is orthogonal not only to T1n-1 but also to T2n-1, and similarly t2 is orthogonal not olay to T_2^{n-1} but also to T_1^{n-1} . If we iterate this procedure with T_1^{n-1} and T_2^{n-1} in the roles of T_1^n and T_2^n , we get another angle $w_2 = w_1$. Doing this n-times we get n angles $0 \le w_1$ $\leq w_2 \leq \ldots \leq w_n \leq \pi/2$. This angles depend only on T_1^n and T_2^n , and not on the various choices possible during the above procedure, and these angle are called the principal angles between the hyperplane T_i^n and T_2^n . If we choose two orthonormal bases $\{u_1,\ldots,u_n\}$ and $\{v_1,\dots,v_n\}$ for the subspaces $V_1{}^n$ and $V_2{}^n$ parallel to $T_1{}^n$ and $T_2{}^n$ such that $\langle u_i, v_i \rangle = cosw_i$ for $1 \le i \le n$ and $\langle u_i, v_j \rangle = 0$ for $i \ne j$. Note that the orthogonal projection of v_i into V_2^n is $(\cos w_i)$ v_i and the orthogonal projection of vi into Vin is (coswi)ui. Suppose that it is desired to find a single angle which might reasonably be called the angle between T_1^n and T_2^n . If one is forced to choose from among the principal angles, one would have to select the largest principal angle wn for such a role, in order to insure that T1n and T2n are parallel if and only if the angle between them is zero. To arrive at the right definition carefully consider the case n = 1.

Then there is just one principal angle w_1 between the lines t_1 and t_2 and it coincides with the ordinary angle θ between these lines. This angle θ , lying between θ and $\pi/2$, has the following property. If U is any measurable subset of t_1 with one-dimensional measure s(U), then the orthogonal projection of U into t_2 is also measurable and has one-dimensional measure $(\cos\theta)$ s (U) in t_2 . Similarly, if U' is a measurable subset of t_2 with measure s(U'), then the orthogonal projection of U' into t_1 has measure $(\cos\theta)$ s (U') in t_1 . Thus the angle θ between t_1 and t_2 may be defined as that angle between θ and $\pi/2$ whose cosine is the reduction factor for one-dimensional measure under orthogonal projection of t_1 into t_2 , then t_1 matrix of the orthogonal projection of t_1 into t_2 , has a determinant whose absolute value is $\cos\theta$. So we can give the following definition directly.

Definition III.1. Let T_1^n and T_2^n be hyperplanes in R^{n+1} . Let the number $p, 0 \le p \le 1$, be the reduction factor for n-dimensional measure under orthogonal projection of T_1^n into T_2^n . Then the unique angle θ , $0 \le \theta \le \pi/2$ such that $\cos \theta = p$, will be called the angle between T_1^n and T_2^n . The following theorem gives us the relation between the angle θ and the principal angles w_1, \ldots, w_n .

Theorem III.1. Let T_1^n and T_2^n be hyperplanes in R^{n+1} , and let $w_1 \leq w_2 \leq \ldots \leq w_n$ be the principal angles between them. Then the angle θ between T_1^n and T_2^n is given by $\cos\theta = \cos w_1 \ldots \cos w_n$. For a proof of this theorem see the paper [2]. To give a practical technique for computing the angle between two hyperplanes we will express the following theorem:

Theorem III.2. Let T_1^n and T_2^n be hyperplanes in R^{n+1} , and let $\{u_1,\ldots,u_n\}$ and $\{v_1,\ldots,v_n\}$ be arbitrary bases for V_1^n and V_2^n , respectively. Then the angle θ between the hyperplanes is given by the formula

$$\cos\theta = \frac{|\det\left(u_{i}, v_{j}\right)|}{\sqrt{\det\left(u_{i}, u_{j}\right)} \sqrt{\det\left(v_{i}, v_{j}\right)}}.$$
 (III.1.)

This formula is the generalisation of the formula known for one dimensional two vectors in a vector space. Now we will give a classical concept which is called Dupin indicatrix.

Definition III.2. Dupin indicatrix I_m at each point m in M is the subset of $T_M(m)$ consisting of all vectors z such that $\langle Sz, z \rangle = \pm 1$ and $Sz = \bar{D}_z N$, where S is the weingarten map and D is the natural connection defined on R^{n+1} , [3]. Now let t_1, \ldots, t_n be an orthonormal set of eigen vectors of the map S^* which will be assumed as dual corres-

ponding of the weingarten map S. Then $z=\sum\limits_{j=1}^{n}\,a^{j}t_{j}$ and we write

$$\begin{split} <\!S^*z,\,z> &= <\!\!\sum\limits_{j=1}^n a^j S^*t_i,\,\sum\limits_{j=1}^n a^j t_j)\!> \,=\, \sum\limits_{j=1}^n \,(a^j)^2 <\!\!S^*t_j,\,t_j\!> \\ &= \sum\limits_{j=1}^n \,(a^j)^2 \,\,\frac{1}{R^*_1\,\ldots\,R^*_j\,\ldots\,R^*_n} \end{split} \tag{III.2}$$

where \hat{R}^*_j indicates that the R^*_j is omitted as an argument.

Now let Q be a point in the intersection of I_m and T^n_0 , then we illustrate the following figure in dimension 2.

Figure III. 1.

By using figure III.1. for n-dimension we might infer that

$$a^{j} = \frac{\sqrt{R} \sin \theta_{j}}{\sin \left(\sum_{j} \theta_{j}\right)}, \ 1 \leq j \leq n,$$
 (III.3.)

where θ_j 's are defined as in the Theorem III.1. Putting (III.3) into (III.2) we get from (II.4) that

$$\frac{\sin^2(\Sigma \theta_{j})}{R} = \frac{\sin^2 \theta_{1}}{R^*_{1} R^*_{2} \dots R^*_{n}} + \frac{\sin^2 \theta_{2}}{R^*_{1} R^*_{2} \dots R^*_{n}} + \dots + \frac{\sin^2 \theta_{n}}{R^*_{1} \dots R^*_{n-1} R^*_{n}}$$
(III.4)

CONCLUSION

For the special case $\sum\limits_{j}\theta_{j}=\pi/2$ we have $R_{i}=R_{i}^{*},\,1\leq i\leq n,$ so the expression (III.4) changes into (II.3), but there is a slight difference that we will omit it here. (III.4) gives us a dual form of generalised Euler formula. Thus we get a relation between R and \overline{R} by using (III.4) and (II.4). To get this we will use that

$$R^*_1\,\ldots\,\hat{R}^*_j\,\ldots\,R^*_n=\,\frac{1}{\,K\,\,R_j^{\,*}}\,,$$
 (K is the Gaussian curvature), so we have that

$$R \ \overline{R} = \frac{\frac{\sin^2\left(\sum\limits_{j}^{}\theta_{j}\right)\left(R_1^*\sin^2\!\theta_1+\ldots+R^*_n\sin^2\!\theta_n\right)}{\frac{\sin^2\!\theta_1}{K\ R^*_1}+\ldots+\frac{\sin^2\!\theta_n}{K\ R^*_n}}$$

or
$$K=\frac{\sin^2{(\Sigma~\theta_j)}}{R~\overline{R}}$$
 . And finally for the special case $\sum\limits_j{\theta_j}=\pi/2$ we find that

$$K = \frac{1}{R \overline{R}} . mtext{(III.5)}$$

REFERENCES

- [1] BLASCHKE, W., "Kreis and Kugel," Leipzig 1916 p. 118.
- [2] GLUCK, H., "Higher curvatures of curves in Euclidean space, II" Monthly, (1967), 1049-1056.
- [3] HICKS, N.J., "Notes on differential geometry, Van Nostrand Reinhold Company, London (1974).
- [4] SCHAAL, H., "Ein Beitrag zur konstruktiven differential geometrie" LXV Band mit 3 textabbildungen, Wien (1961), 265-269.