Commun. Fac. Sci. Univ, Ank. Series Al
V. 46. pp. 13-26 (1997)

ABOUT REEB FOLIATION
Ismail KOCAYUSUFOGLU
Department of Mathematics, Osmangazi University, Eskisehir, TURKEY

(Received March 25, 1996; Revised May. 9, 1997; Accepted Oct. 8, 1997)

ABSTRACT
The aim of this paper is to compute the volume of codimension-one foliation of
three-sphere §°, defined in {51

1. INTRODUCTION

The study of foliations on manifolds has a long history, but it was
not known very well by the time of Ehresmann and Reeb’s work in
1940’s. In 1944, G. Reeb [8] gave the first codimension-one foliation of
the round three-sphere S3. In 1985, H. Gluck and W. Ziller asked the
question about foliations;

“Among them which one has the minimum volume?”.

In one-dimensional case, the same authors proved that the only
volume minimizing foliations of S* are the Hopf foliations, F $3 - 8%
defined in section 3.1[2]. They also showed that

Vol(F,) = 2Vol(S’).

In [6], we showed that the Reeb foliation FR, defined in section
42.1, is locally volume minimizing two-dimensional (codimension-one)
foliation of $°. In this paper, we will prove that

Vol(F,) = 4Vol(s?).

2. BASIC DEFINITIONS
2.1. Definition

By a p-dimensional, C* class foliation of an n-dimensional manifold
M, we mean a decomposition of M into a union of disjoint connected
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subsets {LJgeca: called the leaves of the foliation, with the following
property: For every a € M there exists a neighborhood U of a and a

system of local C" coordinates x = (x!, x2, .., x*): U — R" such that
for every leaf L, the components of U N L, are defined by the
equations x**! = constant, .. x* = constant (Figure 1). We will denote

such a foliation by F = (L } _,. It is common to say that F is a
codimension-q foliation, (q = n - p) rather than dimension-p [7].
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Figure 1.

2.2. Definition

Any transverscly-oriented codimension-q foliation F on a Riemannian
manifold M defines a section of the Grassmann bundle of n - ¢ planes
tangent to M, ¢ : M — G(n - q, T«(M)), by mapping x € M to @(x) :=
F T«M). In this setting the image of ¢ is thought of as the graph of the
foliation F. Thus, the volume of foliation is in fact the n-dimensional
measure of its graph. ie. Vol(F) := H*"M) [4].

2.3. Definition

If F is an oriented flow, one-dimensional foliation, on a manifold M,
with unit vector field &, the volume of the flow is given by
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/\/ 2 2

Vol(F) = f 1+ (V&) + ..+ (Vf;/\ AVF,) av,,
. T

where the vector wedge is interpreted by VarVR(X.Y):= é—(VX(X,/\VYﬁ-VY(X/\VXB)

etc., so that (VEY'(X |, X)) = V, EA .. AV E.

The sum is taken over wedges of order up to n - 1 because the top
n® wedge will vanish since € has values in the tangent unit sphere
bundle. The metric on the tangent bundle used here is defined by Sasaki,
and is the natural metric on T4M induced from the Riemannian metric on

M {4, 91.

If F is a condimension-one foliation, then Fxl = Lx = {)\,ﬁx}, where
€ is a line field. If F is a transversely-oriented, § can be taken to be a
unit vector field, § € yx(M), & = 1. Hence, Vol(F) := Vol(L), where L
is a flow.

3. EXISTENCE OF FOLIATIONS OF §°

3.1. One-dimensional case (Flows)

The existence problem has been studied back in the 1930’s. In 1931,
Heinz Hopf [3] introduced the first known foliations of sphere as follows:

st = s - Cp+!

complex projective n - 1 space

S* «» §%1 5 HP"! = quaternionic projective n - 1 space
§7 = 8P st
The simplest case occurs when n = 2 which is the three-sphere S°,
St = §* —» Cp! = 8%
We call such foliation as above Hopf Foliations and denote by F.

3.2. Two-dimensional case

As mentioned in introduction, in 1944, George Reeb introduced the
first known codimension-one foliation of S as follows:
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First, consider the C™- foliation of the (%, y)-plane given by the lines
X = ¢ for lcl 2 1 together with the graphs of the functions y = f(x) + ¢/,
-1 <x <1 and ¢’ € R, where { has the property that ll)"lgl1 f(k)(x) = oo
for all k.

Consider now the foliation of the solid cylinder obtained by rotating
the strip {(x, y) € R%: -1 < x < 1} about the y-axis in 3-space. This
foliation is invariant by vertical translations, and so we can obtain a
foliation of the solid torus where each non-compact leaf has the form of
a snake eternally eating its tail (Figure 2). We call such foliation of a
solid torus by Reeb Component. In general, a codimension-one foliation of
a manifold M may have several Reeb components as part of the total
foliation.
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Figure 2.

The 3-sphere can be decomposed as two solid tori joined along their
common 2-torus boundary. Indeed, if one removes the solid torus of
rotation from R® = S® ~ o« what remains is homeomorphic to a solid
torus minus an interior point (cosider the vertical coordinate axis as the
core circle). Gluing together two copies of our foliated solid torus gives a
Reeb foliation of the 3-sphere, S* (Figure 3) [7].

4. MINIMIZING PROBLEM
4.1. One-dimensional case

In [2], Gluck and Ziller proved the following theorem:
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Figure 3.

4.1.1. Theorem

The one-dimensional foliations of minimum volume on S$* are Hopf
foliations, and no others.

They also showed that Vol(F;) = 2Vol(S?).
We refer the reader to [2] for detail.
4.2. Two-dimensional case
In [6], we proved the following theorem:
4.2.1. Theorem

The two-dimensional foliation of (locally) minimum volume on S* is
Reeb foliation, F.

In general, a foliation can be defined locally by level sets F(x,yz) =
¢, where each value of c¢ determines a leaf of foliation. In [6], we first
found the level sets of Reeb foliation as

F(xy.z) = % arctan (<28 =1 ) . L grepan (2Lt 1y 7 =¢

A28 2 A1 - 2f
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where r = ’Vx2 + y2 , ¢ = constant. Then, we showed that it is a local
minimum.
5. MAIN RESULT

Now, we are going to prove the main goal, that is, Vol(Fy) =4V(S%).

For n = 3, the equation of volume is obviously

3 3
V@ = f Ais SIVE+ 3 IVEA VEN av .1
M

i=1 1,j=1

where € is a unit normal vector to the foliation F and {e e,¢,} is
orthonormal basis. Recall the properties of covariant derivative V,

V.Y = fV5Y
V(fY) = X(DY + fV,Y
v, L-yr 2
Rl axi axk

k
where Fij are the Christoffel symbols and recall the theorem of calculus of
variations for variational problems [1];

5.1. Theorem

Let J(y) be a functional of the form

b
f F(x,y,y) dx

a

defined on the set of functions y(x) which have continuous first
derivatives on [a,b] and satisfy the boundary condition y(a) = A, y(b) =
B. Then, a necessary condition for J(y) to have an extremum for a given
function y(x) is that y(x) satisfy the Euler’s equation

F-4dF =0,
Yy dx Y

Using the computer program MapleV Release 3, we first computed
the integrand term of the equation (5.1), denote by INT, as



ABOUT REEB FOLIATION 19

= [1 + 2H(r)? - 4H®)*S + 6H(1)*t* - 4H(D)*? - 6H@)** + H(p)* +
14 S120 |4 3d .
4r (dr H(r)) H() - 12r (dr H(r)) H(@) + 12r (dr H(r))H(r)

d 438 26 d 2 S_d__ 2_ 61 2
4(_dr H(r))rH(r)+H(r) r +4H@® r +dr H@ +r = H) -4r i H@ +

r4 _d_H(r)2 -4 iH( )2 2]1/2 ‘ ’\/'1‘2 - H(l‘)2 + 2H(r) 21'2 H(r) 2r4
« a fHE - 2HO) P +HO T + 1) o1 Vr+ 1

Then using the theorem of calculus of variations, above, we get the
second order ordinary differential equation. Before giving the differential
equation, let’s note that this particular foliation was found by reducing the
variational question of a volume-minimizing Reeb component on the
sphere to an ordinary differential equation, by making the additional
assumptions that the foliation be invariant under translations along the
component (invariance under translations in the x,-direction) as well as
rotational invariance around the core circle. Under these assumptions the
Euler-Lagrange equations of the first variation of the volume, as an
ordinary differential equation reduce to the following: The graphs of X, =
f(r) are critical for the volume of the foliation generated by revolving and
translating this graph in the interior of the Clifford torus, S! x S!, in $3,
subject to the boundary being tangent to the distribution (f(1//2) = o) and
the foliation being at least C! along the core circle (f(0) = 0) if and
only if the derivative f'(r) := H(r) satisfies:

[-2(H@)* - HEO))® +2* - 2 - {HE)? - 1° - HE)T'® + 4HED)*r'? - 24HE)* -

3HE)' + 25HOY*® - 10@HD)Y*® + TEE)YA® - 2@ + 2HE)Y” +

2(H(®)r* - 28(H@)"r'? + 8H®)r* - TOHE)® + S6(H@T® + S6E@)T +

(H)r - 8HE)Y® - 28H@)%* + 11HED)* - (H@)*r'] d—zH(r> +

[7 - 21 (H@)? + 11011 + 3017 - 25¢° + 7)) -1+ r(H(rc)l;z + 21P°H(@))? -
- H@)? - 35 HE) - 20° + 35°HE)? - 7P HE) (% H(r))3+

[16r°(H)’ - 16 + 2 ()’ - 93H@D)*r'® + 33H(@)’r'? + 55r'°H() -
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23(H(r))*? + 3r2H(r) + 86:r°H(r) + H(r) + 3(H®)® - 99r°H(r) - 12r2H(r) -
H2(H@) P+75H@Y’* - 34r'H)+145HE)’® - 1120°FEE)° + S6HE) ' +
2(H@)r' - 135HD)Y*® + S6r*H)° + 140 H(D)® - SH(E))r'] (% H(r))2 +
(92 + (H@)*r - 82 + r(H®)” + 27 HE)Y+21HE) ™ - (HD))’r - T0HD)* -
3PHED) + rPHD)® - T3UHEE)Y - 1+ 720HEEY 1IHE) - 24 H)? -
THE)" + 150HE)*+THED) - 16FHD)T>+79HE)Y ! - 155HE)Y -
35T + 35HE)T - 21EH)7) (4 H) + |
[-H@)r'* - 10e°H@) + 3r°H@) - 9HE) - SEHD)Y + 53r'°HE)’ -

6513 (HD)® + 10r5E(®)° + 40r* HE))® - 312H®)’ - 33H@) T + 9HED) 2 +
SIHE)'T - T5H@D)'® + 65HD)'r® - 19(HW)'r? - 16(H@)*r'® - 14HE)r? +
THE) + H@) + SHE) + HEOYr + 3HE) + 24H@)rY) = 0

In addition, of course, the function H(r) must satisfy the initial
conditions, H(0) = 0 and H'(0) = a, the radius of torus. Although this
equation may seem hopelessly complex, it happens that there is a
closed-form solution. We found this solution by first determining (using
MapleV (rel. 3)) the coefficients of a power series solution of the
equation, then, with some luck, being able to recognize the solution series
in closed form, which we then verified by direct substitution. We give the
detail below:

Let’s denote the differential equation, above, by ODE.
H(r) := dsolve(ODE = 0, H(0) = 0, DH)(0) = a, H(r), series);
We get the following output:

3 5 3 (.7 5 3
HG@) = ar+(a—+3—a)r3+(i?—+§i+15—a)r5+(si+2i+35—a+-3§4 r+
2 2 8 4 8 16 16 16 16
(35a9 454 1892° 105" 315a)9+
¢128 32 64 32 128,
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63a" 3852 4952’ 693a° 1155a° 693a) n
. + + + + o+
256 256 128 128 256 256

13 11
231a° 819a" 50052’ 21453" 90092 3003a 43,00321)rn+
1024 512 1024 256 1024 & 512 1024

4294 34652" 122852 250052 321750 27027a° 15015a° 6435a) 15
+ + 4 + — + ! ro+

2048 2048 2048 2048 2048 2048 2048 2048

By looking at the coefficient of the series, H(r), we get the closed
form. Although we checked all of the coefficients, we give only some of
them below. For instance, look at the coefficient with respect to “a”, that

is,

F+15 5,35 7,315 0, 693 (11,3003 13,6435 ,

8 16 128 256 1024 2048

—pel3 2,135 51357 [7,13579 £, 1357911 M.
2 2.4 246 2468 24.6.8.10

The closed form of this is
[ = i 135.02n + 1) 5 2
0 246..(2n) 1

« 3”

With respect to
1155 11,3003 13,15015 15,

1745 7°435,/7,105 7y

2 "4 16 32 256 512 2048

=11 (13 S4135 35,1357 7,13579 2, 13579.01 [y
2 3 2 2.4 2.46 2468

Hence, the closed form
i 1.35..20 + 3) 3 23
=023 246.(0n)
i'l"135 (2n + 1) a el
=02 246..(2n - 2) 3

t to “a™, we get

1 135.(2n + 5) 5 2m5
205 246.(n

1 135.Qn+ D @ 2
24 246.02n-4) 5

Similarly, with respec
I =

&MX LM s



22 I. KOCAYUSUFOGLU

Continuing the above argument and adding these, we get the closed form
of H(r),
2k+1

g, 13.(2n +1) a el
H{) = 1 r .
® é%ZA...(Zk) 24.(2n - 2k) 2k + 1

Let’s denote the interior sum by

_% 1 13.Gns ) !

T &24.02K) 24.(2n - 2k) 2k + 1

Since
2-4..(2k) = (2:1)(22)-(2-3)...(2%k) = 2Xk!
it follows that

n 2k+1
s=3 1 13.2n + 1) a

&0 4.2k 24.(2n - 2k) 2k + 1
5 13,20+ 1) a2
D 2 k12" L gy K+ 1

_13..2n + 1) ot a”!

2"l r kin - k) 2k + 1

_13.2n + 1) (n) 2!
2n_n! k k 2k + 1

Define

n a2k+1
sl:g(k)mu 1°

Then, it follows from the Binomial theorem that
ds ny % "
1 = a = (1 + a2) .
da % (k)

Therefore,

a n
Lo 13.0n+ D) f Qe a.
n
2 n! 0
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It follows that

HE) = Z(MI a+ t) diy ™
0

2 n!

Notice also that

oH _ i 3.0+ 1) g, az)“ w1

da 2'n!

Let x =141 +a".Then,
H__ 3 i 13.Qn + 1)
aa 1+ a2 =0 znn!

which is the Taylor series of x(1-x%)77?, ie,

i 1.3...(3:1 D) 21y _.
=0 2 a- x2)
Thus,
oH _ 1 X I
B N14+d (1 2)/2 (1 - £ + a))
Finally,

H@)

r v dt
, (1= P+ D)

-ar
@-nDA1-7F-a%

Recall that f'(r) := H(¥). Therefore,
f@) = H(f) dr

I(r —l)Vl-r-ar

Earctanh( r-1+ar )-arctanh( r+ 1 +ar

2 1-r2-ar2 va 1-1'2—ar2
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This means that the level sets of the foliation of the three-sphere, S°, are

r-l+ar ). arctanh (Lt 1 tar
? aNl-7-a

Fxyz) = Ya (arctanh (
2 aNl-7F o
=c,
where r? = x> + y%, ¢ = constant.
2
the foliation of the Reeb component, D( 1 2) X
1+a
(a). Recall the

We denote

Sl(/\/ 1- -1 2) > given by these level sets by E,
1+a

construction of the foliation of the three-sphere from part 3.2 that we

‘glue’ two copies of the solid tori along their common boundary. So,

gluing two copies of the foliation Fy(@), we will get the foliation of s?

which we denote by FR(a).
For a = 1, we get the level sets of Reeb foliation, we are dealing

with, as
arctan(b_)-l.arctanh(__z_r_tl_) -zZ=¢
z 2 N1 -2

Fxyz = L
R
2 A1 or
/7 2
where 1 = X2 + Y , ¢ = constant.

Now we came to the point of proving the main goal.

Recall that in polar coordinates,
V01:=J[JINTrdrd9dz

where INT is the integrand term of the equation (5.1).

First, we make the following computation by using MapleV.

INTrdr:ffldr

:= factor (INT * r); so that
simplify(subs(H(r) = -a * r/(sqrt(1 - rA2 - aA2 # 1A2) * (172 - 1)), )));

Vol := int(f, , r = 0..t);
:= simplify(subs(t = 1/sqrt(1 + a*2), Vol));
simplify(subs(t = sqrt(l - 1/(1 + a*2)), Vol));

<
i

program provides the following output:
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I1 + adr
2 22
A-1l+71 +ar
Vo)) := 1 + V1 -¢ - ot

The asymptote of Vol(t) is t = /41 + a . So,

Vol—L_ =1
2
1 +a

f2:= ,whelel=ﬁ

Since S* containes two solid tori, we have

-Ls
a

F,a) = and F, (%) =

-ar

(rz-l)'\ll-rz-azr2 2 2 122
-1 1-1 - alt

with the corresponding radii

1=—1—-—7and r2=+.

N1+ a Vi+b

i.e. The foliation of S°, Fy(a), is made up of Fi(a) and FU(%) , in the two

T

complimentary solid tori which form S$*. For each of these, we have
Vol(r)) = 1 and Vol(r,)) = 1.

Thus, the volume of F(a) is

This is the half of the foliation. So, the total volume is 8m%. Since the
volume of the three-sphere, S3, is 2r?, it follows that

Vol(F,) = 4 Vol(S*)

as claimed.
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