Commun. Fac. Sci. Univ. Ank. Series Al
V. 46, pp. 191-210 (1997)

AN APPLICATION OF THE SUM OF LINEAR OPERATORS IN
INFINITE MATRIX THEORY

RABAH LABBAS and BRUNO DE MALAFOSSE
Université Du Havre, LU.T., B.P 4006, 76610 Le Havre, FRANCE.

(Received Oct. 10, 1997; Accepted Dec. 12, 1997)

ABSTRACT

We present in this work a new application of the sum of linear operators in non
differential case. We apply Labbas-Terreni’s [6] approach in infinite-matrix theory and then
we give some concrete applications: in the theory of continued fractions, in numerical
schemes and in the development of some analytic function on a given basis.

1. INTRODUCTION
In the complex Banach space E, the following equation
AX+BX-AX=Y,A>0 1)

where Y is given in E and A, B are two closed linear operators with
domains D(A), D(B), has been considered by Da Prato and Grisvard {1]
and by many authors, under differents hypotheses and then many
applications in partial differential equation of elliptic, parabolic or
hyperbolic type, are given. For example, see R. Labbas and B. Terreni
[6] or M. Furhman [3]. Our first aim, in this work, is to present a new
application of the sum theory in non differential case. Equation (1) is
regarded as an infinite linear system in space [~ = s, that is A + B is
considered as the sum of two particular infinite matrices defined
respectively on D(A) =s. 0 <1 < 1) and D(B) =5, (sce section 2) [In
infinite matrix theory it means that A belongs to the matrix class (s, /a,sl),
see 1J. Maddox [9]]. In our case, we prove that (-A) and (-B) are
generators of analytic semigroups not strongly continuous at t = O since
the density of their domains is not true. The classical perturbation theory,
as in Kato [4] or in Pazy [10] [for example, the relative boundedness
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with respect A or B] is not verified here. So we use the results of
Labbas-Terreni [6] in our non commutative situation. The choice of these
two infinite matrices is motivated by the resolution of a class of non
symmetric linear infinite tridiagonal systems.

The plan of this paper is as follows. In section 2 we recall some
results about some regular sets of infinite matrices taken from R. Labbas
and B. de Malafosse [S]. Section 3 contains the hypotheses and the main
results of the sum-strategy as in Labbas-Terreni [6]. In section 4 we give
an example of two infinite matrices A and B regarded as two unbonded
linear operators on /” = s, then we study their spectral properties and we
showh that the Labbas-Terreni [6] sum-strategy can be applied. In section 5
we explicite Lions-Peetre’s [8] interpolation spaces between D(A) and
E = s, for obtaining maximal regularity results for the solution of (1). In
the last paragraph we give simple examples which can be regarded by the
approach presented here: in the analytic theory of continued fractions, in
the study of numerical schemes by finite differences for some differential
cquations and in the development of some analytic function on a
particular basis.

2. THE SPACES S_ AND s

Consider a positive real number r and a Banach space G and denote
by S the set of infinite matrices M = (anm)n’mﬂ’_._ of linear bounded
operators from G to itself, and s, the set of infinite column matrices
X = t()(1,);2,){3,...) = (x,) of elements x_in G which satisfy respectively

mn
su lla fl ~r < oo
i (E} i) )

sup (M) < oo, 2
2l

n
| T

These spaces are naturally normed by

Ml = sup @1 o ) ,

X, = sup (%) . | @
r 2l r
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More generally, we can consider another sequence ¢ = ) ¢, >0,
instead of (") in definition of S_and s; we obtain the spaces S_ and s,
characterized by

c
su la [k -2} < oo
= (né nm"-(‘s)cn ’

< oo, ©)

X
wp (u g
n=} cn

with the corresponding norms. L{G) denotes the Banach space of all
bounded linear operators from G into itself. In R. Labbas and B. de
Malafosse [S] we have studied some interesting properties of these spaces
from which we recall, in particular, the following result:

Proposition 1. For any positive real number r the sets s, and s_ are
Banach spaces and the sets S and S_ are unit Banach algebras.

3. SUM. OF LINEAR OPERATORS

We simply quote here some results taken from Da Prato-Grisvard 1]
and Labbas-Terreni [6]. Consider a complex Banach space E and two
closed linecar operators A and B defined on their domains D(A) < E and
D@B) c E. Their sum is defined by setting:

SX = AX + BX , X € D(S) = D(A) N D(B) )

Now we shall make the following assumptions on A and B
ic,C, >0, €,£p € J0.n[ such that
i) p(A = C/ |Ar <®m-¢
) p(A) DIEEA {z € |Arg(z)l N
A 2D Y < C, /12, Vz € ESA - {0},
i) p(B) o ZSB ={ze C/|Arg@)| < T - &3}
1 )

B - <C, /24 ,Vze - {0},
\IK Dl <C /1, V2 e, {0}
iii) €, +E <T.

(H. D

If we consider the commutative case:

A-E) B-n) - B-nD' (A-E)
-1 . X
=[(A—§I) ;(B—nl)l]=0;véep(A),Vnep(B) ©)
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and if we assume that D(A) and D(B) are densely defined in E, it is

well  known (See [1]) that the following bounded linear operator (for all

A>0)
LA=—_,1_J(B+z1)"1(A-M-zI)"ldz @

2in Jr

coincides with (S — A)! where S = A + B. T is a simple infinite

sectorial curve lying in p(A — Al) N p(-B). In our applications the

commutativity and the density are not true, so we shall assume that:

IC>0,he N, @ Py such that
Viz1;0<1-1 <p, <2and
2

) PR ) h o p ®)
lIIuA(A ~A) (AT @B+l <C YW
i=l
for Al , [l = o ; A € p(A) , p € p(-B).
Let us put:
8={gigx('ci+pi—1)>0. ')

For this commutator see Labbas-Terreni [6], [7]. Now, for any ¢ €]0,1[,
let us introduce the real interpolation spaces D,(G.0) between D(A) and
E [or DB(G,oo) between D(B) and E] characterized in Grisvard [2] by:

D,(0) = {X € E/ sup I°AA - zI)‘1 Xl < m= , (10)

and which equals, in our case

‘X € E/ sup A + ) Xl < oo} .
20

It is a Banach space with the natural following norm:

-1
Xl o = IXIl, + sup IEAGA + ) Xl ,
t20

D, (0)
-1
which is equivalent to sup IItGA(A + th) XllE when A is invertible (as in
=0
our case). Now we recall the main result proved in [6]:

Theorem 2. Under assumptions (H.1) and (H.2) theer exists A* such
that VA > A* and VY € D,(G,°) equation AX + BX = AX = Y has a
unique solution X € D(A) n D(B) which satisfies

i) (A-ADX € D,(8) VO < Min(c,9),
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i) BX € D,(0.%) V0 < Min(s,9),

iii) (A — ADX € D,(8<) VO < Min(c.0).

195

Remark 1. Clearly one has a similar result when replacing A by B.

Notice the unexpected regularity result in the statement iii).

4. DEFINITION OF OPERATORS A AND B

In this section we consider the Banach space E = s = I” and the
two linear operators characterized by the two following infinite matrices:

a b1
32 b2 O
A= ) ,
a b
n
(0]
such that
i)a>1 and
i) HMA>O/Vn2 Ll <M,
and
B,
Y, B o
B = ,

under the following assumptions:
B, =1; B, = (@n +1)!
i) 1, = O (@ - =)
iii) v,,,; = o(1) (n > ) .

an

(12)

(13)

14

Remark 2. We have choosed the first diagonal of A in a particular
form only to simplify calculus. All the following results in this work are
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true if we replace this diagonal by any non decreasing strictly positive
sequence (0t ) which tends to infinity. The same remark is true for B; we
can replace i) in (14) by

(B,) »L=#0 a.nd(Ehl-)—)wo.

n+1

Then the spectral properties of A and B are given by:

Proposition 3. In the Banach space s, the two linear operators A

1
and B are closed and verify

) D) = s,
i) DB) = 5,5 = (X e s, /Ix, | = O(1), Ixzml:O(
iii) D(B) # s, and D(A) # 8,

iv) There exist positive numbcrs €,, €5 M (with & A + €5 < ™) such

1 oo
(2n+1)! (I,l_) )=’

that
-1
WA = AD) g, < % , VA # 0 and |ArgM)| 2 €

-1
(B + ub) IIL(SI, Iul » Vi # 0 and JArg()| < @ — g

Statement i) Let (Xp) be a sequence that converges to X in s, and
such that Xp € s, for every p, and (AXP) converges to Y in s,. Let Xp
= (xnp), then we obviously have

Vn > 1 Xp = % @ 2 )
Vn 21 a“xnp + bnxm\l’p =y @ >,

which implies that

Vn 21 a'x +bx  =y.

However this is not enough to guarantee that X = (x) belongs to s
We deduce this from (12) since GK > 0 such that

/ot

a'x | £ Ja™x_ + bx <K.
n n n n+

n+1I -

I<ly,l+ [bfix

1 n n+1

So the operators A is closed. The proof is similar for B. It is not difficut
to see, from (11), (12), (13) and (14) that D(A) = 8, and D(B) = Sip-
For the non density of D(A), it is sufficient to see that the vector
a1t .,.)es
s

, cannot be approximated by a sequence X, (an)P

o Otherwise this would imply that x _ tends to 1, whcn m tends to
(¢4 n,m
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infinity for every n; this is not possible since all sequence in s tend to
zero. An analogous reasoning is true for B. Now it is easy to sec that
the sequence X = (0, 1, 0, 1, ...) belongs to Sup = D(B) but not to
D(A), and the sequence X = (l/a, 0, 1/a%, 0, 1/a%, ..) belongs to D(A)
and not to D(B). This last remark implies that the embedding relative
boundedness with respect to A or B cannot be applied here.

For fixed g, € 10, n/2[, let us define the infinite sectorial set:
In, = {A € C/ |Arg())| < 80} (15)
0

and for all complex A ¢ II, let
0

Dx=( 8) 8 =1ifn=mand O elsewhere,
n om nm
a — A
n,m
1 q
: lq O
b
D)\‘(A - M) = vl with q = n
1 n a" _—
0]
It is easy to see that
InbﬂlsnMA Vi e I,
la - Xt a sin g, %
since
[2" — Al = d(A,a") 2 a"sin g, Vi e I,
0

from which we deduce that there exists a larger integer n, = n(g) such

that
b
n <4,
an-7\,1 2

Now, we consider the following infinite matrix

nZnO:

T, - 0
Qh= ' 1 ’
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where T, is the finite matriq of order n, defined by

3 1 —q 99, 499,
1q, o I —q, +949,
1

- .o —q,
A 1 q, . .o
o 0] 1 4,

1
Then

R, =D.(A-ADQ, = m
0]

This product is defined on any space s, r > 0. Hence

b
"I—Rx"s]/ = sup {%‘-!n—“x{/nZnO}S—ZI;< 1.
o a2 _

So that, for any A ¢ He, Rx is invertible in the Banach algebra S1 o and
0

(A-A) = QR/D, (16)

Now we can verify that for Y e s, we have DY € s
QR,'D,Y) € s, and

1
R,"D)Y)€ s

lio®

-1 -1 —1
IA - AD YII, = IQR, DYI, < iQyl IR, I, D, WY,

but 0 _
—1 forA=]e ¢ R

{A| sin O
—’1 <
an - ;\') 1

Al
since Ja" — Al = dA,a%) = dApA) = |A| sin 6 for A = A] ¢ ¢ R
where p(A) is the orthogonal projection of A on the real axis.

b, o1
a - A 2

IM&=§(

for Ae R ,

And

m—&k=?(
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which implies that

-1
IR 1, < 2.

Moreover we can see that there exists some constant K depending only
on n, such that

||lelsi=sup{(1 +lq ) +lq.q., |+ -+ anqu...qno_lD; n<n -1} <K
since all the terms q , for ne {1, 2, .., ny}, are bounded.
So the estimate of (A — AI)! in statement ii) holds.

For fixed € € 10, m2[, let ¥ ={ue C/ Argl < m - €}
From (14) we deduce that there eists 1n((»:l) =n, such that for any L€ Ze
we have l

2k+12“1=>172k+1|5‘;'- -
<

(1+)(2k-1)! 2

Now consider the following matrices:

D,IJ = ( 1 6nm) ,
B, + 1 .

2k2n1

1 0]
T'll 0]
q, 1 , .1
Tvu_ . Q= 1 ’
(0] q, 1 o
1
, A
where §, = —2— , (0 2 2)
B, + M
1
0o
7 4 s 1
R, =Q DB +uh = ,
qn+1
1
O q'n1+2

Using (4) one has
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—L B“ synz2nl,
B, + 1B, :

Max (’l:1 , ‘cz)

(Ir— R“"SUB = sup {

t1=sup:72k 1 ;an/z},

= Yoke1 . _
5 = Sup {m (2k+1)! ; k 2 (n l)/2} .

Now it is clear that

a
|

1/2,
172,

IN A

which impies that III—R'Hll <1/2. Thus 3C>0 such that for any Y € s,
s
B

-1 _ , 1 ’ _ 2C
B+ I, = IR @Y, = )

Ml sin g
The proposition 3 is proved.

The operators (-A) and (-B) verify the hypothesis (H.1) with € A=§
and €, = g. It is clear that 6(-A) and o(B) do not intersect, so p(A) U
p(-B) = C

We have proved that (-A) and (-B) are generators of analytic
semigroup e and e®* not strongly continuous at t = 0.

Now we shall prove that (H.2) is satisfied under the followmg
additional assumption on A:

bl n!
sup - < oo, a7n

=3 a

Remark 3. It follows from (14) that the sequence (y,) is bounded by
some constant CB, S0 we can always assume that there exists g € 10, w2
such that

Ian 1|

- =1 o

su , =1 g ,
oy (Whl @n-1)] 2 S

sin €
otherwise it would be sufficient to consider > L B instead of B.
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Proposition 4. Under (12), (14) and (17) there exists a constant
K(e A €p) > 0 such that

IMAA - 7»1)_1 ; [A_1 ; (B + ,,LI)_I]"uE) < K, £y) Z______
=1 IM M
(LD, (,py) = (02). (The

Vie I, Vu g H‘s’ with (t,.0,)
condition 0 < 1 - T, < p; < 2 is satisfied).

Proof. Put
C = pAGA - AD! [ B + pD'] = pAA - ADC,

and consider the vector-space SlB = {(B,a _)(a ) € S} which is an
unit algebra containing S,, then we can write in this algebra the following
equality (for all u ¢ IT)

1

_- — -1
B+l = Dp + B, = D“.(I + Du By,

where
0 o
. v 0
D,=(B,+w38.) - Bo=| * y, o ;
o)

since (I + Du'lBO) € S,. It follows from (14), and (17) that

-1 A 1
B = su I <4,
"Dp_ 0"51 nzg (IBH + m) 2

which gives the classical Neumann’s series (in the Banach algebra S
1 = T T |
®+m) =Y -)'O,B)D, ,
n=0
from which we have:
Co=[A" B +up'] = AT B + up' - B + up' A (18)
1 -1 -1
=DA —AD [DBODH]A +A[DB0D“
n—2

+Z(—1)[(DB0) (DBO)DA —A(DBO) (DBO)D]

=C, + R,
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where C1 is the sum of the first four elements of CO:

-7 Y1 _ Al A-lpy LT L -1
C, = D, - B,D,HA" - A'D, 1 - BD,™)

=K A! - A'K
W i
= (Cum)n,m=l,...
with
g, o
-1 -1 112 Cz
K, =D,d-BD,)= n, - '
O
and
¢, = —L
I B, +u

n, = - Yy .
\ S (NN T ( T

Now, using the explicite following formula for the upper triangular
infinite matrix

Al = (o)
with
men _ (m-n)(m+n)
=D ®b .b )a 2 ,Vim>n 21
=1
nm n ’
it follows that
[cn,n‘l = (an—l,n—l - ann)nn n>1

lcnm = a’nm(gn - Cm) + nnan—l,m - an,m+lnm+1 m2n
which yiclds

c - Y (a-1)

S (R DTG R DI

c =0 [ Bm“ﬁ“ ]
B, B, W

Yn>1,

+ O l)ln__ Ym+1 _ I:IB_-_l_ 'Yn
Sl P (- TRV (G N 1) BPA e (S S DV R
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=0 k +o k Vm = n.

nm am nm nm
We easily verify that

b b
Kl = [ Y - = L | (19)

B+ B, ) B+ WG, )
< MM

2 2
K| .sin g
So the commutator Cl in (18) may be written as:
C,=C, +C,+Cp,

with respectively

0 o)
¢, O )

Cy= c, - ;Cp=( k ):C,=(_X )Vmz2n
O

Using a direct calculation and the fact that in infinite matrix theory,
the property (‘M)! = ‘(M) holds for any invertible matrix M, the matrix
A(A — AD! can be written as a sum of a diagonal matrix and an upper
triangular matrix '

AA-M)' =D, + T,

where

and
SU N

n+1

@-»aE" -0 ..@ -nE" -

Now we have in algebra S;:

VYm =>n + 1.

I, + TYC,, + Cpy + CI < ID,CylI+ID,Cpll+ ID,Cyl
' 4 IT,C,ll+ IIT,C, I+ IIT,C

It is easily seen, from hypotheses (12) and (17) that there exists a
constant K such that
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Vm2n= b .b|<K, (20)

n 0+l m
then for any A¢ IT, and any p¢ HEB, we have
A

n n

a a Ya a-—1
IIDlCu"sl ) ?‘gzp a — A Goatl = s“gg Iall A B, +wB, +w ( a*! )|
< K&E)
M
IDCplls, = sup 3. Do) L8 [ o }
1 mntl l dat.a™ ama - A B+ wB, W

SM sup iM’

2 )
AL mlaaa

and from (17), there exists some constant K’ such that

oo

RO g 51
Al Iul =

<K KOKZ(EO’SI sup 2

ID,Cyls,

1aa

Pt 2 e
<k 5K&f) a2
2 a-1
YA

On the other hand, it follows from (19)

n
a

@ -
< KM, {l b |y 5 PPt I}

@ - N | M @ - )|

ID,Cyylls, = sup 2

m=n+}

|u| sin e
< K (
A\ 2 e
< 5&#) (2 +K)-
o B

1 + K")
o+l m
a ..a

Finally
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IT.Cyll, < Il 1C, l
= bbb )
= sup lcm_ll sup A - e +1 1 — _ 1 |
n2 Bomma | @ - M@ - NEs - @ - 7»)(
Ab '
< sup Icnv“—ll SIp n nn+1 )
= - et - )
- bb b b I
+ sup lcn,u—lI Sup Z m n n+l = :+2 1 m
=2 Bomm @ - @ - )R - V@ - D

< MMM, NMK y 1

< sup
2 2 2 2 2 S b ool
: : = mn2 |
Al lul sin'e sine, [A u| sin g (a 2 smeo)
<K Ery
2
Al

To bound the next term we shall need the following formula

= =t Ab_..b, b..b B - B
IT,Cplls < sup| 3 ZI " e L ": Bj P l ;
bl \eme \Fa @ - )@l - Ay dla™ By + DB, + W)

we use also the fact that ([3j - Bm) < m! and (17). Therefore it follows

.C oo m-1
Ml S —2—swp ¥ ¥ — 1
Al |l sineg men+] jem+l (am+;+2 sinso)ﬂk
< KS (80’81) .

2
Al Il
The last term is easily bounded as

IT.C < |T,C

Ke (&%)
Coll, < Il 1, < Ko @02

2
A T
Now if we group all these estimates, we deduce

lnaca - A [AL@B + uny])l
= [lna@a - Ayl c
< luaa - AD? (, + B
< [IRAA - AD? C || + lInAA - ATy R||
<@, + T) €, + C, + CHIl + llnAA - A R||
< K(so,el)[ | —12- .
M
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We have used the fact that ||[A(A — A R} = O(RI) = (1__1_ when
3
I

[M, Iul tend to infinity, which can be deduced from (18). The proposition 4
is proved and the numer & defined in (9) is equal to 1.

5. REAL INTERPOLATION SPACES

We shall apply theorem 2 given in section 3, so we must explicite
the interpolation Banach space D,(0,) between D, = s, ~and E =s,.
We shall use property (10).

Proposition 5. For any 0 € ]0,1[ the space D,(8.0) coincides with

S .
1/0L°

Proof. We shall prove only that s , < D,(8,0); for the other
embedding, the same techniques can be used. Given X = (x) € s1
then

\m
Vm>1 k| <X, {%) : 1)
, (1/2) a

e’
la.

2] -]
Since A is invertible, we must only estimate the semi-norm suplit A(A +tI) XIl..
Let t, be such that 0
M

to=> A< L (22)

vt A<l
0 t 2

\%

then it sufficies to estimate supllteA(A+tI)_1X||E,Let us write that A(A + tI)"
2t

=I-wA+t)! =@ ) where

0 ifm<n
an
- fm=n
t _Ja +t
l‘ —
mm
mn-1
) bb.b_, fmen
@ + @™ + O.@" + 0
Then from PAA + 'X = Y = (y),,, » We get

[} t
Y=t Z r, X.
men
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(The convergence is justified by (16) for example). Recalling (21) and
(22) it yields

0 < t

<t E,, I X
6 n
g tlb b

ta 'an + I n n+l™”

a +t menel (2" + t)(a + t)...(am +9
8

£a2 WXl o . bbb LK

S’ nml™ (1/2)

! n6 1 mo
a+t q manel (2" + @™ + O.a" + Da

0
b Itk |

IA

6

IA

then, from
teal1 86
suj 1 0
tZOp n (1 - 6) 0a “
a +t

we have

m—u

vl <K IXI, ,+K, y M X,

(l/a) m2n+l ¢ a (/3

<K, ||Xl| o + M, ) K2 2 — Xl
=0 (2a) (1/3)

Applying theorem 2, one has

Theorem 6. et A and B be the two infinite matrices defined by
(1), (13) such that (12), (14) and (17) hold. Then there exists A* such
that VA > A* and VY € S 0 the linear infinite system [-A — B — All.X
= Y has a unique solution X € Sl/a M s such that:

D@A+ADXes |

1/o

ii) BX € 5 .

1o

In our case it is ecasily seen that s N s 6 coincides with s, where
] Vo ¥
the sequence (c ) is defined by

’ L if n=2k
%k
a
c =
1

otherwise.

n (23)
l (2 + 1)!
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6. EXAMPLES AND REMARKS

6.1. In continued fractions theory. Let us define the following
particular sequences

n

_b _— _Cna >2
mn—l S Yn - n! » L=
B Can if n = 2%
Pola®™ @k 4+ 1) ifn=2k 41,

where the sequence (cu) is assumed to be bounded. Consider now the
following infinite system:

’ (0, + Mx, - 0x, =y,
- ox + (K + )»)x2 - W%, =Y,
\_ (om—lxm—l + (Km + A')Xm - (Dme+1 = ym

..........

For the particular second member (1, 0, 0, ...) € s” o this system gives
o
formally the following continued fraction

X, = 1 5
K +A- ®

0)2

+ A~ 2

© K +A-

and in virtue of theorem 6, we see that this fraction converges, since, by

using the right inverse of A + B + Al, the first element x, of the

solution X = (x, X,, ...) coincides exactly with the first component of
(A + B + AD(1, 0, 0, ..),

with the following regularity:

<.

62. In numerical schemes. Our approach can be applied in studying
differential equations that are approximated by finite difference schemes of
type

V 0 e 10, 1] sup (ane |anxn +bx
n21

n+1

(*) an—lun-—l + (bn + }\')u + cn+lun+1 = f n
n =0, £1, £2, 43, ..
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where (f) is given in space I. The hypotheses concerning sequences
(a), ®,). (c,) mean that (*) is of elliptic type. Theorem 6 gives the
resolution of (*) in the adapted space I*, see [5].

63. Development of some analytic function on a some given

basis. For 6€ ]0,1[, a > 1 and p € ]0,1[ consider the analytic function
)

f@ = —2 Z  for |z < p

a -1z
then thanks to thcorem 6, there exists a unique sequence X = (X)) 0
belonging to the space s, (defined in (23)) such that

G
a

@

5 24
-z

a
YL -X0+2 ib 2+ @ B Ny, z'”l]
=0 3

for |z] < p and a large A > 0. Applying the result of regularity, we have
also:

sup(a Iax +bx <o,
0

n o+l
In fact, we can see that equation (24) is equivalent to (1) with Y = (1,
0 2 = 0O
oo, /0, ..) and b, = 0; ®) s B)sr (), are three sequences
verifying (12), (14) and (17). This is ,Justified by the absolute convergence
of double series 2 Z Ianm(l)l x| |Z| when [z|<p and (x) € s, (see(23)),
here (a,_(A). = —A~ B — A and A, B are defined as in (11), (13).
Remark. When E is a Hilbert space, M. Fuhrman [3] has proved,
under (H.1) and (H.2), that for large A and for any Y in E the unique
solution X € D(A) N D(B) of (1), exists and satisfies

IAXI, + IBXI, < KO,

this estimate is important for studying stability and convergence of
numerical schemes of type (*). This approach, in Hilbert case, gives also
the resolution of infinite linear systems when the second member is mot
regular but only in E.
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