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ABSTRACT

We give a generalization of a theorem from Barnsley {1] which simplifies the computation
of the fractal dimension.

1. INTRODUCTION

Mandelbrot has defined a fractal to be a set with Hausdorff dimen-
sion strictly greater than its topological dimension. There arc many
other definitions of dimensions, although the Hausdorff dimension is
commonly used. Tricot did a study of 12 definitions of dimension.
Most definitions have some restrictions on the e—covers considered
in the definitions of measvre. In some situations these definitions are
more natural for the applications. Sometimes it is just too hard to
find the Hausdorff dimension, but calculation is possible for other
definitions. One of them is the fractal dimension (bhox dimension).

Definition 1.1. Let (X, d) be a metric space and A < X. For
each ¢ > 0, let N(A, ¢) denote the minimal number of closed balls of

radius £ > 0 needed to cover A.
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exists, then D is called fractal dimension of A.

The following theorem from Barnsley [1] simplifies the process
of calculating the fractal dimension. It allows one to replace the con-
tinvous variable ¢ by a discretc variable.
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Theorem 1.1. Let (X, d) be a metric space and A < X a com-
pact subset. Let g, = Cr® for real pumbers 0 < r < 1 and C > 0,
and integers n = 1,2, ,... If
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then A has fractal dimension D [1].
We now give a slight generalization of this theorem for A < R»
Theorem 1.2. Let A = R™ be a compact subset, ¢ > 0 and N ()
the smallest number of closed balls of radius ¢ > 0 needed to cover

A Letry, =Crm, 0 <r<1,neN, CeR" and ¢ is a null-sequence
of positive numbers such that for every n e N, n > 1 there exist posi-

tive mumbers c¢; and c, satisfying ¢, < In << ¢y If
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cxists then A has fractal dimension D.
Proof; It can be shown that

1. If 5 < ¢ then N(s) < N (3)
1\m_ 1 m
2. IfA < R™, ¢ ¢ R* then (m) N (s) < N (cg) < (73— + 1) N (2)

By the hypotesis and from 1, it follows that
N (cpzn) << N (rn) < N (¢4ep)

and by using 2 epe obtains

1 m m
(CQ'P‘ 1) N(Sn) < N(Czsn) < N(rn) < N(Clsn) < (”E"' + 1) N(sn)
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Co N CZ
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Since limy , » - =1, we obtain
Ogan

Jog (Niea)) 1. log (N(r)).
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Hence, by Theorem 1.1, the fractal dimensiorn of A exists and equals to D.
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