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SUMMARY

In this paper the necessary and sufficient conditions for the existence of the solution
of the inverse scattering problem for a discrete one-dimensional Schrédinger equation (second

order difference equation on the whole axis) are obtained.

1. INTRODUCTION

A formal solution of the inverse problem of scattering theory
for a discrete one—dimensional Schrédinger equation (second order
difference equation on the whole axis) was given in the articles [1]-
[4]under the assumption that the coefficients of the difference equation
converge rapidly enough to their corresponding limits. In this paper
we identify a-natural class of coefficients of the difference equation,
finding necessary and sufficient conditions for solvability in this class
of the inverse scattering problerﬁ. A similar problem for the one-di-
mensional continuous Schrédinger equation was throughly investi-
gated by L.D. Faddeev [5}; see also [6]. [7]. The inverse scattering
problem for a second order difference equation on a semiaxis (for an
infinite Jacobi matrix) was studied in [8]. ‘

2. DIRECT SCATTERING PROBLEM
Consider the infinite system of equations

dn_1¥n-q - hnYn -+ p¥ney = 7~'Yuv n ==+ 1,4+ 2,... (1)
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where {yn} is the solution sought, % is a complex parameter and Imb, ==
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We denote by 12 (—oc, o) the Hilbert space of sequence y = {yn}
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«© ool
sach that X |yn|2<?c0, with inner production (x, y) = X Xn¥n
(the bar over a number or a function here and below denotes complex
conjugation). By L we denote the minimal closed linear operator gene-
rated in 12(~c0, o0) by the operation (ly)y = an_, yn_; - bayn +
anyny1. From (2) it follows that the operator L is selfadjoint.

Theorem 1. Under condition (2) the operator I has a double
continous spectrum filling the segment [-2, -2] and a finite number
of simple real discrete eigenvalues lying outside the continuous spect-
rum. If by = 0, the eigenvalues occur in symmetrical pairs with respect
to the point A = 0.

In the equation (1) we shall put A = 2Cos z, where z = £ - ir.
Wherever £ appears in what follows it will denote only real parameters.

Theorem 2. Under condition (2) equation (1) with A = 2Cos z
- 00 -0
has the unique solutions {ta(z)} and {gn(z)} regular in the half plane
—o0 —a0
Im z > 0, continuous up to the real axis and representable in the forms
o 1
fa(z) = apeit® (1 4 X Appelm?), g (z) = Bye~inz (1 —i—mE Byme—im?)
m = )

in this connection we have the equalities

Sl P Aw-Aug; = Bu - B (4)

a. =
" %n Bosy

and for Ay, and By, the estimates

Al < (@ e (n 4+ [F]) B! <D@ or+ [5] + .
where

w®) = E (|Tap |+ by l). oofm) ="E (11wl + I p)).

n

[.] denoting the integral part; C(n) and D(n) denote nonnegative
functions on an integral argument n, C (n) being a function that is mo-
notone nonincreasing, bounded as n - o and in general increasing
as n —~- 0 and D (n) a monotone nondecreasing function bounded
as n > — o and in general increasing as n - oo.
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For Im z > 0 the following formulas hold:

fa() = ein? [1 + o(1)], m = o ga(s) =% [1 + o(1)], n >0 (5)

For £ £ km, k =0, - 1, -+ 2,... the pairs {fn(EZ}w, {fn(-—E)}:

. o« o0
and {gn(i)} , {nn(-€)} constitute two fundamental systems of solu-

tions of (1) with % = 2Ces £,
We have the relations
(&) =D (%) g (8) + a (%) gn (-9),
gn () = -b (&) £ (§) + a (&) fn (-§). (6)
The functions a (%) and b (&) are defined for all
EeRt = (-0, o)\ {km: k =0, & 1, £ 2,...}

and are continuous. Moreover,

a(Z+ 2m) =a(£), b(f+ 2r) =h(£), a(f) =a(-E),

() =b(-2), [a(®)2- [b@E[]2 =1 ¢cR".
The function a (%) can be continued analytically into the half-plane
Imz > 0 and as * - «©

For Im z > 0 the function f(z) decreases exponentially when
n - o and gu(z) does so when n - — oo, If a(zg) = 0 for some zp

oo —

with Imzy > ¢ then the solutions {fy(z)} and {gn(zo)}OO are line-
—0 —an

arly dependent; consequently for & == 2Cos z, equation (1) has a solu-

tion in the space 12 (-o0, o) and therefore, 2y = 2Cos 2 is an eigen-

value of the operator L. The converse also true: if the number 2y =

2Cos 7y is an eigenvalue of L for some zy with Im zy > 0, then a(zg) = 0.

Since the eigenvalues of the operator L are real and form a finite
set, the function a(z) can have only a finite number of zeros in the
half-strip

. T ‘ 371.'
1]+:{Z:E+“IT:”T§E£—2"°’T>O}



98 G. SH. GUSEINOV and H. TUNCAY

whieh will be lay on half-lines Re z == 0 and Re z == (Im z > 0).
Denote them by z; =i, j =1,.. o Noo 25 =7 + i1y, j =Ng + 1,
..., N so that a(z;) = 0 and

fo(z) = cjgn(z). j =1,...N

where ¢j,j =1,..., N are certain nonzero real constants. The zeros
of a(z) are simple and moreover, the following formula is valid:

a(z) =—ic; T ghlz) = — — = f2(z), j =1,....N,
—w (G —

where the dot over the function indicates the derivative With respéct to z.
Dividing both parts of equalities (6) to a(£), we get for £ > knr,

k=041, + 2,... the following solutions of the equation (1):
uy (&) = (&) fn(8) =17(8) gu(€) + gul-%)
unt(€) = t (&) gnl8) = r*(€) (%) + ful-E),

where

b (%) b (<) 1

r(§) = a(f) (&) TG t(£) G
These solutions satisfy in virtue of (5) the asymptotic formulas:
un(f) = t(f) e + o(l) n—> o
uy(E) = r(€) e ME + e"E 4 o(1) n > - ®
why(€) = t(§) e™ME 4+ o) n>-
uwin(€) = r(€) enf ;e~nf 4 o(l) n—>
and are called the eigenfunctions of left (up(£)) and right (uty(%))

scattering problems. The coefficients r~(£) 1() and t (%) are called
respectively the left and right reflection coefficients and passing coef-

ficient.

Define the positive numbers (the normalizing factors) M*; and M~;
by the formulas ’ : :

« ®
(MH)2 = £ f0s) (M2 = £ g(ay).

N} and {r=(&), z;, M, j =1,..., N} we call respectively the right
and left scattering data for equation (1).
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3. INVERSE SCATTERING PROBLEM

The inverse scattering problem for equation (1) consists in reco-
vering the coefficients ap and by on the basis of the right or left scat-
tering data and in finding necessary and sufficient conditions which
an arbitratily chosen collection {r (%), z;, M; j =1,..., N} should
satisfy in order that it be the right (left) scattering data for some equ-
ation of the form (1) with coefficients satisfymg (2).

In solving of the inverse scattering problem a major role plays
the following:

Theorem 3. The quantities ap, Aym, 21, Bym in formula (3) satisty
the equations

Fomym + Amm + kzl Ak Foymion =0, m =1,2,3,..., @)

an=2 =1 4+ Fpy + 15‘1 AnkFic on, ‘ ‘ ®
’ K=—1

®2n+m _*_ Bnm + 2 ) Bnk ®k+n1+2n' = 0, m = —19 ""29 -35 e (9)

ket
B2 =1+ Oy + 2 Bk (Dk+2na
—0

where
N . 1 T

F, = Mtjeltz; + —— [ r¥(§)emE dE,
=1 AT
N (g

By = T M-je-img f 1 (%) e-imEdE.
j=1 =

Equations (7) and (9) can be regarded as equations for Ayy and By
respectively. These are the fundamental equations of the inverse prob-
lem and are called the Gelfand- Levitan or Marchenko type equations.
The main result of this paper is the following: '

Theorem 4. For a given collection {r(Z), zj;, M*j, j = L,..., N},
where —c0 < £ < w03 zj =ity 1j > 0, j = 1,..., Ny and are distinct;
zj =7 ity 15 >0, j =Ny -+ 1,..., N and are distinct; Myt > 0,
j =1,..., N, to be the right scattering data of some equation (1)
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with coefficients a, and by, satisfying condition (2), it is necessary and
sufficient that the following conditions be satisfied:

1) The function r(£) is continuous on the entire real axis —wo <

€< oo, r¥(% + 2m) =r+(E), rH(E) =r* (-£), | rH(E)| < 1 and |r* ()]
<1 for & #kn, k =0,4+1,+2, +£3,...° if |r(kn)| = 1, then
ri(kr) = -1; there exists a posnwe number C > 0 such that the lower
bound 1-|r*)| > C sin2(¢-kn) holds.

2) The function za(z), where

1 flog (-9 2) 41 § Sin(ez)
Ixi ) " Sin (¢-7) *{ po; Sin(z + 7

is continuous in the closed upper half—plane.

a(z) = exp % -

3) The quantities

Fin L (g emzdz, o — L [ 5 (1) e-mzaz
m “:27_:‘,[ r(§) eimidé, = 54 I (§) emimEdE
-7 -TC
where r(£) = - ri(-§) 2 (( )) for all finite integers N; and N, satisfy
[
© (§)) (n m=N2 (1 1)
z ! nl} l Fm+2 - Fm i < 0, ! In{ ! (Dm+2 - (Drn J < .

m=N 1 —

We note that the following properties of the function a(z) (which
are used in an ¢ssential manner in the proof of this theorem) are implied
by conditions 1) and 2) of Theorem 4:

a) The equalities a (£) = a (<£), | a(8) 2 = 1| r#{(¥) 2 for £ e
R* holds, where '

a(f) = Llm a(g 4 ie), £e R*.
e—>+0
b) Lim a (2) [1 + r5(%) | Sin (i-kr) =
Eiskn

¢) a(z -+ 2x) = a(z) and a(z) =d + o(l) as Im z > o, where
d = 0.

d) The function [a(z)]~! is bounded in some neighborhoods of
kr, k =0, -1, 4+ 2,...
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In order to find the coefficients ay and by in (1) on the basis of
the right scattering data {r*(£), z;, M;, j =1,..., N} we have to exa-
mine either of the equations (7) or (9) which are constructed only from
the scattering- data, with unknowns Apm or Bpm, respectively. When
the conditions of Theorem 4 are satisfied, these equations are uniquely
solvable! We have the formula

© N
1+ Fon + k21 Anka+‘2n = _21 M+J’ ezinzj (1 + An(z.‘i) )2
= J:z
kD
Foge [ T (D) o An(-8) o rH(E) e2nEAL(E) 2
—T
+ { 1 —+ An(‘i) i2 } da (10)

la(3) 2
L) k=-2

where Ap(z) = £ Apge™?, Im z > 0. For 1 + @on + 2 Bux@xyon
m=1 oo

a simiiar equality holds. From (10) it follows that the expression on the

left side of this equality is positive for all n, n =0, 4+ 1, 4-2,...
After this, we define ay by formula (8) and ap, by by formulas

ag = Xny , bnzAnl—Aﬂ'—l,l, n=20 -1 42,...

%n

It can be proved that condition (2) is satisfied.

When rt(£) = 0 the fundamental equation (7) can be seclved and
by the same taken the coefficients a; and b, can be writen in explicit
form.

OZET

Bu calsmada bir boyutlu diskret Schrodinger denklemi (tiim
cksen iizerinde ikinci derece fark denklemi) i¢in ters sagilma probleminin
coziimiiniin varhgmin gerek ve yeter kogullari bulunmustur.
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