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ABSTRACT

In this paper, polynomial solutions are given for a class of linear non-homogeneous
singular partial differential equations of the second order. At the end of this paper,
polynomial solutions are given for an iterated equation with order 2p which is obtained by
applying the operator belonging to the same equation consecutively.

INTRODUCTION

Consider the following linear nonhomogeneous singular partial
differential equation,

2 2
Lu = 8_u+b§__g+1@+ﬁ_aﬂ

2 af Rox Yy = qxy) - M
where b, o0 and B are any real constants and q is a polynomial in R2,
Clearly the equation (1) includes some of the well-known classical
equations such as the Laplace equation, the Poisson equation, the axially
symmetric potential equation and the wave equation. To obtain a
particular solution for the equation (1) in the case of q(x;y) # 0 is an
important problem. From the theory of linear equations it is known that if
we have a particular solution of the equation Lu=q and we know the
general solution of the equation Lu=0, then we can obtain the general
solution of the equation Lu=q. In the equation (1), if g(x,y) = O the
polynomial solutions are given in [2,4]. In this paper, polynomial solutions
are given for the equation (1) and polynomial solutions are given for the
iterated equation LP(u) = O for p > 1. The iterated operator LP is defined
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by the relation.

L¥*(u) = L[L%u)] s=1,..,pl

2. POLYNOMIAL SOLUTIONS FOR THE EQUATION (1)

In generaly a polynomial q(x,y) may be written in the form

M N .
axy) = 3 3 axy ; MN e N. @

i=0 j=0
If q; = Xyl 0<is M, 0 <j £ N, then we can write q(xyy) = 22 a,q;.
i=0 j=0
By the principle of superposition, it is known that if Lp = Qp then we
obtain

(53 )= £ 3 atop- aow

Hence, it is clear that for obtaining a particular solution p of Lu = q, it
will be enough to find particular solutions u = P; satisfying

Lu = xlyl ije N 3)

M N )
Thus, go: g' a,p; = p becomes the required particular solution of the
equation Lu=q. We explain below how the polynomial solutions are

obtained when the typical terms on the right-hand side of the cquatlon 3)
are of the form x'y%, x%y, xZy%,

Theorem 1. Let 0 <i <M, 0 <j < N; M, N € N be nonnegative
integers. Then the equatlon
2 2
Lu=.a_.g+b§_£+ii+ﬁa_u=xiy2j “)
o ay2 Xox Yoy
has a polynomial solution
j+1
- -—1——-—Xi+2 2j + b Xi+2$ 2j-2542 (5)
MG Drog -~ 5 Y
where
b, = (_1)&1 2j(2j-2)..(2j-2s+H)[(2j-1)b+B]...[(2j-25+3)b+P] 6)

(i+2)...(i+29)[(i+1)+0]...[(+2s-D+a]
s =2, . ,j+tl and for s ='1, ..., j+1, o # -(i+2s-1).
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Proof. Because of the property of the operator L, a particular
solution p(x,y) of the equation (4) should be a polynomial consisting of
the terms of degree (i+2j+2). Thus p(x,y) can be chosen as

i+4 2_1 2 2j-4

p = bx*y¥+bx +b x*oy24
+ b25.2 1+2s 2y2_| Zs+4 + bzsxi+ sy2j-25+2 : 2j'25 +2 >0 (7)

Now we calculated Lp from (4) and (7)

= (i+2)[+1)+0]b, Xy +{ (i+4)[(i+3)+a]b,+2i[(2j-)b+]b, 1 }x 22
’ {GHO)[+5)+ollb + 2 D[(2)-b+BIb I y2 4.
+ {(i+2s)[i+2s- 1)+a]b + (2j-2s+4)[2}- 28+3)b+[3]b }X1+2s -2, 2j-25+2
+ (2§-2s+2){(25- 25+1)b+[3]b xl+28 %2 x‘yZJ

Equating the coefficients of similar terms on both sides of the above
identity, the following relations;

b=— 1

2 (+2)[G+1)+0]
is obtained from (i+2)[G@+1D+alb, = 1. Similarly, the other coefficients
have the following forms.

b = _ 2AlQ-Db+P]
4 i#+D[+3)+o] 2’
b = - @DICI3Hb+P]

e T wolassyal
b, = _ Qi2s+H[(2-2s+3)b+P] |
x (i+2s)[(i+2s-1)+0] 252

By multiplying them side by side and writing the value of b,, we obtain

b,  as defined in (6). Hence, we obtain p(x,y) as given in (5).

Theorem 2. Let 0 €£i £ M, 0 <j<N; MN € N be nonnegative
integers. Thcn the equation

o Byz Xox Yoy
has a polynomial solution

i+l
p= _— })+2 b. x 212s+2 (8)
G+2)[G+1)o+] 2
where
b, = (1) 22i2)..Qi2s+)(2i-1+0]..[2i-25+3+0]
= (+2)..+29)[G+ Db+ [(+25- )b+
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s=2,.. ,i+l and for s = 1, ... , i+l B# -(j+2s-1)b.

The proof is very similar to the proof of Theorem 1; so we shall not
give it here. On the other hand, if the right-hand side of the equation (3)
is of the form x%y%, replacing i by 2i in (5) or j by 2j in (8), we
simply obtain polynomial solutions of Lu = xZy%. Hence, if typical terms
in q are of the forms x'y, xZyl, x%y%, we obtain polynomial solution of
the equation (1).

Special Cases. If q is a polynomial which is odd with respect to the
variables x and y in its terms, then the equation (1) has polynomial

solutions in some special cases. Namely, if the typical term is of the

form x21y?™! in q (nym = 1), in the following special cases, we find

polynomial solutions of the equation

Lu = x2n+1y2m+1 (9)
If we choose polynomial solution

p = Ax2n+3y2m+1 + BX2n+ly2m+3 (10)

for the equation (9) by applying the operator L in (9) to this function,
we obtain

L(p

A(2m+ 1) [2mb+B] } .X2u+3y2m-1
AQn+3)[2(n+1)+0]+B(2m+3)[2(m+1)b+P] } x27 y? ™+
B(2n+1)(2n+opx?Wly?mHl = g2uly2mel

+ +

From this identity, we obtain

AQ2m+1)(2mb+p) = 0
B(2n+1)2n+ot) = 0
AQCn+3)[2(n+1+0o]+B2m+3)[2(m+1)b+B] = 1

We can write the following special cases here.

i. The equation (9) has a polynomial solution
- 1 X2n+1 2m+3

= for o = -2n
(2m43)[2(m+1)b+P]

ifi. The equation (9) has a polynomial solution

1 2n+3 2m+l

=1 for B = 2mb
2n+3)[2(n+1)+0]

p
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iii. If A and B are nonzero arbitrary constants which satisfy the
equality A(2n+3)[2(n+1)+0]+B(2m+3)[2(m+1)b+B] = 1, the equation (9) has
a polynomial solution p = Ax*™3y?m*! 4 Bx?m*1y?m3 for g = -2n, B = -2mb.

3. POLYNOMIAL SOLUTIONS FOR THE EQUATION LP(u) = 0

The formula for the operator L is easily derived.

_ of dg , . of 8g)
L(fg) = gl +2{—=+b— =]+ 1L 11
@ = g0 +2( 2L 2% > an
In particular, if f is replaced by x* (k € R) in (11), we obtain
L) = k(k-1+a)x“'2g+21qk‘lg_g+x‘i(g) . (12)
24

Lemma 1. Let T* = Xai and if Lg = 0, then

X
L(x*g) = x*%k(k-1+0+2T*)g _ (13)
Proof. The proof is obzvious from (12).

Lemma 2. Let L = _8__ + %i and Aj, Bj, Cj, Dj be real constants,

then the functions o’ X
) 1-B o 1-B
u(xy) = ij1 gt By b+ ijl % b+ D, (14)

are solutions of both the equations L(u}.) = 0 and Lx(uj) = 0.

Proof. By applying the operator L and L_ to this function U we
simply see that L(u) = 0 and L_(u) = 0.
i X

Lemma 3. If g is of the form (14), then
pl

L’y = 7] k -2j)[k-1+0+2T*-2j] g . (15)
=0

Proof. We prove this by the method of induction. Let
T = k-1+0+2T*. From (13), we write L(x*g) = kx*%Tg). Applying the
operator L. on both sides of this equality and using (12), we obtain

L") = kL[x“"Tg] = k{x“*(k -2)[(k-2)- 1+ o]Tg + 2k - 2) x“‘3%
+ kx’L(Tp) . (16)
On the other hand, by direct calculation, it can be shown that

LT* = T*L + 2L_ an
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LT = (k-1+o)L + 2T*L + 4L_ (18)

Here, let L be the same as in Lemma 2. From (18), we have L(Tg) =0.
In (16), by making use of L(Tg) = 0, we obtain

L2(xkg) = k(k-2)x**[(k-3)+0+2T*]Tg.

Now, first assume that the equality (15) is true for p and show that it is
true for p+l. Applying the operator L on both sides of the equality (15)
and using (12), we obtain
pl
1k K . .
&'y =L (X (k'21)[T'2J]g}
=0

k-2(p+1)

pl
k-2p)k-2p-D+alx 1 & -2)IT-2j1¢g
=0

+

pl
2k - 2p) X2V x 9T &k - 2)IT- 24 g
0X =0

k2
x PL

+

pl
[T & -2)[T-2j] g}

=0
By making use of L(Tg) = 0 we see that

L

pl
IT« -2j)[T-2j]g} =0.
j=0

Hence, we obtain

P
P& = X2 k-2)k-1+0+2T*-24]g.
0

This completes the proof.

If £ is replaced by y* (k € R) in (11), we give the following
Lemma. Its proof is very simiar to the proof of Lemma 3; so we shall
give it here without proof.

Lemma 4. If g is of the form of (14), then
k k-2 pl
L'y = y P[] &-2i)bk-1-2j+2T% +Bl g.
j=0

Theorem 3. If the functions g and hj are of the form (14), then the
polynomial solution of LP(u) = O for p = 1 is given by



POLYNOMIAL SOLUTIONS 189

P 9
U= Z(XJgj + thj)
0

whercl>anand1>§e z.

Proof. It is known that LP(Xngj) =0(@G=20,1, .., p-1) from
Lemma 3, and LP(yZth) = 0 from Lemma 4. Because of the linearity of
L? the function

satisfies the equation LP(u) = O where u is a polynomial for 1 > o € Z

and1>[5—eZ.
b
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