Commun. Fac. Sci. Univ. Ank. Series A1 V. 47. pp. 175-181 (1998)

SOME PROPERTIES OF LINEAR POSITIVE OPERATORS IN THE WEIGHTED SPACES OF UNBOUNDED FUNCTIONS

TÜLİN COŞKUN

Department of Mathematics, Faculty of Sciences, Ankara University, Ankara, TURKEY.

(Received May 22, 1998; Revised Nov. 16, 1998; Accepted Dec. 15, 1998)

ABSTRACT

In this work, existence of Korovkin's theorem in the space of continuous and unbounded functions defined on unbounded sets has been studied.

INTRODUCTION

Korovkin theorem ([7]) which is important in approximation theory, extends the convergence on three functions to the functions which are continuous on [a,b] and bounded on \mathbb{R} . Baskakov ([1]) extended the boundedness condition on \mathbb{R} to the unbounded functions.

Let C(a,b) denote the space of all continuous functions on [a,b] and let B(a,b) is the space of all bounded functions on the same interval. Then the Korovkin's theorem can be stated as follows.

Theorem (P.P. Korovkin) If the sequence of positive linear operators $A: C(a,b) \rightarrow B(a,b)$ satisfy the three conditions

$$\lim_{n \to \infty} \|A_n(1,x) - 1\|_{C(a,b)} = 0$$
(1)

$$\lim_{n \to \infty} \left\| \mathbf{A}_{n}(\mathbf{t}, \mathbf{x}) - \mathbf{x} \right\|_{\mathbf{C}(a, b)} = 0 \tag{2}$$

$$\lim_{n \to \infty} \|A_n(t^2, x) - x^2\|_{C(a,b)} = 0 , \qquad (3)$$

then

$$\lim_{n \to \infty} \|A_n(f,x) - f(x)\|_{C(a,b)} = 0$$

for all function $f \in C(a,b)$ for which $|f(x)| \leq M_{x}(1 + x^{2})$ hold on \mathbb{R} .

T. COŞKUN

Some generalizations of this theorem may be found in [4], [5] and [6]. But all those generalizations use a finite closed interval for convergence. In [2] and [3], Gadjiev defined the weighted spaces C_{ρ} and B_{ρ} of real functions defined on the real line and showed that Korovkin theorem does not hold in these spaces. Here $B_{\rho} := \{f: |f(x)| \le M_f \rho(x), -\infty < x < \infty, \rho \ge 1 \text{ and } \rho \text{ unbounded} \}$ and $C_{\rho} := \{f: f \in B_{\rho} \text{ and } f \text{ continuous} \}$ are the spaces of functions which are defined on an unbounded regions. Furthermore in [2] and [3] it was shown that this theorem holds on a some subspace of the space C_{ρ} . Generalizations of this theorem also appear in [4].

In this work, we extend these results of A. D. Gadjiev for different ρ_1 and ρ_2 , and show that a Korovkin's theorem does not hold for a class of positive linear operators, acting from C to B. We give a proof of this result, different from the proof, given in [2] and [3].

Let us consider the spaces $C_{\rho_1}(\mathbb{R})$ and $B_{\rho_2}(\mathbb{R})$ where $\rho_1 \neq \rho_2$. First we give the following properties, of positive linear operators which are the maps between these spaces:

1. Positive linear operator L, defined on C_{ρ_1} acting from C_{ρ_1} to B_{ρ_2} iff the inequality

$$\|L(\rho_1, x)\|_{\rho_2} \le M_1$$

holds.

2. Let L: $C_{\rho_1}(\mathbb{R}) \to B_{\rho_2}(\mathbb{R})$ be positive linear operator. Then $\|L\|_{C_{\rho_1}\to B_{\rho_2}} = \|L(\rho_1 x)\|_{\rho_2}$

and therefore for all $f \in C_{\rho}$, the inequality

$$\|L(f,x)\|_{\rho_2} \le \|L(\rho_1,x)\|_{\rho_2} \|f\|_{\rho_1}$$

holds.

3. Let $A_n: C_{\rho_1} \rightarrow B_{\rho_2}$ be positive linear operators for all $n \in \mathbb{N}$. Suppose that there exist M > 0 such that for all $x \in \mathbb{R}$, $\rho_1(x) \leq M\rho_2(x)$. If

$$\lim_{n\to\infty} \left\| A_n(\rho_1,x) - \rho_1(x) \right\|_{\rho_2} = 0 ,$$

then the sequence of norms $\|A_n\|_{C_{\rho_1}\to B_{\rho_2}}$ is uniformly bounded.

Remark. From the above condition $\rho_1(x) \le M\rho_2(x)$ we have $C_{\rho_1} \subset C_{\rho_2} \subset B_{\rho_2}$.

Theorem 1. Let ϕ_1 and ϕ_2 be two continuous functions, monotone increasing on real axis such that $\lim_{x\to\pm\infty} \phi_1 = \lim_{x\to\pm\infty} \phi_2 = \pm\infty$ and that $\rho_1(x) \leq M\rho_2(x)$ (M > 0 is arbitrary constant) for all $x \in \mathbb{R}$ where

$$\rho_{k}(x) = 1 + \phi_{k}^{2}(x)$$
, $k = 1, 2$

and

$$\lim_{x\to\infty}\frac{\rho_1(x)}{\rho_2(x)}=a\neq 0.$$

Then, there exist a sequence

$$A_n: C_{\rho_1} \to B_{\rho_2}$$

of positive linear operators satisfying the following three conditions

$$\lim_{n \to \infty} \|A_n(\phi_1^{\nu}, x) - \phi_1^{\nu}(x)\|_{\rho_2} = 0 , \quad \nu = 0, 1, 2,$$
(4)

but on the other side there exist $f^* \in C_{\rho_1} \subset B_{\rho_2}$ such that

$$\limsup_{n \to \infty} \|A_n(f^*, x) - f^*(x)\|_{p_1} \neq 0.$$

Proof. For given functions ϕ_1 and ϕ_2 , let $(A_n)_{n \in \mathbb{N}}$ be the sequence of operators defined as follows:

$$A_{n}(f,x) := \begin{cases} f(x) + \frac{\rho_{2}(x)}{2\rho_{2}(n)} \left[\frac{\phi_{1}^{2}(x)}{\phi_{1}^{2}(x+1)} f(x+1) - f(x) \right]; & 0 \le x \le n \\ f(x) & ; & x \notin [0,n] \end{cases}$$

Without loss of generality we can assume that $\varphi_1(0) = 0$ and $\varphi_2(0) = 0$ since $\overline{\varphi}_1(x) := \varphi_1(x) - \varphi_1(0)$ implies $\overline{\varphi}_1(0) = 0$ whenever $\varphi_1(0) \neq 0$. It is obvious that A_n 's are linear. Furthermore, since for all $\mathbf{x} \in [0, n], \rho_2(\mathbf{x}) \le \rho_2(\mathbf{n})$ and therefore $1 - \frac{\rho_2(\mathbf{x})}{2\rho_2(\mathbf{n})} \ge 1 - \frac{1}{2} > 0$, we obtain $A_n(f,\mathbf{x}) = f(\mathbf{x}) + \frac{\rho_2(\mathbf{x})}{2\rho_2(\mathbf{n})} \left[\frac{\varphi_1^2(\mathbf{x})}{\varphi_1^2(\mathbf{x}+1)} f(\mathbf{x}+1) - f(\mathbf{x}) \right]$ $= f(\mathbf{x}) \left[1 - \frac{\rho_2(\mathbf{x})}{2\rho_2(\mathbf{n})} \right] + \frac{\rho_2(\mathbf{x})}{2\rho_2(\mathbf{n})} \frac{\varphi_1^2(\mathbf{x})}{\varphi_1^2(\mathbf{x}+1)} f(\mathbf{x}+1) - f(\mathbf{x}) \ge 0$

for all $x \in [0, n]$ and for $f \ge 0$. That means A_n 's are positive. Since φ_1 monotonic, by using the fact $\varphi_1^2(x) \le \varphi_1^2(x+1)$, we get the following inequality

$$A_{n}(\rho_{1}, x) = \rho_{1}(x) + \frac{\rho_{2}(x)}{2\rho_{2}(n)} \left[\frac{\phi_{1}^{2}(x)}{\phi_{1}^{2}(x+1)} \left(1 + \phi_{1}^{2}(x+1) \right) - \left(1 + \phi_{1}^{2}(x) \right) \right]$$

 $\leq \rho_{1}(x) \leq M\rho_{2}(x).$

By Property 1 above, we have $A_n(\rho_1, x) \in B_{\rho_n}$. Thus

 $A_{\underline{n}} : \, C_{\rho_1} \, \rightarrow \, B_{\rho_2}$

is positive linear operator. Next we will show that this sequence of operators satisfy three conditions in (4). Since for $x \in [0, n]$

$$A_{n}(1, x) = 1 + \frac{\rho_{2}(x)}{2\rho_{2}(n)} \left[\frac{\phi_{1}^{2}(x)}{\phi_{1}^{2}(x+1)} - 1 \right]$$

we have

$$\frac{|A_n(1, x) - 1|}{\rho_2(x)} = \frac{1}{2\rho_2(n)} \left| \frac{\phi_1^2(x)}{\phi_1^2(x+1)} - 1 \right| < \frac{1}{2\rho_2(n)}$$

That means

$$\lim_{n\to\infty} \|A_n(1, x) - 1\|_{\rho_2} = 0 .$$

Also, since

$$\frac{|A_n(\phi_1, x) - \phi_1(x)|}{\rho_2(x)} = \frac{1}{2\rho_2(n)} |\phi_1(x)| \cdot |\frac{\phi_1(x)}{\phi_1(x+1)} - 1|$$

and by the monotonicity of φ_1 , $\left|\frac{\varphi_1(x)}{\varphi_1(x+1)} - 1\right| < 1$ we obtain

$$\|A_{n}(\phi_{1}, x) - \phi_{1}(x)\|_{\rho_{2}} \leq \sup_{x \in [0,n]} \frac{1}{2\rho_{2}(n)} |\phi_{1}(x)| \leq \frac{\phi_{1}(n)}{2\rho_{2}(n)}$$

and therefore

$$\lim_{n\to\infty} \|A_n(\phi_1, x) - \phi_1(x)\|_{\rho_2} = 0.$$

Finally,

$$A_{n}(\phi_{1}^{2}, x) - \phi_{1}^{2}(x) = \frac{\rho_{2}(x)}{2\rho_{2}(n)} \left[\frac{\phi_{1}^{2}(x)}{\phi_{1}^{2}(x+1)} \phi_{1}^{2}(x+1) - \phi_{1}^{2}(x) \right] = 0.$$

Therefore all conditions of theorem are satisfied.

Now let g(x) be a function defined on the interval [-1,1] given as follows

$$g(x) := \begin{cases} 2(1 + x) ; & -1 \le x \le 0\\ 2(1 - x) ; & 0 < x \le 1, \end{cases}$$

and let us extend g(x) to a function h(x) on \mathbb{R} with period 2.

If f^* is defined by

 $f^*(\mathbf{x}) := \phi_1^2(\mathbf{x}) \cdot \mathbf{h}(\mathbf{x})$

for all $x \in \mathbb{R}$, then we can obtain the following equality

$$\begin{aligned} A_{n}(f^{*}, x) &= f^{*}(x) + \frac{\rho_{2}(x)}{2\rho_{2}(n)} \left[\frac{\phi_{1}^{2}(x)}{\phi_{1}^{2}(x+1)} f^{*}(x+1) - f^{*}(x) \right] \\ &= f^{*}(x) + \frac{\rho_{2}(x)}{2\rho_{2}(n)} \left[\frac{\phi_{1}^{2}(x)}{\phi_{1}^{2}(x+1)} \phi_{1}^{2}(x+1) h(x+1) - \phi_{1}^{2}(x) h(x) \right] \end{aligned}$$

$$= f^{*}(x) + \frac{\rho_{2}(x)}{2\rho_{2}(n)} \phi_{1}^{2}(x) [h(x+1) - h(x)]$$

for all $x \in [0, n]$ and $n \in \mathbb{N}$. Then

$$\sup_{\mathbf{x}\in[0,n]} \frac{|A_n(f^*,\mathbf{x}) - f^*(\mathbf{x})|}{\rho_2(\mathbf{x})} \ge \frac{\phi_1^2(\mathbf{n})}{2\rho_2(\mathbf{n})} |\mathbf{h}(\mathbf{n}+1) - \mathbf{h}(\mathbf{n})|$$
$$= \frac{\phi_1^2(\mathbf{n})}{2\rho_2(\mathbf{n})} 2 = \frac{\phi_1^2(\mathbf{n})}{1 + \phi_2^2(\mathbf{n})}.$$

Since
$$\lim_{n\to\infty} \frac{1}{1+\varphi_2^2(n)} = 0$$
 and $\lim_{n\to\infty} \frac{1+\varphi_1^2(n)}{1+\varphi_2^2(n)} = a$, it follows
$$\lim_{n\to\infty} \sup_{n\to\infty} ||A_n(f^*, \mathbf{x}) - f^*(\mathbf{x})||_{\rho_2} \ge \lim_{n\to\infty} \frac{1+\varphi_1^2(n)}{1+\varphi_2^2(n)} = a \neq 0.$$

This completes the proof.

This theorem shows that there exists no theorem of Korovkin type for the class of positive linear operators from C_{ρ_1} to B_{ρ_2} . Note that more general statement can be proved for a class of positive linear operators acting from C_{ρ_1} to C_{ρ_2} . We have

Theorem 2. Let ρ_1 and ρ_2 be as in the Theorem 1. Then there exists a sequence $A_n: C_{\rho_1} \to C_{\rho_2}$ of positive linear operators such that $\lim_{n \to \infty} ||A_n(\phi_1^{\nu}, x) - \phi_1^{\nu}(x)||_{\rho_2} = 0 , \quad \nu = 0, 1, 2,$

Moreover there exists a function $f^* \in C_{\rho_1}$ such that

 $\limsup_{n \to \infty} \|A_n(f^*, x) - f^*(x)\|_{\rho_2} \neq 0.$

The positive statements of Korovkin-type theorems for linear positive operators $A: C_{\rho_1} \to B_{\rho_2}$ may be proved as in [2] and [3], in some subspace of C_{ρ_2} . Such a type theorem will be given in our another paper.

ACKNOWLEDGEMENT. The author would like to thank Prof. A.D. Gadjiev for several helpful discussions and comments.

REFERENCES

- BASKAKOV, V.A., On a sequence of linear positive operators. In "Research in modern constructive functions theory", Moscow (1961).
- [2] GADJIEV, A.D., The convergence problem for a sequence of positive linear operators on unbounded sets and theorems analogous to that of P.P. Korovkin. English translated Sov. Math. Dokl. Vol 15, No 5 (1974).
- [3] GADJIEV, A.D., On P.P. Korovkin type theorems. Mathem. Zametki, Vol 20, No 5 (1976) (in Russian).
- [4] HACISALİHOĞLU, H., HACIYEV, A., Lineer Pozitif Operatör Dizilerinin Yakınsaklığı, Ankara (1995).

- [5] HERMANN, T., Approximation of unbounded functions on unbounded interval. Acta Math. Acad. Sci. Hungaria, 29(3-4) (1977).
- [6] HSU, L.C., Approximation of non-bounded continuous functions by certain sequences of linear positive operators or polynomials. Studia Math., XXI (1961).
- [7] KOROVKIN, P.P., Linear Operators and Approximation Theory. Delhi (1960).