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ABSTRACT

In this paper we define the greatest common divisor matrix (or GCD), the geometric
mean matrix (or GMM) and -the arithmetic mean matrix (or AMM) on the set E = {1, 2 3,
.., n} and we obtain the bounds for the Perron root of these matrices.

INTRODUCTION AND MAIN RESULTS

Definition 1. Let S = {x;» X o, X} be a finite ordered set of
distinct positive integers. The greatest common divisor matrix (GDC)
defined on S is given by

(%) (%) o (3)
(%) (x%y) e ()
(xn’xl) (Xn’x2) o (xu’xn)

and is denoted by [S]gcd. In order words, for S = {x, x,, .., X}
Sl = ()

Do’ where Sij = (X, xj) = ged (x,, xj).

Definition 2. S = {x, x,, .., x,} be a finite ordered set of distinct
positive integers. The geometric mean matrix (GMM) defined on S is

given by
VX X VX, - VX X
T "
VX X VX X, : v/ ; 3

and is denoted by [S]gmm. In other words, for S = {x, X,, .., X},
[S]gmm = (gij)nxn’ where gij = Xin :
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Definition 3. Let S = {x, x,, .., X } be a finite ordered set of
distinct positive integers. The arithmetic mean matrix (AMM) defined on
S is given by ‘

N tExOKRtx X, + X
2 2 2
X, + X, X, + X, X, + X
2 2 2
X + X X + X X + X
1 2 ----- 1 a
L 2 2 2 4
and is denoted by [S]amm.xln+0;her words, for S = {x,, X), .., X},
= — i i
[S]amm - (aij)nxn »  Where axj - 2

Theorem 1 [1]. Let A, B € Mn. If 0 £ A < B, then
p(A) < p(B),

where p(.) denotes spectral radius i.e.,
p(A) = max {|A(A)[}.

Definition 4. A real n-square matrix A = (aij) is called nonnegative,
if a, 20 forij=1,2, ., n We write A 2 0.

Definition 5. Let A be a square nonnegative matrix. Then a
nonnegative eigenvalue r(A) which is not less than the absolute value of
any other eigenvalue of A is called Perron root.

Theorem 2. If [S]gc " [S]gmm and [8] __ denote GCD, GMM and
AMM matrices on S = {X,, X,, .., X }, respectively, then

1([S],,y) < 1181, < «(IS],,,.)-
Proof. In the following inequality is always true:

4 X,
(x., x‘) < ¥xx, < 5T
it % i

0y

the equality hold if and only if x, = X;. So from the inequality (1) we
have

[l < [S] o < 18]
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Thus considering Theorem 1, it follows that the proof of theorem,is complete

Theorem 3. If A is an nxn symmetric matrix, then
E
rA) 2 TAc , ¢))
ee
where r(A) denotes Perron root of A and ef=q,1, .., D.

Proof. We recall first the classical lower Frobenius bound of the
Perron root an nxn nonnegative matrix A (see, e.g., [2]),

1(A) 2 min P, , ©)

where P

PA) = 2 a, is the i-th row sum of A. Obviously when A is
symmetric [since the" Raylelgh quotient is a lower bound for r(A)] the
bound (3) can be improved as follows:
(A) 2 Eﬁ = z P,
ce =
Thus the proof is complete.

Remark. Unfortunately, for unsymmetric matrix A, the bound (2) can
be wrong. Indeed, for

A=[2 2},a>0

a 2
we have
T
E A —6+a
eTe 2

On the other hand since r(A) = 2 + Y2a, the lower bound (2) is valid if
and only if

2+Y2a >6+a

ie., if a = 2 or, in other words, if A is symmetric.

Theorem 4. Let [E],~ be arithmetic mean matrix (AMM) on
E = {1, 23, .., n}. Then

T
E[E]me _ n(n + 1)
CTC 2
where ¢ = (1, 1, ..., D.



168 D. TASCI

Proof. It is easily seen that €' e = n. On the other hand considering

u nn + 1
Exi= (2 )
i=l
we have
cT[E] c—Enxi+xJ—2nxi+2nxj
mmeom 2 i,j:l 2 {F2
nxn n
=3 A1+ I3
1—12 Fl 1—1
o'+ 1)
2

Consequently since e’ e = n, we write

T
€ [E]me _n@m+ 1)
ee 2
Thus the proof is complete.

Lemma 1. Let [E]gmm be geometric mean matrix (GMM) on
= {1, 2, 3, .., n}. Then

@ dCt([E]gmm) =0
(ii) rank([E]gmm) = 1.

Proof. If I, I, o I denote the rows of the matrix [E]gmm, then we
have

= ‘VE I k=23,.,n “

So by the properties of the determinants it follows that (i). on the other
hand by the elemantary row operations it follows that (ii).

Thus lemma is proved.

Theorem 5. Let [E]gmm be geometric mean matrix (GMM) on
E = {1, 2, 3, .., n}. Then

r([E ):M

where r(.) denotes Perron root.
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Proof. If o is the sum of all principal minors of order s of [E]gmm,
1 £ s £ n, then we have

_ 31 n-1 -2

det(AI - [E]gmm) = A" - a A+ a A+ L+ (D

In particular, we note that
_w. _nm+ 1 _
o, = }_: X, = BT and o = det([E]gnm)
1=,

So by Lemma 1. (i) we have o = 0. On the other hand by the
Lemma 1. (i) we write

Thus we obtain

2" . 0@ + 1 }»‘1‘1 =0

2

or

A (x ] E_(_fl_t_ll) = 0.

2
Therefore the cigenvalues of the matrix [E],  are A =A==}, =
0 and
_ _nn+ 1)

A, =1(A) = -

Thus the theorem is proved.

Theorem 6. Let S = {xl, Xy ees xn} be an factor-closed set, and let

[S]gc 4 be the GCD matrix defined on S. Then

det([S]gcd) = ¢(x) PX,) ... OX),
where @(.) denotes Euler’s totient function.

Corollary 1. If [E]gc

" is the GCD matrix defined on E = {1, 2, 3,

..., N}, then

det([E] ) = ¢(1) 92 ... 9(n),

Proof. Since the set E = {1, 2, 3, ..., n} is factor-closed, the proof
is immediately seen by Theorem 6.
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Theorem 7. If [E]gcd is the GCD matrix defined on E = {1, 2, 3,
..., n} then

a 1n
() 2 |[T90)
i=1
where 1(.) denotes Perron root and ¢(.) denotes Euler’s totient function.

Proof. If ki i=1,2, ., n) are cigenvalues of the matrix [E]
then we have

de () = 1T, = (o) = ()
On the other hand by the Corollary 1., we write
o) ¢2) ..o(n) < r[E] god)“

ged?

or
i/

{[}I w(i)] < r((H,,)

Thus the proof is complete.

NUMERICAL EXAMPLES

Example 1. Consider the set E = {1, 2, 3}. Then we write

(B s =

DN -
DA D W
TINY PN

and we find
r((E,_)=3+ % V42 = 624.

w = 6, we obtain 624 > 6.

y

Indeed, since

Simnilarly forn =4 f(El__) = 1047 2 10

forn=35 r([E],_) = 1579 2 15

etc.
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Example 2. For E = {1, 2, 3}, since

1 Y2 13
Hew=|2 2 16
3 Y6 3

we obtain r([E],_) = 6.

Similarly for n = 4 r([E]gmm) 10

)

forn=35 r{[E] 15

gmm

etc.
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