Commun. Fac. Sci. Univ. Ank. Series A1 V. 47. pp. 151-156 (1998)

ON APPLICATION OF THE YANO-AKO OPERATOR IN THE THEORY OF LIFTS

A. MAĞDEN

Department of Mathematics, Sciences and Arts Faculty, Atatürk University, Erzurum, TURKEY

(Received May 18, 1998; Revised Sep. 28, 1998; Accepted Nov. 5, 1998)

ABSTRACT

In this paper, it was obtained, by using the Yano-Ako operator, the complete lift of the tensor structure $S \in T_2^l(M)$ along the pure cross-section of $T_q^l(M)$ as: $C_{jk}^i = S_{jk}^i$, $C_{jk}^i = C_{jk}^i = 0$, $C_{jk}^i = -\Phi_{ij}^{S} t_{1-iq}^{ij}$, $C_{mi}^j = S_{mi}^{ij} \delta_{j1}^{l1} \dots \delta_{jq}^{lq}$, $C_{jk}^{S_{jk}} = 0$ and $C_{jm}^{S_{jk}} = S_{im}^{ij} \delta_{j1}^{l1} \dots \delta_{jq}^{lq}$, where Φ^S is Yano-Ako operator.

1. INTRODUCTION

Let $S \in \mathcal{T}_{2}^{1}M_{n}$ be tensor structure on the differentiable manifold M_{n} of class C^{∞} . Tensor field $t \in \mathcal{T}_{q}^{1}M_{n}$ is called pure tensor field [1] with respect to the S-structure if it satisfies.

$$S_{j_{1}j_{1}m_{j_{2}\cdots j_{q}}}^{m}t_{j_{1}\cdots j_{q}}^{i_{1}} = \dots = S_{j_{q}j_{1}\cdots j_{q-1}m}^{m} = S_{mj}^{i_{1}}t_{j_{1}\cdots j_{q}}^{m} = t_{j_{1}j_{2}\cdots j_{q}}^{*i_{1}},$$

$$S_{ij_{1}}^{m}t_{m_{2}\cdots j_{q}}^{i_{1}} = \dots = S_{ij_{q}}^{m}t_{j_{1}\cdots j_{q-1}m}^{i_{1}} = S_{im}^{i_{1}}t_{j_{1}\cdots j_{q}}^{m} = t_{j_{1}j_{2}\cdots j_{q}}^{*i_{1}}$$
(1)

Now, let us consider the tensor bundle $T_q^1(M_n) = \bigcup_{\substack{Q \in M_n \\ Q \in M_n}} T_q^1(Q)$ of type (1, q). Let $t_q^1(M_n) = \bigcup_{\substack{Q \in M_n \\ Q \in M_n}} t_q^1(Q)$ be the subbundle of pure tensor field with respect to the S-structure, where $t_q^1(Q)$ is subspace of the pure tensors of type (1, q) at the point $Q \in M_n$ [2]. The components of the complete lift ^cS are given by

$${}^{c}S_{k_{1}k_{2}}^{j} = S_{k_{1}k_{2}}^{j}, {}^{c}S_{k_{1}k_{2}}^{\bar{j}} = \left(\partial_{m}S_{k_{1}k_{2}}^{j_{1}}\right)_{j_{1}\dots j_{q}}^{m} - \sum_{a=1}^{q} \left(\partial_{j_{a}}S_{k_{1}k_{2}}^{m}\right)_{j_{1}\dots m\dots j_{q}}^{j_{1}},$$
(2)
$${}^{c}S_{kl}^{\bar{j}} = S_{\ell_{1}\ell_{2}}^{i_{1}}\delta_{j_{1}}^{k_{1}}\delta_{j_{2}}^{k_{2}}\dots\delta_{j_{q}}^{k_{q}}, {}^{c}S_{k\bar{\ell}}^{\bar{j}} = S_{km_{1}}^{i_{1}}\delta_{j_{1}}^{\ell_{1}}\delta_{j_{2}}^{\ell_{2}}\dots\delta_{j_{q}}^{\ell_{q}}$$

all the other being zero, with respect to the natural frame $\{\partial_i, \partial_i\}$, where $x^{\overline{k}} = t_{k_1...k_q}^{\ell_1}$, $x^{\overline{\ell}} = t_{\ell_1...\ell_q}^{m_1}$ [2]. Yano-Ako operator which is defined by S-structure

was applied to the pure tensor field $t \in T_q^1(M_n)$ of type (1, q) and was obtained tensor field of type (1, q +2):

$$(\Phi^{s}t) (X, Y, X_{1}, X_{2}, ..., X_{q}) = (-L_{t(X_{1}, ..., X_{q})} S) (X, Y)$$
(3)
+ t ((L_{X1}S) (X,Y), X₂, ..., X_q)
+ ... + t(X₁, X₂, ..., (L_{Xq}S) (X,Y)),

 $\forall X_1, X_2, ..., X_q, X, Y \in T^1_0(M_n)$ or on the natural frame $\{\partial_i\}$ of coordinate neighborhood $U \subset M_n$ was obtained [1]:

$$\Phi_{kj}^{S} t_{i_{1}...i_{q}}^{h} = S_{kj}^{a} \partial_{a} t_{i_{1}...i_{q}}^{h} - t_{i_{1}...i_{q}}^{a} \partial_{a} S_{kj}^{h} - S_{kj}^{h} \partial_{k} t_{i_{1}...i_{q}}^{a}$$

$$- S_{ka}^{h} \partial_{j} t_{i_{1}...i_{q}}^{a} + \sum_{\lambda=1}^{q} t_{i_{1}...a..i_{q}}^{h} \partial_{i_{\lambda}} S_{kj}^{a}$$
(4)

2. A FORMULA CONCERNING WITH THE YANO-AKO OPERATOR

Theorem 2.1. Let
$$\Phi_{ij}^{S} t_{j_1 \cdots j_q}^{i_1}$$
 be the Yano-Ako operator. Then
 $\upsilon^i \omega^j \Phi_{ij}^{S} t_{j_1 \cdots j_q}^{i_1} = L_{S(V,W)} t_{j_1 \cdots j_q}^{i_1} - \upsilon^m S_{ml}^{i_1} L_W t_{j_1 \cdots j_q}^{\ell} - \omega^j S_{mj}^{i_1} L_V t_{j_1 \cdots j_q}^{m}$ (5)

for $\forall V = v^i \partial_i$, $W = \omega^j \partial_j$, where L_V is the Lie derivative with respect to the vector field V.

Proof. If we consider equation (1), operation (4) is written as

$$\Phi_{ij}^{S} t_{j_{1} \dots j_{q}}^{i_{1}} = S_{ij}^{m} \partial_{m} t_{j_{1} \dots j_{q}}^{i_{1}} - \partial_{i} t_{j_{1} j_{2} \dots j_{q}}^{*^{i_{1}}} - \partial_{j} t_{i_{j_{1} j_{2} \dots j_{q}}}^{*^{i_{1}}} + \sum_{a=1}^{q} \left(\partial_{ja} S_{ij}^{m} \right) t_{i_{1} \dots m \dots i_{q}}^{i_{1}} + \left(\partial_{i} S_{mj}^{i_{1}} + \partial_{j} S_{im}^{i_{1}} - \partial_{m} S_{ij}^{i_{1}} \right) t_{i_{1} \dots i_{q}}^{m}$$
(6)

Then, (6) can be rewritten as

$$\upsilon^{i} \left(\Phi_{ij}^{S} t_{j_{1} \dots j_{q}}^{i_{1}} \right) = \upsilon^{i} S_{ij}^{m} \partial_{m} t_{j_{1} \dots j_{q}}^{i_{1}} - \partial_{j} \left(\upsilon^{i} t_{ij_{1}j_{2} \dots j_{q}}^{i_{1}} \right)$$

$$+ \sum_{a=1}^{q} \partial_{ja} \left(\upsilon^{i} S_{ij}^{m} \right) t_{j_{1} \dots m \dots j_{q}}^{i_{1}} + \left[\partial_{j} \left(\upsilon^{i} S_{im}^{i_{1}} \right) - \partial_{m} \left(\upsilon^{i} S_{ij}^{i_{1}} \right) \right] t_{j_{1} \dots j_{q}}^{m}$$

$$+ \left(\partial_{j} \upsilon^{i} \right) t_{ij_{1} \dots j_{q}}^{i_{1}} - \sum_{a=1}^{q} \left(\partial_{ja} \upsilon^{i} \right) S_{ij}^{m} t_{j_{1} \dots m \dots j_{q}}^{i_{1}} - \left(\partial_{j} \upsilon^{i} \right) S_{im}^{i_{1}} t_{j_{1} \dots j_{q}}^{i_{1}}$$

$$+ \left(\partial_{m} \upsilon^{i} \right) S_{ij}^{i_{1}} t_{j_{1} \dots j_{q}}^{m} + \upsilon^{i} \left(\partial^{i} S_{mj}^{i_{1}} \right) t_{j_{1} \dots j_{q}}^{m} - \upsilon^{i} \partial_{i} t_{j_{1}j_{2} \dots j_{q}}^{i_{1}}$$

$$(7)$$

$$= \Phi_{j}^{S(V)} t_{j_{1}...j_{q}}^{i} - \left(\upsilon_{i}^{i} \partial_{i}^{i*^{j_{1}}} + \sum_{a=1}^{q} \left(\partial_{ja} \upsilon_{j}^{m} \right)_{j_{1},j_{2}...m.,j_{q}}^{*^{j_{1}}} \right)$$

+ $\left(\partial_{m} \upsilon_{j}^{i} \right)_{j_{j},j_{j_{1}...j_{q}}}^{i_{1}} + \upsilon_{i}^{i} \left(\partial_{i} S_{mj}^{i_{1}} \right)_{j_{1}...j_{q}}^{m} ,$

where \hat{j} shows dismiss of j in the above sum. To the Lie derivative, we write

$$\mathbf{L}_{\mathbf{V}}\mathbf{S}_{\mathbf{m}\mathbf{j}}^{i_{1}} = \upsilon^{i}\partial_{i}\mathbf{S}_{\mathbf{m}\mathbf{j}}^{i_{1}} + (\partial_{\mathbf{m}}\upsilon^{i})\mathbf{S}_{i\mathbf{j}}^{i_{1}} + (\partial_{j}\upsilon^{i})\mathbf{S}_{\mathbf{m}\mathbf{i}}^{i_{1}} - (\partial_{\mathbf{m}}\upsilon^{i_{1}})\mathbf{S}_{\mathbf{m}\mathbf{j}}^{i_{1}}$$

or

$$\left(\partial_{m}\upsilon^{i}\right)S_{ij}^{i_{1}} + \upsilon^{i}\partial_{i}S_{mj}^{i_{1}} = L_{\nu}S_{mj}^{i_{1}} - \left(\partial_{j}\upsilon^{i}\right)S_{mi}^{i_{1}} + \left(\partial_{m}\upsilon^{i}\right)S_{mj}^{i}.$$
(8)

From equations (7) and (8), we find

$$\upsilon^{i} \Phi_{ij}^{s} t_{j_{1} \dots j_{q}}^{i_{1}} = \Phi_{j}^{s(v)} t_{j_{1} \dots j_{q}}^{i_{1}} - \left(\upsilon^{i} t_{j_{1} j j_{2} \dots j_{q}}^{i^{s_{1}}i_{1}} + \sum_{a=1}^{q} \left(\partial_{j_{a}} \upsilon^{m} \right) t_{j_{1} j j_{2} \dots j_{q}}^{i^{s_{1}}} \right)
+ \left(\partial_{j} \upsilon^{i} \right) t_{j_{1} i j_{2} \dots j_{q}}^{i^{s_{1}}} - \left(\partial_{i} \upsilon^{i_{1}} \right) t_{j_{1} j j_{2} \dots j_{q}}^{i_{q}} \right) + \left(L_{v} S_{mj}^{i_{1}} \right) t_{i_{1} \dots i_{q}}^{m}
= \Phi_{j}^{s(v)} t_{j_{1} \dots j_{q}}^{i_{1}} - L_{v} t_{j_{1} j j_{2} \dots j_{q}}^{s^{i_{1}}} + \left(L_{v} S_{mj}^{i_{1}} \right) t_{i_{1} \dots i_{q}}^{m}
= \Phi_{j}^{s(v)} t_{j_{1} \dots j_{q}}^{i_{1}} - S_{mj}^{i_{1}} L_{v} t_{j_{1} \dots j_{q}}^{m}$$
(9)

where $\Phi^{S(V)}$ is Tachibana operator which is defined for affinor S(V) [3]. Similarly, the operation of contraction is written for the Tachibana operator, as

$$\omega^{i} \Phi_{j}^{S(V)} t_{j_{1} \dots j_{q}}^{i_{1}} = L_{S(V,W)} t_{j_{1} \dots j_{q}}^{i_{1}} - (S(V))_{m}^{i_{1}} L_{V} t_{j_{1} \dots j_{q}}^{m} .$$
(10)

From (9) and (10), we find

$$\upsilon^{i} \omega^{j} \Phi^{S}_{ij} t^{i}_{j_{1} \dots j_{q}} = L_{S(V,W)} t^{i}_{j_{1} \dots j_{q}} - S^{i}_{ml} \omega^{m} L_{W} t^{\ell}_{j_{1} \dots j_{q}} - \omega^{j} S^{i}_{mj} L_{V} t^{m}_{j_{1} \dots j_{q}}$$
(11)

3. LIFT ON THE CROSS-SECTION

Let us consider the tensor bundle of T_q^1 (M_n) with a natural projection $\pi: T_q^1$ (M_n) \to M_n. If a differentiable mapping $\sigma: M \to T_q^1$ (M_n) satisfies $\pi \sigma \sigma = id_{M_n}$, then σ is called a cross-section of $T_q^{l_n}$ (M_n), where id_{M_n} is the identity mapping on M_n. It is obvious that the cross-section on M_n defines a tensor field $t_{j_1...j_q}^{i_1}$ of type (1, q). Since the rank of the differential of the mapping σ is n and σ is injective, the cross-section of

A. MAĞDEN

 $T_q^i(M_n)$ is submanifold of $T(M_n)$ with respect to induced topology, which is diffeomorphic to M_n . We will investigate the complete lift of a tensor S_{ik}^i along a pure submanifold defined by the cross-section.

The complete lift of a vector field $V = (v^i) \in T_0^l(M_n)$ to the tensor bundle $T_q^l(M_n)$ with respect to the coordinate neighborhood $\pi^{-1}(U) \subset T_q^l(M_n)$ was obtained in [4] as

$$^{c}V = \left({^{c}V}^{i}, {^{c}V}^{j} \right) = \left(v^{i}, L_{V}\alpha \right), \qquad (12)$$

 $\alpha \in T_1^q$ (U); i = 1, ..., n; $\overline{i} = n + 1, ..., n + n^{1+q}$ where α can be considered as a differentiable function on the space T_q^1 (M_n) in the usual way by contraction $\alpha = \alpha(t)$. Particularly, if we get $\alpha = -t_{j_1...j_q}^{i_1}$, then the complete lift of V to T_q^1 (M_n) in the coordinate neighborhood $\pi^{-1}(U)$ with respect to the natural frame $\{\partial_i, \partial_{\overline{i}}\}, x^{\overline{i}} = t_{j_1...j_q}^{i_1}$, is given by

$$^{c}\mathbf{V} = \left({}^{c}\mathbf{V}^{j}, {}^{c}\mathbf{V}^{j} \right) = \left(\boldsymbol{\upsilon}^{i}, t_{(j)}^{m} \partial_{m} \boldsymbol{\upsilon}^{i_{1}} - \sum_{\substack{n=1\\n=1}}^{q} t_{j_{1}\dots m, j_{q}}^{i_{1}} \partial_{j_{1}} \boldsymbol{\upsilon}^{m} \right).$$
(13)

Let us consider the cross-section of T_q^{i} (M_n) defined by the tensor field $t_{i_1\dots i_n}^{i_1}(x^i)$. This cross-section equation is written as

$$\vec{x}^{J} = \vec{x}^{J} (x^{j})$$
, $J = 1, ..., n + n^{1+2}$

or

$$\vec{x}^{j} = x^{j}$$

$$\vec{x}^{j} = t^{i_{1}}_{j_{1} \dots j_{q}}(x^{j}).$$

It is obvious that the system

$$\mathbf{B}_{i} = \left\{ \partial_{i} \overline{\mathbf{x}}^{\mathbf{A}} \right\} = \left\{ \mathbf{B}_{i}^{h} \mathbf{B}_{i}^{\overline{h}} \right\} = \left\{ \delta_{i}^{h} \partial_{i} t_{j_{1} \dots j_{q}}^{i_{1}} \right\} = \left\{ \delta_{i}^{h} \partial_{h} t_{j_{1} \dots j_{q}}^{i_{1}} \right\} = \left\{ \partial_{i} \overline{\mathbf{x}}^{\mathbf{A}} \right\} = \left\{ \mathbf{C}_{\overline{i}}^{h} \mathbf{C}_{\overline{i}}^{\overline{h}} \right\} = \left\{ 0, \ \delta_{j_{1}}^{l_{1}} \dots \delta_{j_{q}}^{l_{q}} \delta_{h_{1}}^{l_{1}} \right\} = \left\{ \delta_{j_{1}}^{l_{1}} \overline{\mathbf{x}}^{l_{q}} \right\} = \left\{ \partial_{i} \overline{\mathbf{x}}^{\mathbf{A}} \right\} = \left\{ O_{i} \left\{ \delta_{j_{1}}^{l_{1}} \dots \delta_{j_{q}}^{l_{q}} \delta_{h_{1}}^{l_{1}} \right\} = \left\{ \delta_{j_{1}}^{l_{1}} \overline{\mathbf{x}}^{l_{q}} \right\} = \left\{ \delta_{j_{1}}^{h_{1}} \overline{\mathbf{x}}^{l_{q}} \right\} = \left\{ O_{i} \left\{ \delta_{j_{1}}^{l_{1}} \dots \delta_{j_{q}}^{l_{q}} \right\} = \left\{ \delta_{j_{1}}^{l_{1}} \overline{\mathbf{x}}^{l_{q}} \right\} = \left\{ O_{i} \left\{ \delta_{j_{1}}^{l_{1}} \dots \delta_{j_{q}}^{l_{q}} \right\} = \left\{ \delta_{j_{1}}^{l_{1}} \overline{\mathbf{x}}^{l_{q}} \right\} = \left\{ \delta_{j_{1}}^{h_{1}} \overline{\mathbf{x}}^{l_{q}} \right\} = \left\{ O_{i} \left\{ \delta_{j_{1}}^{l_{1}} \dots \delta_{j_{q}}^{l_{q}} \right\} = \left\{ \delta_{j_{1}}^{l_{1}} \overline{\mathbf{x}}^{l_{q}} \right\} = \left\{ O_{i} \left\{ \delta_{j_{1}}^{l_{1}} \dots \delta_{j_{q}}^{l_{q}} \right\} = \left\{ \delta_{j_{1}}^{l_{1}} \overline{\mathbf{x}}^{l_{q}} \right\} = \left\{ \delta_{j_{1}}^{l_{1}} \overline{\mathbf{x}}^{l_{q}} \right\} = \left\{ O_{i} \left\{ \delta_{j_{1}}^{l_{1}} \dots \delta_{j_{q}}^{l_{q}} \right\} = \left\{ \delta_{j_{1}}^{l_{1}} \overline{\mathbf{x}}^{l_{q}} \right\} = \left\{ \delta_{j_{1}}^{l_{1}} \overline{\mathbf{x}}^{l_{1}} \right\} = \left\{ \delta$$

defines a frame along the cross-section. B_i and C_i, i = 1, ..., n; $\overline{i} = n + 1$, ..., $n + n^{1+q}$, span the tangent plane of $T_q^i(M_n)$ and they are tangent to the cross-section and the fibre, respectively.

Using (13) and
$${}^{c}V^{A} = \widetilde{V}^{i}B_{i}^{A} + \widetilde{V}^{i}C_{\overline{i}}^{A}$$
, we have

$$\begin{array}{l} \upsilon^{i}\partial_{i}x^{\overline{h}} + \left(t^{m}_{(j)}\partial_{m}\upsilon^{i_{1}} - \sum_{\mu=1}^{q}t^{i_{1}}_{j_{1}\dots\dots,j_{q}}\partial_{j\mu}\upsilon^{m}\right)\partial_{i}x^{h} = \widetilde{V}^{i}B^{\overline{h}}_{i} + \widetilde{V}^{\overline{j}}C^{\overline{h}}_{\overline{i}} \\ \upsilon^{i}\partial_{i}x^{h} + \left(t^{m}_{(j)}\partial_{m}\upsilon^{i_{1}} - \sum_{\mu=1}^{q}t^{i_{1}}_{j_{1}\dots,m,j_{q}}\partial_{j\mu}\upsilon^{m}\right)\partial_{i}x^{h} = \widetilde{V}^{i}B^{h}_{i} + \widetilde{V}^{\overline{j}}C^{h}_{\overline{i}} .$$

Therefore, we obtain

$$\widetilde{V}^{i} = \upsilon^{i}$$

$$\widetilde{V}^{j} = - L_{v} t^{i}_{j_{1} \cdots j_{q}}$$

,

that is the complete lift ^{c}V of V with respect to the frame (B, C) along the cross-section is written as

$$^{\mathbf{c}}\mathbf{V} = \left({}^{\mathbf{c}}\mathbf{V}^{j}, {}^{\mathbf{c}}\mathbf{V}^{\bar{j}} \right) = \left(\boldsymbol{\upsilon}^{j}, -\mathbf{L}_{\mathbf{V}}\mathbf{t}^{i_{1}}_{\mathbf{j_{1}\cdots j_{q}}} \right).$$
(14)

We define the complete lift cS of a tensor $S\in \mathfrak{T}^l_q(M_n)$ along the pure cross-section of $T^l_q(M_n)$ by

$${}^{c}(S(V, W)) = {}^{c}S({}^{c}V, {}^{c}W).$$
 (15)

The equality (15) can be written as

$$\operatorname{c}(\mathrm{S}(\mathrm{V}, \mathrm{W}))^{\mathrm{I}} = \operatorname{c}\operatorname{S}_{\mathrm{JK}}^{\mathrm{I}} \operatorname{c}\operatorname{V}^{\mathrm{I}} \operatorname{c}\operatorname{W}^{\mathrm{K}}$$
(16)

by using coordinates. If we take I = i in (16), we have

$$\begin{split} S^{i}_{jk}\upsilon^{j}\omega^{k} &= \left(S(V,W)\right)^{i} = {}^{c}S^{I}_{JK}{}^{c}V^{J}{}^{c}W^{K} = {}^{c}S^{i}_{jk}{}^{c}V^{j}{}^{c}W^{k} + {}^{c}S^{i}_{jk}{}^{c}V^{j}{}^{c}W^{k} \\ &+ {}^{c}S^{i}_{jk}{}^{c}V^{j}{}^{c}W^{\overline{k}} + {}^{c}S^{i}_{jk}{}^{c}V^{\overline{j}}{}^{c}W^{\overline{k}} \end{split}$$

Then, we obtain

$${}^{c}S_{jk}^{i} = S_{jk}^{i}, \ {}^{c}S_{\bar{j}\bar{k}}^{i} = {}^{c}S_{\bar{j}\bar{k}}^{i} = {}^{c}S_{\bar{j}\bar{k}}^{i} = 0$$
 (17)

If we take $I = \overline{i}$ in the equality (16), we have

$$(S(V, W))^{\bar{i}} = {}^{c}S_{jk}^{\bar{i}} {}^{c}V^{J}{}^{c}W^{\bar{k}} = {}^{c}S_{jk}^{\bar{i}}{}^{c}V^{j}{}^{c}W^{\bar{k}} + S_{\bar{j}k}^{\bar{i}}{}^{c}V^{\bar{j}}{}^{c}W^{\bar{k}}$$

$$+ {}^{c}S_{j\bar{k}}^{\bar{i}}{}^{c}V^{\bar{i}}W^{\bar{k}} + {}^{c}S_{\bar{j}\bar{k}}^{\bar{i}}V^{\bar{i}}W^{\bar{k}}$$

$$(18)$$

Now, let us find solutions which are ${}^{c}S_{jk}^{i}$, ${}^{c}S_{jk}^{i}$, ${}^{c}S_{jk}^{i}$, ${}^{c}S_{jk}^{i}$, ${}^{c}S_{jk}^{i}$ of the equation (18). For this purpose, taking account of (13), we have

$$L_{S(VW)} t_{j_1 \dots j_q}^{i_1} = v^i \omega^j \Phi_{ij}^{S} t_{j_1 \dots j_q}^{i_1} + S_{mi}^{i_1} v^m L_W t_{j_1 \dots j_q}^{\ell} + \omega^j S_{mj}^{i_1} L_V t_{j_1 \dots j_q}^{m}$$
(19)

From (14) and (19), we get

$${}^{c}(S(V, W))^{\bar{i}} = \upsilon^{i} \omega^{j} \Phi^{S}_{ij} t^{i}_{j_{1} \cdots j_{q}} + \upsilon^{m} S^{i}_{ml} \delta^{l}_{j_{1}} \dots \delta^{l}_{j_{q}} L_{W} t^{l}_{l_{1} \dots l_{q}} + + \omega^{m} S^{i}_{im} \delta^{l}_{j_{1}} \dots \delta^{l}_{j_{q}} L_{V} t^{l}_{l_{1} \dots l_{q}} = {}^{c} V^{i} c W^{j} \Phi^{S}_{ij} t^{i}_{j_{1} \dots j_{q}} - - {}^{c} V^{m} S^{i}_{ml} \delta^{l}_{j_{1}} \dots \delta^{l}_{j_{q}} W^{\bar{i}} - {}^{c} V^{m} S^{i}_{iml} \delta^{l}_{j_{1}} \dots \delta^{l}_{j_{q}} W^{\bar{i}}$$
(20)

Then, from (18) and (20), we obtain

$${}^{c}S_{ij}^{\bar{j}} = -\Phi_{ij}^{S}t_{j_{1}...j_{q}}^{i_{1}}, \qquad (21)$$

$${}^{c}S_{m\bar{l}}^{\bar{j}} = S_{ml}^{i_{1}}\delta_{j_{1}}^{l_{1}}...\delta_{j_{q}}^{l_{q}}, \qquad (21)$$

$${}^{c}S_{\bar{l}m}^{\bar{j}} = S_{lm}^{i_{1}}\delta_{j_{1}}^{l_{1}}...\delta_{j_{q}}^{l_{q}}, \qquad (21)$$

$${}^{c}S_{\bar{l}m}^{\bar{j}} = 0$$

Thus (17) and (21) are the complete lift of the tensor structure $S \in T_q^l(M_n)$ along the pure cross-section of $T_q^l(M_n)$. In particular, if the pure cross-section is integrable, that is $\partial_i t_{j_1 \cdots j_q}^{i_1} = 0$, hence we find formulea (2) from (17) and (21).

REFERENCES

- YANO, K. and AKO, M., On certain operators associated with tensor fields, Kodai Math. Sem. Rep., 20 (1968), No: 4, 414-436.
- [2] SALIMOV, A.A., Generalized Yano-Ako operator and the complete lift of tensor fields. Tensor N.S., 55 (1994), No. 2, 142-146.
- [3] TACHIBANA, S., Analytic tensor and its generalization, Tohoku Math. Journal, 12 (1960) 208-221.
- [4] LEDGER, A.J., and YANO, K., Almost complex structures on tensor bundles, J. of Differential Geom., Vol. 1 No. 4 (1967) 355-368.