Commun. Fac. Sci. Univ. Ank. Series A1 V. 47. pp. 167-173 (1998)

CELLULAR FOLDING

E.M. ELKHOLY*, R.M. SHAHIN**

- * Department of Mathematics, Faculty of Sciences, Tanta University, Tanta, EGYPT.
- ** Department of Mathematics, Faculty of Education, Tanta University, Kafr El-Sheikh, EGYPT.

(Received March 20, 1998; Accepted Dec. 18, 1998)

ABSTRACT

In this paper we introduce the notion of cellular and neat cellular foldings on a category of complexes equiped with cellular subdivision such that each closed n-cell is homeomorphic to a closed Euclidean n-cell. Then we obtained the necessary and sufficient conditions for a cellular map to be a cellular folding and a neat cellular folding respectively.

1. INTRODUCTION

Let K and L be directed complexes and f: $|K| \rightarrow |L|$ be continuous function. Then f: $K \rightarrow L$ is a cellular function if

(1) for each directed cell $\sigma \in K$, $f(\sigma) = \pm \tau$ where τ is a directed cell in L,

(2) $\dim(f(\sigma)) \leq \dim(\sigma)$, [4].

Let K and L be complexes of the same dimension n and K be equipped with finite cellular subdivision such that each closed n-cell is homeomorphic to a closed Euclidean n-cell.

A cellular map Φ : $K \to L$ is a cellular folding iff Φ satisfies the following:

(i) For each i-cell $e^i \in K$, $\Phi(e^i)$ is an i-cell in L. ie. Φ maps i-cells to i-cells.

(ii) If \overline{e} contains n vertices, then $\overline{\Phi(e)}$ must contains n distinct vertices.

In the case of directed complexes it is also required that Φ maps directed i-cells of K to i-cells of L but of the same orientation.

A cellular folding Φ : $K \to L$ is a neat cellular folding if $L^n - L^{n-1}$ consists of a single n-cell. Int L.

The set of complexes together with the neat cellular foldings form a category which is a subcategory of the category of cellular foldings and we denote it by N(K,L). Thus if N(K,L) $\neq \Phi$, then dim L \geq dim K.

Throughout this paper, we use the term complex to mean a complex equipped with celular subdivision such that each closed n-cell is homeomorphic to a closed Euclidean n-cell.

2. CHAIN MAPS AND CELLULAR FOLDING

The next theorem gives the necessary and sufficient condition for a cellular map to be a cellular folding.

THEOREM 1. Let K and L be complexes of the same dimension n and $\Phi: K \to L$ be a cellular map such that $\Phi(K) = L \neq K$. Then Φ is a cellular folding iff the map $\Phi: C_p(K) \to C_p(L)$ between chain complexes $(C_p(K), \partial_p), (C_p(L), \partial_p')$ is a chain map.

PROOF. Let Φ be a cellular folding, then it is a cellular map and we can define a homomorphism $\Phi_{n}: C_{n}(K) \to C_{n}(L)$ by

$$\Phi_{p}(\sigma) = \begin{cases} \Phi(\sigma) \text{ if } \Phi(\sigma) \text{ is a p-cell in } L, \\ \Phi \text{ if } \dim(\Phi(\sigma))$$

and since a cellular folding maps p-cells to p-cells, $\Phi_p(\sigma_{\lambda})$ is a p-cell in L for all λ .

Thus for a p-chain $C = a_1 \sigma_1^p + a_2 \sigma_2^p + ... + a_m \sigma_m^p \in C_p(K)$ where $a_1' s \in Z$ and $\sigma_1's$ are p-cells in K,

$$\begin{split} \Phi_{p}(C) &= \Phi_{p}(a_{1}\sigma_{1}^{p} + a_{2}\sigma_{2}^{p} + ... + a_{m}\sigma_{m}^{p}) \\ \Phi_{p}(C) &= \Phi_{p}(a_{1}\sigma_{1}^{p}) + \Phi_{p}(a_{2}\sigma_{2}^{p}) + ... + \Phi_{p}(a_{m}\sigma_{m}^{p}) \\ &= a_{1}\Phi_{p}(\sigma_{1}^{p}) + a_{2}\Phi_{p}(\sigma_{2}^{p}) + ... + a_{m}\Phi_{p}(\sigma_{m}^{p}) \in C_{p}(L). \end{split}$$

Now since the closure of both σ_{λ}^{p} and $\Phi(\sigma_{\lambda}^{p})$ has the same number of distinct vertices, then Φ_{p-1} o $\partial_{p} = \partial_{p}'$ o Φ_{p} , where $\partial_{p}: C_{p}(K) \to C_{p-1}(K)$

and $\partial_p': C_p(L) \to C_{p-1}(L)$ are the boundary operators, that is to say the following diagram commutes

and hence Φ is a chain map.

Conversely, suppose Φ is not a cellular folding, then there exists a j-cell σ in K such that $\Phi(s)$ is a m-cell in L, where $m \neq j$. Since Φ_p is a homomorphism from the p-th chain of K to the p-th chain of L, then

$$\Phi_{j} \left(\sum_{i=1}^{n-1} \lambda_{i} \sigma_{i}^{(j)} + \lambda_{n} \sigma\right) = \sum_{i=1}^{n-1} \lambda_{i} \Phi(\sigma_{i}^{(j)}) + \lambda_{n} \Phi(\sigma)$$

but $\Phi(\sigma)$ is not a j-cell, then Φ_j cannot be a j-chain map and hence our assumption is false and we have the result.

2.1. Examples

1- Let K be a complex such that |K| is the infinite stip $\{(x,y): -\infty < x < \infty, 0 \le y \le 2\}$ equipped with an infinite number of 2-cells such that the closure of each 2-cell consists of four 0-cells and four 1-cells, see Fig. 1.

Fig. 1

Let L be a complex with six 0-cells, seven 1-cells and two 2-cells. The cellular map Φ : K \rightarrow L defined by

$$\Phi(e_n^o) = e_m'^o \begin{cases} \text{where } m = 1,2,...,6, & \text{and} \\ n - m \text{ is a multiple of } 6 \end{cases}$$
$$\Phi(e_1^2) = \begin{cases} e_1'^2 \text{ if } i \text{ is odd} \\ e_2'^2 \text{ if } i \text{ is even} \end{cases}$$

This map is a cellular folding.

2- Consider a complex K such that $|K| = S^2$ with cellular subdivision consisting of two 0-cells, four 1-cells and four 2-cells. Let $\Phi: K \to K$ be a cellular map defined by

This map is a cellular folding with image consisting of two 0-cells, two 1-cells and a single 2-cell, see Fig. 2.

3- Consider a complex K such that |K| is a tours with cellular subdivision consisting of three 0-cells, six 1-cells and three 2-cells.

Fig. 3

Any cellular map $\Phi: K \to K$ which has two vertices in the image is not a cellular folding since Φ_1 is not a chain map in this case.

4- Consider a complex K such that |K| is a tours with cellular subdivision consisting of four 0-cells, eight 1-cells and four 2-cells.

Fig. 4

A cellular map Φ : $K \to K$ defined by

$$\Phi(e_1^{\circ}e_2^{\circ}e_3^{\circ}e_4^{\circ}) = (e_1^{\circ}e_2^{\circ}e_3^{\circ}e_4^{\circ})$$

$$\Phi(e_1^{1}e_2^{1}...e_8^{1}) = (e_1^{1}e_1^{1}e_1^{1}e_1^{1}e_5^{1}e_8^{1}e_5^{1}e_8^{1})$$

$$\Phi(e_2^{\circ}) = e_1^{2} \text{ for } n = 1,2,3,4.$$

This map is a cellular folding with image consisting of two 0-cells, three 1-cells and a single 2-cell.

5- Consider a cell-complex K such that $|K| = S^2$ with cellular subdivision consisting of four 0-cells, six 1-cells and four 2-cells, see Fig. 5.

Fig. 5

Let $\Phi: K \to K$ be a cellular map defined by $\Phi(e_1^{\circ} e_2^{\circ} e_3^{\circ} e_4^{\circ}) = (e_1^{\circ} e_2^{\circ} e_3^{\circ} e_4^{\circ})$ $\Phi(e_1^{1} e_2^{1} e_3^{1} e_4^{1} e_5^{1} e_6^{1}) = (e_1^{1} e_1^{1} e_4^{1} e_4^{1} e_5^{1} e_6^{1})$ $\Phi(e_2^{\circ}) = e_2^{\circ}$, n = 1,2,3,4.

This map is not cellular folding since $\overline{e_1^2}$, $\overline{\Phi(e_1^2)}$ does not contain the same number of vertices.

3. NEAT CELLULAR FOLDING

The following theorem gives necessary and sufficient condition for a cellular map to be a neat cellular folding.

THEOREM (2). If $\Phi \in N(K,L)$ such that $\Phi(K) = L \neq K$, then Φ is a neat cellular folding iff the map $\Phi_p: C_p \to C_p(L)$ between the chain complexes $(C_p(K),\partial_p)$, $(C_p(L),\partial_p')$ is a chain map and $H_p(K) \simeq \ker \Phi_p^*$, where Φ_p^* : $H_p(K) \to H_p(L)$, $p \ge 1$ is the induced homomorphism.

PROOF. Assuming that Φ is a neat cellular folding, then it is a cellular folding and hence the map $\Phi_p: H_p(K) \to H_p(L)$ between the chain complexes $(C_p(K),\partial_p), (C_p(L),\partial'_p)$ is a chain map. Now consider the induced homomorphism $\Phi_p^*: H_p(K) \to H_p(L)$, there is a short exact sequence:

$$0 \ \rightarrow \ \text{ker} \ \ \Phi_p^* \ \xrightarrow{i^*} H_p(K) \ \rightarrow \ \text{Im} \ \ \Phi_p^*$$

where i^{*} is the induced homomorphism by the inclusion. Since Φ is surjective, we have Im $\Phi_p^* \simeq H_p(L)$, but $H_p(L) = 0$ for neat cellular folding, hence the above sequence will take the form:

$$0 \to \ker \Phi_p^* \xrightarrow{i^*} H_p(K) \to 0$$

The exactness of this sequence implies that

$$H_p(K) \simeq \ker \Phi_p^*$$

Conversely, suppose Φ_p is a chain map between chain complexes and $H_p(K) \simeq \ker \Phi_p^*$ but Φ is not neat, then $L^n - L^{n-1}$ consists of more than one n-cells. Thus

$$H_0(L) \simeq Z^1$$
, $H_p(L) = 0$, for $p = 1,2,...,n$

and

$$H_{p}(K) \simeq H_{p}(L) \oplus \ker \Phi_{p}^{*} \not\simeq \ker \Phi_{p}^{*}$$
 for $p = 0$

hence the assumption is false and Φ is neat.

It should be noted that examples (2) and (4) are neat cellular foldings.

REFERENCES

- ELKHOLY, E.M., AL-KHURSANI, H.A., Foldings of CW-complexes. Jour. Inst. Math. & Comp. Sci. (Math. Ser.) Vol. 4, No. 1 (1991) pp. 41-48.
- [2] ELKHOLY, E.M., AL-SHIABANI, A.M., Homology groups and simplicial folding, Jour. Fac. Edu., No. 18 (1993) pp. 443-449.
- [3] ELKHOLY, E.M., Folding of simplicial complexes. Jour. Fac. Edu. No. 19 (1994) pp. 835-842.
- [4] KINSEY, L.C., Topology of Surfaces, Springer Verlag New York, Inc. (1993).