Commun. Fac. Sci. Univ. Ank. Series A1 V. 47. pp. 105-110 (1998)

ON SEPERATION AXIOM C-D,

E. HATIR* and T. NOIRI**

- * Department of Mathematics, Faculty of Science and Art, Selçuk University, Konya, TURKEY.
- ** Department of Mathematics, Yatsushiro College of Technology, Yatsushiro, JAPAN

(Received Feb. 17, 1998; Accepted June 5, 1998)

1. INTRODUCTION

In 1997, Caldas [1] has introduced a new seperation axiom semi- D_1 which is situated between semi- T_0 and semi- T_1 due to Maheshwari and Prasad [5]. In 1996, Hatır, Noiri and Yüksel [2] defined C-sets and C-continuity in topological spaces to obtain a decomposition of continuity. Quite recently, Jafari [3] has used the C-sets to define and investigate C- T_2 spaces, C-compact spaces and C-connected spaces. In this paper, we define cD-sets as the difference set of C-sets and use these sets to define C- D_1 -spaces, cD-compact spaces and cD-connected spaces. We also investigate the relationship between these spaces and C-continuity (or C-irresoluteness).

2. PRELIMINARIES

Throughout this paper X and Y denote topological spaces on which no separation axiom is assumed. Let A be a subset of a space X. The closure of A and the interior of A are denoted by Cl(A) and Int(A), respectively.

We shall recall some definitions used in the sequel.

Definition 2.1. A subset A of a space X is said to be

- (a) semi-open [4] if $A \subset Cl(Int(A))$,
- (b) α^* -set [2] if Int(Cl(Int(A))) = Int(A),
- (c) C-set [2] if A = O \cap F, where O is open and F is an α^* -set.

Remark 2.1. Semi-open sets and C-sets are independent. A set $\{a, b\}$ in [2, Example 3.1] is a C-set but it is not semi-open. A set $\{a, b\}$ in Example 3.1 (below) is semi-open but it is not a C-set.

Definition 2.2. A function $f:X \to Y$ is said to be C-continuous [2] (resp. semi-continuous [4]) for each open set V of Y, $f^{1}(V)$ is a C-set (resp. semi-open in X.

3. C-D₁ SPACES

Definition 3.1. A subset S of a space X is called a c-*difference* (briefly cD-set) (resp. D-set [6], sD-set [1]) if there exist two C-sets (resp. open sets, semi-open sets) O_1, O_2 in X such that $O_1 \neq X$ and $S = O_1 \setminus O_2$.

Remark 3.1. Every proper C-set is a cD-set, but the converse is false as the following example shows.

Example 3.1. Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, X, \{a\}, (a, d\}, \{A, b, d\}, \{a, c, d\}\}$. Then $\{a, b\}$ is a cD-set but it is not a C-set.

Definition 3.2. A topological space X is $C-D_0$ (resp. $C-D_1$) if for x, $y \in X$ such that $x \neq y$ there exists a cD-set of X containing x but not y or (resp. and) a cD-set containing y but not x.

A topological space X is $C-T_0$ (resp. $C-T_1$) if for x, $y \in X$ such that $x \neq y$ there exists a C-set of X containing x but not y or (resp. and) a C-set containing y but not x.

Definition 3.3. A topological space X is $C-D_2$ (resp. $C-T_2$ [3]) if for x, $y \in X$ such that $x \neq y$ there exist disjoint cD-sets (resp. C-sets) S_1 and S_2 such that $x \in S_1$ and $y \in S_1$.

Remark 3.2. The following implications hold:

a) If X is T_i , then X is C- T_i , for i = 0, 1, 2. b) If X is C- T_i , then X is C- D_i , for i = 0, 1, 2. c) If X is C- D_i , then X is C- D_{i-1} , for i = 1, 2. d) If X is C- T_i , then X is C- T_{i-1} , for i = 1, 2.

106

Theorem 3.1. A topological space X is $C-D_0$ if and only if it is $C-T_0$.

Proof. The sufficiency is Remark 3.2 (b).

Necessity: Let X be C-D₀. Then for each pair of distinct points x, y $\in X$, at least one of x, y, say x, belongs to a cD-set S but $y \notin S$. Let $S \in O_1 \setminus O_2$, where $O_1 \neq X$ and O_1 and O_2 are C-sets. Then $X \in O_1$ and for $y \notin S$ we have two cases:

(1) $y \notin O_1$; (2) $y \in O_1$ and $y \in O_2$

In case (1): O_1 contains x but doesn't contain y.

In case (2): O_2 contains y but doesn't contain x. Thus X is C-T₀.

Theorem 3.2. If a topological space X is $C-D_1$, then it is $C-T_0$.

Proof. This follows from Remark 3.2 and Theorem 3.1.

Theorem 3.3. If f: $X \to Y$ is a semi-continuous (resp. C-continuous surjection and S is a D-set in Y, then f^1 (S) is a sD-set (resp. cD-Set) in X

Proof. We prove only the first case being the second similar. Let S be a D-set of Y. Then there are open sets O_1 and O_2 in Y such that $S = O_1 \setminus O_2$ and $O_1 \neq Y$. By the semi-continuity of f, $f^1(O_1)$ and $f^1(O_2)$ are semi-open in X. Since $O_1 \neq Y$ and f is surjective, we have $f^1(O_1) = X$. Hence $f^1(S) = f^1(O_1) \setminus f^1(O_2)$ is a sD-set.

A space X is said to be *semi*- D_1 [1] if for any pair of distinct points x and y of X, there exist sD-sets U and V of X such that $x \in U$, $y \notin U$, $x \notin V$ and $y \in V$.

Theorem 3.4. If y is a D_1 -space and f : X \rightarrow Y a is semi-continuous (resp. C-continuous) bijection, then X is a semi- D_1 (resp. C- D_1) space.

Proof. We prove only the first case being the second is analogous. Suppose that Y is a D_1 -space. Let x and y be any pair of distinct points in X. Since f is injective and Y is D_1 -space, there exist D-sets S_x and S_y . of Y containing f(x) and f(y), respectively, such that $f(y) \notin S_x$, $f(x) \notin S_y$. By Theorem 3.3, $f^1(S_x)$ and $f^1(S_y)$ are sD-sets in X containing x and y respectively, such that $y \notin f^1(S_x)$ and $x \notin f^1(S_y)$. This implies that X is a semi-D₁ space.

Definition 3.4. A function $f : X \to Y$ is called C-*irresolute* if for every C-set A in Y, its inverse image $f^{1}(A)$ is C-set in X.

Theorem 3.5. If $f : X \to Y$ is a C-irresolute surjecton and S is a cD-set of Y, then $f^{1}(S)$ is a cD-set of X.

Proof. Suppose that S is a cD-set of Y. Then there are C-sets O_1 and O_2 in Y such that $S = O_1 \setminus O_2$ and $O_1 \neq Y$. By the C-irresoluteness of f, $f^1(O_1)$ and $f^1(O_2)$ are C-sets in X. Since $O_1 \neq Y$, we have $f^1(O_1) \neq X$. Hence $f^1(S) = f^1(O_1) \setminus f^1(O_2)$ is a cD-set.

Theorem 3.6. A space X is $C-D_1$ if and only if for each pair of distinct points x and y of X, there exist a C-irresolute surjection f of X onto a C-D₁ space Y such that $f(x) \neq f(y)$.

Proof. Necessity: Take the identity function on X.

Sufficiency: Let x and y be any pair of distinct points in X. By hypothesis, there exists a C-irresolute surjection f of X onto a C-D₁ space Y such that $f(x) \neq f(y)$. Therefore, there exist cD-sets S_x and S_y in Y such that $f(x) \in S_x$, $f(y) \notin S_x$; $f(y) \in S_y$, $f(x) \notin S_y$. Since f is C-irresolute and surjective, by Theorem 3.5, $f^{1}(S_x)$ and $f^{1}(S_y)$ are cD-sets in X such that $x \in f^{1}(S_x)$, $y \notin f^{1}(S_x)$; $y \in f^{1}(S_y)$, $x \notin f^{1}(S_y)$. Therefore, X is a C-D₁ space.

We can give the following notions:

Definition 3.5. A filterbase **B** is called cD-convergent (resp. D-convergent) to a point $x \in X$ if for any cD-set (resp. D-set) A containing x, here exists $B \in B$ such that $B \subset A$.

Theorem 3.7. If function $f : X \to Y$ is C-continuous and surjective, then for each point $x \in X$ and each filterbase **B** on X cD-convergent to x, the filterbase $f(\mathbf{B})$ is D-convergent to f(x).

Proof. Let $x \in X$ and **B** be any filterbase cD-convergent to x. Since f is a C-continuous surjection, by Theorem 3.3, for each D-set $V \subset Y$ containing f(x), $f^{1}(V) \subset X$ is a cD-set containing x. Since **B** is cD-convergent o x, then there exists $B \in B$ such that $b \subset f^{1}(V)$; hence $f(B) \subset V$. It follows that f(B) is d-convergent to f(x).

Corollary 3.1. If a function $f : X \to Y$ is C-irresolue and surjective, then for each point $x \in X$ and each filterbase **B** on X cD-convergent to x, filterbase $f(\mathbf{B})$ is cD-convergent to f(x).

We can give the following notions:

Definition 3.6. A space X is called cD-compact (resp. D-compact) if every cover of X by cD-sets (resp. D-sets) has a finite subcover.

Theorem 3.8. Let a function $f : X \rightarrow Y$ be C-continuous and surjective. If X is cD-compact, then Y is D-compact.

Proof. Let γ be an cover of Y by D-sets. Since f is C-continuous and surjective, by Theorem 3.3, $f^{1}(\gamma) = \{f^{1}(V_{1}) | V \in \gamma\}$ is a cover of X by cD-sets. Since X is cD-compact, there exists a finite subcover $\{f^{1}(V_{1}), ..., f^{1}(V_{n})\}$ of $f^{1}(\gamma)$. Therefore, $\{V_{1}, ..., V_{n}\}$ is a finite subcover of g. Hence Y is D-compact.

Corollary 3.2. Let $f : X \to Y$ be a C-irresolute surjection. If X is cD-compact, then Y is cD-compact.

We can also give the following notion.

Definition 3.7. A space X is called cD-connected (resp. D-connected) if X can not be expressed as the union of two nonempty disjoint cD-sets (resp. D-sets).

Theorem 3.9. If $f : X \to Y$ is a C-continuous surjection and X is cD-connected, then Y is D-connected.

Proof. Straightforward.

Corollary 3.3. If $f : X \rightarrow Y$ is a C-irresolute surjection and X is cD-connected, then Y is cD-connected.

REFERENCES

- CALDAS, M., A seperation axiom between semi-T₀ and semi-T₁, Mem. Fac. Sci. Kôchi Univ. Ser A. Math. 18 (1997) 37-42.
- [2] HATIR, E. NOIRI, T., YÜKSEL, Ş., A decomposition of continuity, Acta Math. Hungar. 70 (1-2) (1996) 145-160.
- [3] JAFARI, S. On C-continuous functions (submitted).
- [4] LEVINE, N., Semi-open sets and semi-continuity in topological spaces, Amer. Math. Montly 70 (1963) 36-41.
- [5] MAHESHWARI, S.N. and PRASAD, R., Some new seperation axioms, Ann. Soc. Sci. Bruxelles, 89 (1975) 395-402.
- [6] TONG, J., A seperation axiom between T and T, Ann. Soc. Sci. Bruxelles 96 (1982) 85-90.