Commun. Fac. Sci. Univ. Ank. Series A1 V. 46. pp. 135-141 (1997) # THE SHEAF OF THE HOMOLOGY GROUPS OF THE COMPLEX MANIFOLDS CEMİL YILDIZ Department of Mathematics, Faculty of Science and Arts, Gazi University, Ankara/TURKEY (Received May 28, 1997; Accepted June 26, 1997) ### ABSTRACT Let X be a connected complex n-dimensional manifold with fundemental group $F_{\underset{x}{\neq}}\{1\}$, H be the sheaf of the groups over X [7] and $\Gamma(X,H)$ be the group of the global sections of H over X. In this paper, the sheaf of the Homology groups is constructed by means of the homology groups H/N of the connected complex n-dimension manifold and given some characterizations. Finally, it is shown that if two connected complex manifolds are topologically equivalent, then their corrosponding sheaves of the homology groups are isomorphic. # 1. INTRODUCTION Let X be a connected complex n-dimension manifold and $F \neq \{1\}$ be the fundemental group of X with respect to the base point x, for any $x \in X$, (X,x) pointed n-dimension complex manifolds which have the same homotopy type. If P is any H-group, then there exists a sheaf $H = V H_x$ over X which is formed by P H-group. For each $x \in X$, $$\Pi^{-1}(x) = [(X,x);P] = H_x$$ is the stalk of the sheaf which has a discrete topology (where [(X,x);P] is set of homotopy classes of homotopic maps preserving the base points from (X,x) to (P,p_0) [6,7]. If $x \in X$ is an arbitrarily fixed point, then there is W = W(x) an open neighborhood of x in X and mappings $s: W \to H$ such that s is continuous and Π o $s = 1_w$. Hence the mappings s is called a section of H over W. 136 C. YILDIZ Let us denote all of the sections of H over X by $\Gamma(W,H)$. The set $\Gamma(W,H)$ is a group [7]. The sheaf H satisfies the following properties: - 1- Any two stalks of H are isomorphic with each other [6]. - 2- Let W_1 , $W_2 \subset X$ be any two open sets $s_1 \in \Gamma(W_1, H)$ and $s_2 \in \Gamma(W_2, H)$. If $s_1(x_0) = s_2(x_0)$ for any point $x \in W_1 \cap W_2$, then $s_1 = s_2$ over the whole $W_1 \cap W_2$ [6]. - 3- Let $W \subset X$ be an open set. Every section over W can be extended to a global section over X. In other words, the sections over W are the restrictions of the sections over X, i.e., $s \mid W \in \Gamma(W,H)$, for every $s \in \Gamma(X,H)$. - 4- Let $x \in X$ be any point and W = W(x) be an open set. Then, $\Pi^{-1}(W) = \bigvee_{i \in I} s_i(W)$ for every $s_i \in \Gamma(W,H)$ and $\Pi|s_i(W): s_i(W) \to W$ is a topological mapping for each $i \in I$. Thus, H is a covering space of X, such that to each point $\sigma_x = [f]_x \in H_x$ there corresponds a unique section $s \in \Gamma(W,H)$ such that $s(x) = \sigma_x$. Furthermore, H_x is isomorphic to $\Gamma(W,H)$. In particular, $H_x \cong \Gamma(W,H)$ [6]. - 5- A topological stalk preserving mapping of H onto itself is called a sheaf isomorphism or a cover transformation, and the set of all cover transformation of H is denoted by T. Clearly, T is a group. T is isomorphic to the group $\Gamma(X,H)$. Hence $H_x \cong \Gamma(X,H) \cong T$. Thus, T is transitive and H is a regular covering space of X [6]. ## 2. SUBSHEAVES OF H **Definition 2.1.** Let H be the sheaf of the groups formed by H-group over X and $H' \subset H$ be an open set. Then H' is called a subsheaf of groups, if; - i) $\Pi(H') = X$ - ii) For each point $x \in X$ the stalk H'_x is a subgroup of H_x [3]. **Definition 2.2.** Let H be sheaf of the groups formed by H-group over X and N' \subset H be a subsheaf of groups. Then N' is called a normal subsheaf, if the stalk N' \subset H is a normal subgroup for each $x \in X$. Let $N \subset H$ be a subsheaf of groups and $W \subset X$ be an open set. Then, the set $\Gamma(W,N') \subset \Gamma(W,H)$ is a subgroup. Moreover, if $N' \subset H$ is a normal subsheaf, then $\Gamma(W,N') \subset \Gamma(W,H)$ is a normal subgroup. In particular, if we take W = X, then $\Gamma(X,N') \subset \Gamma(X,H)$ is a normal subgroup. Consequently, each subsheaf of group gives a subgroup of $\Gamma(X,H)$ and each normal subsheaf gives a normal subgroup of $\Gamma(X,H)$ [6]. Conversely, let us suppose that, $\Gamma(X,H)$ is group of global sections of H over X and $G \subset \Gamma(X,H)$ be a subgroup. Then, the set $\{s_i(x): s_i \in G\}$ is a subgroup of H over X for each $x \in X$. Let us denote $\{s_i(x): s_i \in G\}$ by N_x' . Then $N' = \bigvee_{x \in X} N_x'$ is a set over X with the natural projection $\Pi' = \Pi \mid N'$ and $G = \Gamma(X,N')$. Moreover, if $G \subset \Gamma(X,H)$ is a normal subgroup, then each stalk of N' is a normal subgroup of H_x . (N', Π ') is a subsheaf of the groups and (N', Π ') is a normal subsheaf (or sheaf of normal subgroups) of H, if $G \subset \Gamma(X,H)$ is normal subgroup [1,6]. Then, we can state the following theorem: **Theorem 2.1.** Let H be the sheaf of the groups formed by H-group over X and $\Gamma(X,H)$ be the group of global sections of H. Then, the subgroups of $\Gamma(X,H)$ define all the subsheaves of groups of H. In particular a normal subgroup of $\Gamma(X,H)$ defines a normal subsheaf of H. It is easily seen that, subsheaves of groups of H (or normal subsheaves of H) have all the properties of H stated in Section 1. Thus, they are also regular covering spaces of X and $N'_x \cong \Gamma(X,N') \cong T'$ for each subsheaf of groups $N' \subset H$. **Definition 2.3.** Let G be a commutator subgroup of $\Gamma(X,H)$. The normal subsheaf of H defined by G is called the commutator subsheaf of H and it is denoted by [H,H]. Moreover, $G = \Gamma(X,[H,H])$. 138 C. YILDIZ Now let $c \in X$ be an arbitrary fixed point and N_c be commutator subgroup of H_c . It is known that N_c is the smallest subgroup for which H_c/N_c is additive. H_c/N_c is called the homology group of the connected complex n-dimension manifold and it is denoted by H_c . The sheaf N determined by the commutator subgroup is called homology covering space of X [1,5]. Let $x \in X$ be any point, \overline{H}_x be the Homology group of X with respect to x i.e., $\overline{H}_x = H_x/N_x$, where $N_x \subset H_x$ is commutator subgroup. Let $\overline{H} = V$ \overline{H} \overline{H} is a set over X and the mapping $\overline{\Pi}(\sigma_x) = \overline{\Pi}(\overline{[f]}_x) = x$ for any $\overline{\sigma}_x = \overline{[f]}_x \in \overline{H}_x$ is onto. We introduce on \overline{H} a topology as follows: Let $c \in X$ be arbitrary fixed point and \overline{H}_c be the homology group of X with respect to the point c. Then there exists an open neighbourhood W = W(c) of c in X. If $\sigma_c = [h]_c \in [(X,c);P] = H_c$ is an arbitrary fixed element and $x \in W$ is any point, then there is a homotopy equivalence map $\psi: (X,x) \to (X,c)$. Hence the map $h \circ \psi: (X,x) \to (P,p_0)$ is continuous and base point preserving. $[f]_x \in [(X,x);P] = H_x$ is a homotopy class of map $f = h \circ \psi$. Therefore, we can define a mapping: \overline{s} : $W \to \overline{H}$ with $\overline{s}(x) = \overline{s(x)} = \overline{[f]}_x$, where $s \in \Gamma(W,H)$. Thus, \overline{s} is well-defined, $$\overline{\Pi}$$ o $\overline{s} = 1_w$ and $\overline{s}(c) = \overline{s}(c) \in \overline{s}(W) \subset \overline{H}$. Let us denote the set all of the mappings defined over W by $\Gamma(W, \overline{H})$. Now, if $\beta(x)$ is a basis of open neighbourhoods of x, then $$\beta = \{\overline{s}(W) : W \in \beta(x), \overline{s} \in \Gamma(W,\overline{H})\}\$$ is a topology base on \overline{H} . In this topology, the mappings $\overline{\Pi}$ and \overline{s} are continuous and $\overline{\Pi}$ is a local homeomorphism. Thus, $(\overline{H},\overline{\Pi})$ is a sheaf over X. \overline{s} is called a section of the sheaf \overline{H} over W. Let us denote the collection of all sections of \overline{H} over W by $\Gamma(W,\overline{H})$ which is an abelian group [7]. The homology group \overline{H}_x is called the stalk of the sheaf \overline{H} over X, for each $x \in X$ [4]. **Definition 2.4.** The sheaf, $(\overline{H},\overline{\Pi})$ is called the sheaf of the Homology groups over the connected complex n-dimension manifold X. Moreover, \overline{H} is a sheaf of abelian groups [3]. Then we can state, **Theorem 2.2.** Let $\overline{s} \in \Gamma(W,H)$. Then $\overline{\Pi} \mid \overline{s}(W) : \overline{s}(W) \to W$ is a topological mapping and $(\overline{\Pi} \mid \overline{s}(W))^{-1} = \overline{s}$ **Proof.** If we consider the statement $\overline{\Pi}$ o $\overline{s} = 1$, then for each $$x \in W$$, \overline{s} o $(\overline{\Pi} \mid \overline{s}(W))$ $(\overline{s}(x)) = (\overline{s} \circ \overline{\Pi} \circ \overline{s})(x) = \overline{s}(x)$, Therefore \overline{s} o $(\overline{\Pi} \mid \overline{s}(W)) = 1_{\overline{s}(W)}$ [2]. **Remark.** It is easily seen that the sheaf $(\overline{H},\overline{\Pi})$ has all the properties of H stated in Introduction. Thus, it is also regular covering spaces of X and $\overline{H}_x \cong \Gamma(X,\overline{H}) \cong T'$, where T' is the set of all cover transformations of \overline{H}_x . # 3. CHARACTERIZATIONS In this section, we will explore the relation between connected complex manifolds and the sheaf of homology groups constructed over complex manifolds (see [1] for some definitions). **Theorem 3.1.** Let P be any H-group and X_1 , X_2 be connected complex manifolds of dimension n and \overline{H}_1 , \overline{H}_2 be the corresponding sheaves of homology groups respectively. If the open map γ : $X_1 \to X_2$ is given as continuous and surjective then there exists a homeomorphism between the pairs (X_1, \overline{H}_1) and (X_2, \overline{H}_2) . **Proof.** $x_1 \in X_1$ be an arbitrary fixed point. Then $\gamma(x_1) \in X_2$ and $[(X_1,x_1):P] = H_{x_1} \subset H_1$, $[(X_2,\gamma(x_1));P] = H_{\gamma(x_1)} \subset H_2$ are the corresponding stalks. If (X_1, x_1) , $(X_2, \gamma(x_1))$ are pointed spaces and f_2 , g_2 are base point preserving continuous maps from $(X_2, \gamma(x_1))$ to (P, p_0) then f_1 , g_1 base point preserving continuous maps from (X_1, x_1) to (P, p_0) can be defined as 140 C. YILDIZ $f_1 = f_2$ o γ , $g_1 = g_2$ o γ , respectively. Furthermore if $f_2 \sim g_2$ rel $\gamma(x_1)$, then it can be easily shown that $f_1 \sim g_1$ rel x_1 . Thus the correspondence $[f]_{\gamma(x_1)} \rightarrow [f \text{ o } \gamma]_{x_1}$ is well-defined and the maps homotopy classes of base-point preserving continuous maps from $(X_2, \gamma(x_1))$ to (P, p_0) to the homotopy classes of base-point preserving continuous maps from (X_1, x_1) to (P, p_0) . That is, to each element $[f]_{\gamma(x_1)}$ there corresponds a unique element $[f \text{ o } \gamma]_{x_1}$. So $\overline{[f \text{ o } \gamma]}_{\gamma(x_1)} \in \overline{H}_{\gamma(x_1)}$. Since the point $x_1 \in X_1$ is arbitrary fixed, the above correspondence gives us a map $\gamma^*: H_1 \to H_2$ such that $\gamma^*([\overline{f}]) = [\overline{f} \circ \gamma] \in H_1$, for every $[\overline{f}] \in H_2$. γ^* is a stalk preserving mapping and a homomorphism on each stalk. To complete the proof, let us show that $\overline{\gamma}^*$ is continuous and an open map. Since γ^* is continuous and an open map [7], it can be easily shown that $\overline{\gamma}^*$ is continuous and an open map. Thus, $(\overline{\gamma}^*, \gamma)$ is a homomorphism between the pairs (X_1, \overline{H}_1) and (X_2, \overline{H}_2) [7]. Then we can state the following theorem: **Theorem 3.2.** Let the pairs (X_1,\overline{H}_1) , (X_2,\overline{H}_2) , (X_3,\overline{H}_3) and the surjective, open and continuous maps $\gamma_1\colon X_1\to X_2, \gamma_2\colon X_2\to X_3$ be given. Then, there exists a homomorphism $(\bar{\gamma}^*,\gamma)\colon (X_1,\overline{H}_1)\rightleftarrows (X_3,\overline{H}_3)$ such that $$\gamma = \gamma_2 \circ \gamma_1, \ \overline{\gamma}^* = \overline{\gamma}_1^* \circ \overline{\gamma}_2^*$$ **Proof.** Since γ_2 o $\gamma_1:X_1\to X_2$ is a surjective, open and continuous map, there exists a homomorphism $$(\gamma^*,\gamma)$$: $(X_1,H_1) \rightleftharpoons (X_3,H_3)$ (Theorem 3.1). To prove this theorem it is sufficient to show that $\overline{\gamma}^* = \overline{\gamma_1}^* \circ \overline{\gamma_2}^* = \overline{\gamma_1}^* \circ \overline{\gamma_2}^*$. In fact, for any $\overline{[f]} \in \overline{H_3}$, we must show that Therefore $$\overline{\gamma^*} = \overline{\gamma_1^* \circ \gamma_2^*}$$. Now, we can state the following theorems: Theorem 3.3. There is a contravariant functor from the category of connected complex manifolds of dimension n and surjective open and continuous maps to the category of sheaves of homology grops and sheaf homomorphisms. **Theorem 3.4.** Let the pairs (X_1, \overline{H}_1) and (X_2, \overline{H}_2) be given. If γ : $X_1 \rightarrow X_2$ is a topological map, then there exists an isomorphism between the pairs (X_1, \overline{H}_1) and (X_2, \overline{H}_2) . #### REFERENCES - [1] BALCI, S., "On the restricted sheaf" Commun. Fac. Sci. Univ. Ank. Series A1 V. 37, pp., 1-4 (1988). - [2] GRAUERT, H., FRITZSHE, K., Several Complex Variables, Springer Verlag (1976). - [3] GUNNING, R.C., ROSSI, H., Analytic Functions of Several Variables, Prentice-Hall, Inc., Englewood cliffs., N.T. 1965. - [4] ULUÇAY, C., "On Homology covering spaces and sheaf associated to the homology group." Commun. Fac. Sci. Univ. Ankara, Ser. A1, Mathematiques, Tom: 33, 1984, 22-28. - [5] ULUÇAY, C., "On the homology group of the complex analytic manifolds." Comm. Fac. Sci. Univ. Ankara, Ser. A1 Mathematiques, Tom: 30, 1981, 37-44. - YILDIZ, C., İÇEN, I., "H-Gruplarının Oluşturduğu Demetlerin Karakterizasyonu."Erciyes Uni. Fen Bil. Enst. Dergisi (1991). - [7] YILDIZ, C., Öçal, A.A., "The sheaf of the groups formed by H-groups over pointed topological spaces" Pure and Applied Mathematika Sciences. Vol. XXII No: 1-2, September (1985).