Commun. Fac. Sci. Univ. Ank. Series A1 V. 46. pp. 119-134 (1997)

SOME CONVOLUTION ALGEBRAS AND THEIR MULTIPLIERS

A. Turan GÜRKANLI

Department of Mathematics, Faculty of Art and Sciences, Ondokuz Mayıs University, Samsun, TURKEY.

(Received Dec. 5, 1995; Revised March 25, 1997; Accepted August 11, 1997)

ABSTRACT

Let G be a locally compact Abelian group (nondiscrete and non compact) with dual group \widehat{G} . For $1 \le P < \infty$, A (G) denotes the vector space of all complex-valued functions in $L^1(G)$ whose Fourier transforms \widehat{f} belong to $L^p(\widehat{G})$. Research on the spaces A (G) was initiated by Warner [20] and Larsen, Liu and Wang [14]. Later several generalizations of these spaces to the weighted case was given by Gürkanlı [6], Feichtinger and Gürkanlı [4] and Fischer, Gürkanlı and Liu [5]. One of these generalization is the space $A^p_{w,o}(G)$, [4]. Also the multipliers of A (G) were discussed in some papers such as [14], [13], [13], [9] and proved that the space of multipliers of A (G) is the space of all bounded complex-valued regular Borel measures on G.

In the present paper we discussed the multipliers of the Banach algebra $A^P_{w,\omega}(G)$ and proved that under certain conditions for given any multiplier T of $A^P_{w,\omega}(G)$ there exists a unique pseudo measure σ such that $Tf = \sigma * f$ for all $f \in A^P_{w,\omega}(G)$.

1. INTRODUCTION

Let G be a locally compact Abelian group with dual group \widehat{G} and let dx and $d\widehat{x}$ be Haar measures on these groups respectively. We denote by K(G) the vector spaces of continuous functions on G with compact support and $K_c(G)$ the subclass of thoso functions in K(G) whose supports are contained in C. For functions in $L^1(G)$ the Fourier Transform is denoted by \widehat{f} or Ff. It is known that \widehat{f} is continuous on \widehat{G} which, vanish at infinity and the inequality $\|\widehat{f}\|_{\infty} \leq \|f\|_1$ is satisfied ([16], 1.2.4. Theorem). We will denote the space of pseudo-measures by A'(G), ([11], pp.97).

We set for
$$1 \le p < \infty$$
,

$$L_w^p(G) = \{f \mid f, w \in L^p(G)\},$$

where w is the Beurling's weight function on G, i.e. w is a continuous function satisfying $w(x) \ge 1$ and $w(x+y) \le w(x)$. w(y) for all $x, y \in G$. It is known hat $L^p_{w}(G)$ is a Banach space under the norm

$$\| f \|_{p,w} = \left[\int_{G} |f(x)|^{p} \cdot w^{p}(x) dx \right]^{\frac{1}{p}}$$

 $L^1_{w}(G)$ is called a Beurling algebra [15]. In some parts of the present paper it is used an extra condition on W: A weight w is said to satisfy the Beurling-Domar condition (Shortly. (BD)) if one has

$$\sum_{n>1} n^{-2} \log (w(nx)) < \infty$$

for all $x \in G$, [2].

It is known that regular maximal ideal space of $L^1(G)$ can be identified with the space of all generalized characters η on G such that $\eta \in L^\infty_{\ \omega}(G)$ and $\eta \le \omega(x1.a.c., [19])$. If w satisfies the (B.D) condition the regular maximal ideal space of $L^1(G)$ is equal to the dual group \widehat{G} . (c.g[2] pp.15 and Theorem 2.11).

Now we set

$$\bigwedge_{K}^{W}(G) = \left\{ f \in L_{w}^{1}(G) \middle| \widehat{f} \in K(\widehat{G}) \right\},$$

$$\bigwedge_{K}^{W}(G) = \left\{ f \in \bigwedge_{w}^{K}(G) \middle| \widehat{f} \in K_{\widehat{L}}(\widehat{G}) \right\}$$

where $\hat{L} \subset (\widehat{G})$. Again $A^1(G)$ will denote the linear subspace of $L^1(G)$ consisting of those $f \in L^1(G)$ such that $\hat{f} \in L^1(\widehat{G})$. It is known by the proof of ([11] Th. 6.2.2) that $A^1(G) \subset A(G)$, where

$$A(G) = \{\hat{f} \mid f \in L^{1}(\widehat{G})\}.$$

Since
$$\bigwedge_{K}^{W}(G) \subset A^{1}(G)$$
, then we have $\bigwedge_{K}^{W}(G) \subset A^{1}(G) \subset A(G)$.

Again the Banach algebra $A^p_{w,\omega}(G)$ is defined to be the set of functions $f \in L^1_w(G)$ such that $\hat{f} \in L^p_w(\widehat{G})$ with the norm

$$\left\|f\right\|_{w,\omega}^p = \left\|f\right\|_{f,w} + \left\|\widehat{f}\right\|_{p,\omega} \quad , \quad 1 \le p < \infty \ ,$$

where w and ω are Beurling's weight functions on G and \widehat{G} , respectively [4]. It is known that if w satisfies (BD), then the regular maximal ideal

space of $L^1_w(G)$ is homeomorphic to the one of $A^p_{w,\omega}(G)$, ([5], Theorem. 1.16). It is also known that if W satisfies (B.D) then the regular maximal ideal space of $L^1_w(G)$ is the dual group \widehat{G} ([2], pp.15 and theorem 2.11). Then if W satisfies (BD), the regular maximal ideal of $A^p_{w,\omega}(G)$ is the dual space \widehat{G} .

2. THE SPACES EW(G) AND THEIR PROPERTIES

Let G be a local compact abelian group, K and \hat{L} be the compact subsets of G and \hat{G} , respectively. We define the vector space $E_{K,\hat{L}}^W(G)$ as the space of all function u which can be represented as

$$u = \sum_{k=1}^{\infty} f_k * g_k , f_k \in K_{K}(G) , g_k \in L_{w}^{1}(G) , \hat{g}_k \in K_{L}(\widehat{G})$$
 (1)

with

$$\sum_{k=1}^{\infty} \left\| f_k \right\|_{\infty} \; . \; \left\| g_k \right\|_{1,w} \; < \; \infty$$

If one endows it with the norm

$$\|\mathbf{u}\|_{K,\hat{L}}^{W} = \inf \sum_{k=1}^{\infty} \|f_{k}\|_{\infty} \ . \ \|g_{k}\|_{1,w} < \infty$$

then it is easy to see that $E_{K,L}^W(G)$ becomes a Banach space under this norm, where the infimum is taken over all representations of u as an element $E_{K,L}^W(G)$. The proof is similar to that of Guadry [4] and Larsen [5]). Now we define the vector space $E^W(G)$ to be

$$E^{W}(G) = \bigcup_{K\hat{L}} E_{K\hat{L}}^{W}(G)$$
(3)

together with the internal inductive limit topology of the Banach spaces $E_{K,L}(G)$.

Proposition 2.1.

If w satisfies the (B.D) condition then to every compact subset $\widehat{K} \subset \widehat{G}$ there is a constant $C_K > 0$ such that for every $f \in A^p_{w,\omega}(G)$ whose Fourier transform vanishes outside of \widehat{K} satisfies

$$\|\mathbf{f}\|_{\mathbf{w}_0}^p \le \mathbf{C}_{\mathbf{K}}^{\bullet} \cdot \|\mathbf{f}\|_{\mathbf{w}}. \tag{1}$$

Proof. Since the (B.D) condition is satisfied, then for given any compact subset $\widehat{K} \subset \widehat{G}$ one can find a function $g \in A^p_{w,\omega}(G)$ such that

 $\widehat{\mathbf{q}}(\mathbf{x}) = 1$ for all $\mathbf{x} \in \widehat{\mathbf{K}}$. Take $\mathbf{f} \in A^p_{\mathbf{w},\omega}(G)$ satisfying supp $\widehat{\mathbf{F}} \subset \widehat{\mathbf{K}}$. Hence we have $\mathbf{f} * \mathbf{g} \in A^p_{\mathbf{w},\omega}(G)$ and

$$\| f * g \|_{w\omega}^{p} \le \| f \|_{1,w} \cdot \| g \|_{w,\omega}^{p}$$
 (2)

because $A_{w,\omega}^p(G)$ is a module over $f\in L_w^1(G),$ ([3]). If we set $C_{\widehat{K}}=\|g\|_{w,\omega}^p(G)$ then find

$$\|f * g\|_{w,\omega}^{p} \le C_{\hat{K}} \cdot \|f\|_{1,w}.$$
 (3)

Because the hypothesis, supp $\hat{F} \subset \widehat{K}$ and $\hat{g}(\hat{x}) = 1$ over \widehat{K} , we write $f^* g = \hat{f}$. $\hat{g} = \hat{f}$. Hence combining (2) and (3) we have

$$\|f\|_{w,\omega}^p = \|f * g\|_{w,\omega}^p \le C_{\hat{K}} \cdot \|f\|_{1,w}.$$
 (4)

Lemma 2.2. If w satisfies the (B.D) condition, then the norms $\|\bullet\|_{1,w}$ and $\|\bullet\|_{w,\omega}^p$ are equivalent on $\bigwedge_{K,L}^W(G)$.

Proof. It is easy to see that $\bigwedge_{K,L}^W(G) \subset A_{w,\omega}^p(G)$ by the Theorem 4.2. in [2]. Let $f \in \bigwedge_{K,L}^W(G)$ be given. Since supp $\widehat{F} \subset \widehat{K}$, by the proposition 2.1, one can find a constant $C_L^{\bullet} > 0$ such that

$$\|f\|_{w,\omega}^p \le C_{\hat{L}} \cdot \|f\|_{1,w}$$

It is also known that

$$\|f\|_{1,\mathbf{w}} \leq \|f\|_{\mathbf{w},\omega}^{\mathbf{p}}$$

Therefore these two norms are equivalent on $\bigwedge_{K,L}^{W}(G)$

Theorem 2.3. If w satisfies (B.D) then

- 1) $E^{W}(G)$ is continuously embedded into $A^{p}_{w,o}(G)$,
- 2) $E^W(G)$ is everywhere dense in $\wedge_K^W(G)$ with respect to the norms $\|\bullet\|_{1,w}$ and $\|\bullet\|_{w,\omega}^p$.
 - 3) $E^W(G)$ is everywhere dense in $A^p_{w,\omega}(G)$.

Proof.

1) Let $u \in E^W(G)$. Then $u \in E^W_{k,\widehat{L}}(G)$ for a pair K, \widehat{L} , where K and \widehat{L} are compact subsets of G and \widehat{G} , respectively. Then u can be represent as

$$u = \sum_{k=1}^{\infty} f_{k} * g_{k} , f_{k} \in K_{K}(G) , \hat{g} \in K_{L}(\widehat{G}),$$
with
$$\sum_{k=1}^{\infty} \|f_{k}\|_{\infty} * \|g_{k}\|_{1,w} < \infty$$
(1)

Since L_w(G) is a Banach convolution algebra then we write

$$\| \mathbf{u} \|_{1,\mathbf{w}} \le \sum_{k=1}^{\infty} \| \mathbf{f}_k * \mathbf{g}_k \|_{1,\mathbf{w}} \le \sum_{k=1}^{\infty} \| \mathbf{f}_k \|_{1,\mathbf{w}} \cdot \| \mathbf{g}_k \|_{1,\mathbf{w}}$$
 (2)

$$\leq M \cdot \sum_{k=1} \| f_k \|_{\infty} \cdot \| g_k \|_{1,w}$$
 (3)

where $M = \sup_{x \in K} |W(x)|$. $\mu(K)$ and $\mu(K)$ is the measure of K. Also we have

$$\begin{aligned} & \left\| \widehat{\mathbf{u}} \right\|_{p,\omega} = \left\| \left\| \sum_{k=1}^{\infty} \widehat{\mathbf{f}}_{k} \cdot \widehat{\mathbf{g}}_{k} \right\|_{p,\omega} \leq \sum_{k=1}^{\infty} \left\{ \int_{\widehat{\mathbf{L}}} \left| \widehat{\mathbf{f}}_{k}(\mathbf{x}) \cdot \widehat{\mathbf{g}}_{k}(\mathbf{x}) \right|^{p} \cdot \omega^{p}(\mathbf{x}) d\mathbf{x} \right\}^{\frac{1}{p}} \\ & \leq \sum_{k=1}^{\infty} \left\| \widehat{\mathbf{f}}_{k} \cdot \widehat{\mathbf{g}}_{k} \right\|_{\infty} \cdot \left\{ \int_{\widehat{\mathbf{L}}} \cdot \omega^{p}(\mathbf{x}) d\mathbf{x} \right\}^{\frac{1}{p}} \leq \sum_{k=1}^{\infty} \left\| \mathbf{f}_{k} * \mathbf{g}_{k} \right\|_{1} \cdot \left\{ \int_{\widehat{\mathbf{L}}} \cdot \omega^{p}(\mathbf{x}) d\mathbf{x} \right\}^{\frac{1}{p}} \\ & \leq \sum_{k=1}^{\infty} \left\| \mathbf{f}_{k} \right\|_{\infty} \cdot \left\| \mathbf{g}_{k} \right\|_{1} \cdot \left\{ \int_{\widehat{\mathbf{L}}} \cdot \omega^{p}(\mathbf{x}) d\mathbf{x} \right\}^{\frac{1}{p}} \cdot \mu(\mathbf{K}) = \mathbf{N} \sum_{k=1}^{\infty} \left\| \mathbf{f}_{k} \right\|_{\infty} \cdot \left\| \mathbf{g}_{k} \right\|_{1,w} \end{aligned} \tag{4}$$

where
$$N = \left\{ \int_{\widehat{L}} . \omega^p(x) dx \right\}^{\frac{1}{p}} . \mu(K)$$

If one uses (3) and (4) obtains that $E^W(G) \subset A^p_{w,\omega}(G)$. Also by the Lemma 2.2 and (2), (4) the restriction of the identity map i from $E^W(G)$ into $A^p_{w,\omega}(G)$ to every subspace $E^W_{K,L}(G)$ is continuous. Hence i is a continuous embedding from $E^W(G)$ into $A^p_{w,\omega}(G)$.

2) It is easy to see the inclusion $E^W(G) \subset \bigwedge_K^W(G)$. For the proof of denseness of $E^W(G)$ in $\bigwedge_K(G)$ with respect to the norm $\|\bullet\|_{1,w}$ take any function $h \in \bigwedge_K(G)$. Because the definition of $\bigwedge_K(G)$ there exists a compact subset $\hat{L} \subset \hat{G}$ such that $\hat{h} \in K_{\hat{L}}(\hat{G})$. Since w has (B.D) condition then $\bigwedge_K(G) \subset A^p_{w,\omega}(G)$ has an approximate identity $(e_\alpha)_{\alpha \in I}$ bounded in $L^1_w(G)$ with compactly supported Fourier transforms [2]. $L^1_w(G)$ also has another approximate identity $(u_\beta)_{\beta \in J}$ with compactly supported [6]. Hence

$$h * e_{\alpha} * u_{\beta} = u_{\beta} * h * e_{\beta} \in E^{W}(G),$$

for all β∈ J and

$$\left\|\mathbf{h}^* \ \mathbf{e}_{\alpha} \ ^* \ \mathbf{u}_{\beta} \mathbf{-h}\right\|_{1,\mathbf{w}} \leq \left\|\mathbf{h} \ ^* \ \mathbf{e}_{\alpha} \ ^* \ \mathbf{u}_{\beta} \mathbf{-h} \ ^* \ \mathbf{e}_{\alpha}\right\|_{1,\mathbf{w}} + \left\|\mathbf{h} \ ^* \ \mathbf{e}_{\alpha} \mathbf{-h}\right\|_{1,\mathbf{w}} \to 0.$$

Also since by the Lemma 2.2. the norms $\|\bullet\|_{1,w}$ and $\|\bullet\|_{w,\omega}^p$ are equivalent on $\wedge_{K,L}(G)$ for each pair (K,L), then it is easy to see that $E^W(G)$ is everywhere dense in $\wedge_K^W(G)$ with respect to the norm $\|\bullet\|_{w,\omega}^p$.

3) We know that $A^p_{w,\omega}(G)$ has an approximate identity bounded in the norm $L^1_w(G)$ ([2], Theorem 4.2). Using this approximate identity, a simple calculation shows that $\bigwedge^W_K(G)$ is everywhere dense in $A^p_{w,\omega}(G)$. If one combines this result with the first part of this theorem, observe that $E^W(G)$ is everywhere dense in $A^p_{w,\omega}(G)$.

Proposition 2.4. If $1 \le p < \infty$ then

1) $L^1_{w}(G) \times L^p_{\omega}(\widehat{G})$ is a Banach space with the norm

$$||(f,g)|| = ||f||_{1,w} + ||g||_{p,\omega}$$

where $(f,g) \in L^1_{w}(G) \times L^p_{\omega}(\widehat{G})$.

- 2) $A_{w,\omega}^{p}(G)$ is a closed subspace of the space $L_{w}^{1}(G) \times L_{\omega}^{p}(\widehat{G})$.
- 3) Every bounded linear functional F on $A^p_{\ w,\omega}(G)$ is represented by the formula

$$\begin{split} F(f) &= \int_G f(x) \ \varphi \ (x) dx \ + \ \int_G \widehat{f}(y) \ \psi \ (y) dy \\ \text{where } f \in A^p_{w,\omega}(G) \ , \ (\varphi,\!\psi) \in L^\infty_{W^{-1}}\!(G) \ x \ L^q_{\omega^{-1}}\!(\widehat{G}) \\ \text{and } \frac{1}{p} + \frac{1}{q} = 1. \end{split}$$

Proof. The proof of (1) is easy. For the proof of (2), define function $\phi_p(f) = (f, \hat{f})$ from $A^p_{w,\omega}(G)$ into $L^1_w(G) \times L^p_\omega(\widehat{G})$. ϕ_p is an isometry and $A^p_{w,\omega}(G) \hookrightarrow L^1_w(G) \times L^p_\omega(\widehat{G})$. This proves part (2).

Since $\frac{1}{p}+\frac{1}{q}=1$, then the topological dual of $L^1_{\ w}(G)\times L^p_{\ \omega}(\widehat{G})$ is isomorphic to $L^q_{\ w}(G)\times L^q_{\ \omega}(\widehat{G})$ and every continuous linear functional on $L^1_{\ w}(G)\times L^q_{\ \omega}(\widehat{G})$ is represented by

$$F(f) = \int\limits_{G} f(x) \ \varphi \ (x) dx \ + \ \int\limits_{\widehat{G}} \widehat{f}(y) \ \psi \ (y) dy \tag{1}$$

$$(\varphi, \psi) \in L_{W^{-1}}^{\infty}(G) \times L_{\omega^{-1}}^{q}(\widehat{G}) \ . \ \text{Because the fact (2) and by the Hahn Banach theorem, every continuous linear functional on $A^{p}_{w,\omega}(G)$ is also represented by the formula (1).}$$

Proposition 2.5. If $\gamma \in (A^p_{w,\omega}(G))'$ and $f,g \in A^p_{w,\omega}(G)$, then we have

$$\langle f * g, \gamma \rangle = \int_G f(y) \cdot \langle \tau_y g, \gamma \rangle dy$$
,

where τ_y is the translation operator defined by τ_y g(x) = g(x-y).

Proof. By the proposition 2.4. we write

$$\langle f^*g, \gamma \rangle = \int_G (f^*g)(x) \phi(x) dx = \int_G \widehat{(f^*g)}(t) \psi(t) dt, \qquad (1)$$

where $(\phi,\psi) \in L_{W^{-1}}^{\infty}(G) \times L_{\omega^{-1}}^{q}(\widehat{G})$ and $\frac{1}{p} + \frac{1}{q} = 1.$ A simple calculation shows that

$$\int_{G} (f^*g)(x) \phi(x)dx = \int_{G} f(y) \langle \tau_y g, \phi \rangle dy$$
 (2)

and

$$\int_{\widehat{G}} \widehat{(f^*g)} (t) \psi (t) dt = \int_{\widehat{G}} f(t) \langle \widehat{\tau_y g}, \psi \rangle dy \tag{3}$$

If one combines these results obtains
$$\langle f^*g, \gamma \rangle = \int\limits_G f(t) \left\langle \tau_y g, \ \phi \right\rangle dt \ + \int\limits_{\widehat{G}} f(t) \left\langle \widehat{\tau_y g}, \psi \right\rangle dt =$$

$$= \int\limits_G f(t) \left\langle \left\langle \tau_y g, \ \phi \right\rangle + \left\langle \widehat{\tau_y g}, \ \psi \right\rangle \right\rangle dt \ = \int\limits_G f(t) \left\langle \tau_y g, \gamma \right\rangle dt.$$

Proposition 2.6. Let $h \in \bigwedge_{K}^{u}(G)$. If w is symmetric and $u \in E^{W}(G)$, then $u \to \widetilde{h}^*u$ is a continuous function from $E^W(G)$ into $E^W(G)$, where $\tilde{h}(x) = h(-x).$

Proof. Let $u \in E^W(G)$. There is a pair (K, \hat{L}) such that $f_k \in K_K(G)$, $\hat{g}_{k} \in K_{\hat{I}}(\hat{G}),$

$$u = \sum_{k=1}^{\infty} f_k * g_k \text{ and } \sum_{k=1}^{\infty} ||f_k||_{\infty} . ||g_k||_{1,w} < \infty .$$
 (1)

Since \tilde{h} , $f_k \in L_W(G)$ then we have

$$\widetilde{h} * u = \sum_{k=1}^{\infty} f_k * (\widetilde{h} * g_k)$$
 and

$$\sum_{k=1}^{\infty} \|\mathbf{f}\|_{\infty} \|\widetilde{\mathbf{h}} * \mathbf{g}_{k}\|_{1,\mathbf{w}} \le \|\widetilde{\mathbf{h}}\|_{1,\mathbf{w}} \sum \|\mathbf{f}_{k}\|_{\infty} \cdot \|\mathbf{g}_{k}\|_{1,\mathbf{w}} < \infty$$
 (2)

Hence $\tilde{h} * u \in E^W(G)$. For the continuity, it is enough to show the restriction of the mapping $u \to \tilde{h} * u$ to each $E_{K,\tilde{L}}^W(G)$ is continuous. But this is immediate because if $\|u_n - u\|_{K,\tilde{L}}^W \to 0$ then we have

$$\left\|\widetilde{\mathbf{h}} * \mathbf{u}_{\mathbf{n}} - \widetilde{\mathbf{h}} * \mathbf{u}\right\|_{\mathbf{K},\widehat{\mathbf{L}}}^{\mathbf{W}} \le \left\|\widetilde{\mathbf{h}}\right\|_{1,\mathbf{w}} \cdot \left\|\mathbf{u}_{\mathbf{n}} - \mathbf{u}\right\|_{\mathbf{K},\widehat{\mathbf{L}}} \to 0. \tag{3}$$

The proof of the following proposition is clear because of the Theorem 2.3. and Proposition 2.1.

Proposition 2.7. If w satisfies the (B.D) then we have $(A^p_{w,\omega}(G))' \subset (E^W(G))'$, where $(A^p_{w,\omega}(G))'$ and $(E^W(G))'$ are topological duals of $A^p_{w,\omega}(G)$ and $E^W(G)$ respectively.

Definition 2.8. Let $f \in \wedge_K^W(G)$, $\sigma \in (E^W(G))'$ and w be a symmetric Beurling's weight. We are going to define the convolution $\sigma * f$ to be

$$\langle \mathbf{u}, \sigma^* \mathbf{f} \rangle = \langle \mathbf{f}^* \mathbf{u}, \sigma \rangle \tag{1}$$

where $u \in E^W(G)$. It is easly seen that (1) is well defined because the Proposition 2.6.

Let w be a symmetric weight and $v \in (E^W(G))'$. Then the linear fractional $\widetilde{v} \in (E^W(G))'$ is defined to be $\langle u, \widetilde{v} \rangle = \langle \widetilde{u}, v \rangle$ for all $u \in E^W(G)$.

3. MULTIPLIERS ON THE SPACE Ap (G).

Definition 3.1. A multipliers on $A^p_{w,\omega}(G)$ is a bounded linear operator T on $A^p_{w,\omega}(G)$ which commutes with translation operators, that is $T\tau_s = \tau_s T$ for each $s \in G$. The space of all multipliers on $A^p_{w,\omega}(G)$ will be denoted by $M(A^p_{w,\omega}(G))$.

Proposition 3.1. If $T \in M(A^p_{w,\omega}(G))$, then $T(f^*g) = Tf^*g$ for all f, $g \in A^p_{w,\omega}(G)$.

Proof. Take any $T \in M(A^p_{w,\omega}(G))$, $f \in A^p_{w,\omega}(G)$ and $\gamma \in (A^p_{w,\omega}(G))'$. It is easy to prove that the map $f \to \langle Tf, \gamma \rangle$ is a continuous linear functional on $A^p_{w,\omega}(G)$. Then there exists $\psi \in (A^p_{w,\omega}(G))'$ such that $\langle f, \psi \rangle = \langle Tf, \gamma \rangle$ for all $f \in A^p_{w,\omega}(G)$. By the Proposition 2.5. one can write

$$\begin{split} &\langle Tf^*g, \gamma \rangle = \int_G g(y) \ \ \langle \tau_y Tf, \ \ \gamma \rangle dy \\ &= \int_G g(y) \ \ \langle T\tau_y f, \gamma \rangle dy = \int_G g(y) \ \ \langle \tau_y f, \psi \rangle dy \\ &= \langle f^*g, \psi \rangle = \langle T(f^*g), \gamma \rangle. \end{split}$$

Using the Hahn Banach theorem we obtain $Tf^*g = T(f^*g)$ for every $f,g \in A^p_{w,\omega}(G)$.

Theorem 3.2. Let w be a symmetric weight on G satisfying (B.D). If $T \in M(A^p_{w,\omega}(G))$, then there exists a unique continous linear functional $\sigma \in (E^W(G))'$ such that $Tf = \sigma * f$ for all $f \in \wedge_K^W(G)$.

Proof. If $u \in E_{K,\hat{L}}^{W}(G)$ then one writes

$$u = \sum_{k=1}^{\infty} f_k * g_k \tag{1}$$

for some $f_k \in K_{\underline{K}}(G)$ and $g_k \in L^1_w(G)$ satisfying $\hat{g}_k \in K_{\underline{L}}(\widehat{G})$. By the Proposition 2.1. we have

$$\begin{aligned} & \left| \left(f_{k} * Tg_{k} \right) (0) \right| \leq \left\| f_{k} \right\|_{\infty} . \left\| Tg_{k} \right\|_{1} \leq \left\| f_{k} \right\|_{\infty} . \left\| Tg_{k} \right\|_{w,\omega}^{p} \\ & \leq C_{\hat{L}} . \left\| T \right\| \left\| f_{k} \right\|_{\infty} . \left\| g_{k} \right\|_{1,w}. \end{aligned} \tag{2}$$

Hence the series

$$\sum_{k=1}^{\infty} f_k * Tg_k (0),$$

converges uniformly. If we set

$$v(u) = \sum_{k=1}^{\infty} f_k * Tg_k (0),$$

then it is easy to see that v is well defined in the following means: If

$$\sum_{k=1}^{\infty} f_k * g_k$$

is a representation of 0 as an element of $E_{K,L}^{W}(G)$ then

$$\sum_{k=1}^{\infty} f_k * Tg_k (0) = 0$$

Using the formula (2) one obtains

$$|v(u)| \le C_{\hat{L}} \|T\| \cdot \|u\|_{K\hat{L}}$$

for all $\upsilon \in E_{K,\widehat{L}}^W(G)$. Therefore $\upsilon \in (E^W(G))'$. Hence we have $\langle u,\widetilde{\upsilon}^*f\rangle = \langle \widetilde{f}^*u,\widetilde{\upsilon}\rangle = \langle f^*\widetilde{u},\upsilon\rangle = \widetilde{u}^*Tf(0) = \langle u,Tf\rangle$ for all $u \in E^W(G)$ and $f \in \bigwedge_K (G)$. That means $Tf = \widetilde{\upsilon}^*f$ for each $f \in \bigwedge_K (G)$. We set $\sigma = \widetilde{u}$

Also since w satisfies (B.D), then there is a bounded approximate identity (e_{α}) in $L^1_{w}(G)$ ([2] Th. 4.2.). Let

$$h = \sum_{k=1}^{\infty} f_k * g_k \in E^W(G)$$

be given. Then there exists a pair (K, \hat{L}) such that $h \in E_{K,\hat{L}}^{W}(G)$. Since

$$\|\mathbf{e}_{\alpha} * \mathbf{g}_{\mathbf{k}} - \mathbf{g}_{\mathbf{k}}\|_{1,\mathbf{w}} \rightarrow 0,$$

using the equality

$$\begin{aligned} & \left\| \mathbf{e}_{\alpha} \ ^{*} \ \mathbf{h} \ ^{-} \ \mathbf{h} \right\|_{\mathbf{K},\widehat{\mathbf{L}}}^{\mathbf{W}} \ = \ \left\| \sum_{k=1}^{\infty} \ \mathbf{f}_{k} \ ^{*} \ \left[\left(\mathbf{e}_{a} \ ^{*} \ \mathbf{g}_{k} \right) \ ^{-} \ \mathbf{g}_{k} \right]_{\mathbf{K},\widehat{\mathbf{L}}}^{\mathbf{W}} \\ & = \ \inf \ \sum \ \left\| \mathbf{f}_{k} \right\|_{\infty} \ . \ \left\| \mathbf{e}_{\alpha} \ ^{*} \ \mathbf{g}_{k} \ ^{-} \ \mathbf{g}_{k} \right\|_{1,\mathbf{W}}. \end{aligned}$$

one easily shows that the set

$$\left\{f * h \middle| f \in \bigwedge_{K}^{W}(G), h \in E^{W}(G)\right\}$$
(3)

is dense in $E^{W}(G)$.

Assume that s is not unique. Then there exists $\sigma, \sigma' \in (E^W(G))'$ such that $Tf = \sigma * f = \sigma' * f$. Hence we have $\langle f * h, \sigma \rangle = \langle f * h, \sigma' \rangle$ for all $f \in \bigwedge_K^W(G)$ and $h \in E^W(G)$. Using the denseness of (3) in $E^W(G)$ one obtains that $\sigma = \sigma'$. That means σ is unique.

We denote by A^{ω} the Banach algebra $H(L^{1}_{\omega}(\widehat{G}))$ with its natural norm $\|\hat{f}\|^{\omega} = \|f\|_{1,\omega}$, [12].

Proposition 3.3. If w and ω satisfy (B.D) then $\bigwedge_K^W(G)$ is dense in $A^{\omega}(G)$.

Proof. Since ω satisfies (B.D) then $\left(L_{\omega}^{1}(\widehat{G})\right)$ has a bounded Approximate identity (u,); (shortly BAI) whose Fourier transforms have compact support ([3], Th. 4.2.). So, it is easily proved that the set $A^{\omega}_{c}(G) = A^{\omega}(G)$ \cap K(G) is dense in A^{\omega}(G). Since W satisfies (B.D) then L¹_w(G) also has a BAI $(e_{\alpha})_{\alpha\in I}$ whose Fourier transforms have compact support. Suppose $\hat{f}\in A_{C}^{\omega}(G)$. Then $(e_{\alpha}*\hat{f})\subset \bigwedge_{K}^{W}(G)$ for all $\alpha\in I$. Again because the regularity of $F(L_{\omega}^{1}(\widehat{G}))$, given any compact subset $K_{0}\subset (\widehat{G})$ there exists $g\in \bigwedge_{K}^{W}(G)$ such that $\hat{g}(x)=1$ for all $x\in K_{0}$. Therefore we obtain

$$\begin{split} & \left\| \hat{\mathbf{e}}_{\alpha} - 1 \right\|_{\infty, K_{0}} = \sup_{\mathbf{x} \in K_{0}} \left| \hat{\mathbf{e}}_{\alpha}(\mathbf{x}) - 1 \right| \leq \left\| \hat{\mathbf{e}}_{\alpha} \cdot \hat{\mathbf{g}} - \hat{\mathbf{g}} \right\|_{\infty} \\ & \leq \left\| \mathbf{e}_{\alpha} * \mathbf{g} - \mathbf{g} \right\|_{1, \mathbf{w}} \to 0. \end{split} \tag{1}$$

we let $C_0 = C + 1$ where $\|e_{\alpha}\| \le C$, for all $\alpha \in I$. Since $\hat{f} \in A_c^{\omega}(G)$, then given $\varepsilon > 0$ there exists a compact subset $\kappa \subset \widehat{G}$ such that

$$\int\limits_{GK} |f(x)|\omega (x) dx < \frac{\epsilon}{2C_0}. \tag{2}$$
 Moreover, because the formula (1) there exists an $\alpha_0 \in I$ such that if

 $\alpha > \alpha_n$ then

$$\|\hat{\mathbf{e}}_{\alpha} - 1\|_{\infty, K} = \sup_{\mathbf{x} \in K} |\hat{\mathbf{e}}_{\alpha}(\mathbf{x}) - 1| < \frac{\varepsilon}{2\|\mathbf{f}\|_{1, \omega}}.$$
 (3)

Using (2) and (3) we have

$$\begin{split} & \left\| \hat{\mathbf{f}} - \mathbf{e}_{\alpha} * \hat{\mathbf{f}} \right\|^{\omega} = \left\| \mathbf{f} - \hat{\mathbf{e}} \cdot \mathbf{f} \right\|_{1,\omega} \\ & = \int_{\widehat{\mathbf{G}} \cdot \mathbf{K}} \left| f(\mathbf{x}) - \hat{\mathbf{e}}_{\alpha}(\mathbf{x}) f(\mathbf{x}) | \omega(\mathbf{x}) d\mathbf{x} + \int_{\mathbf{K}} \left| f(\mathbf{x}) - \hat{\mathbf{e}}_{\alpha}(\mathbf{x}) f(\mathbf{x}) | \omega(\mathbf{x}) d\mathbf{x} \right| \\ & \leq \left(1 + \left\| \hat{\mathbf{e}}_{\alpha} \right\|_{\infty} \right) \int_{\widehat{\mathbf{G}} \cdot \mathbf{K}} \left| f(\mathbf{x}) | \omega(\mathbf{x}) d\mathbf{x} + \left\| 1 - \hat{\mathbf{e}}_{\alpha} \right\|_{\infty, \mathbf{K}} \left\| \mathbf{f} \right\|_{1,\omega} \\ & \leq \left(1 + \mathbf{C} \right) \int_{\widehat{\mathbf{G}} \cdot \mathbf{K}} \left| f(\mathbf{x}) | \omega(\mathbf{x}) d\mathbf{x} + \left\| 1 - \hat{\mathbf{e}}_{\alpha} \right\|_{\infty, \mathbf{K}} \left\| \mathbf{f} \right\|_{1,\omega} \\ & \leq C_{0} \cdot \frac{\varepsilon}{2C_{0}} + \frac{\varepsilon}{2\left\| \mathbf{f} \right\|_{1,\omega}} \cdot \left\| \mathbf{f} \right\|_{1,\omega} = \varepsilon. \end{split}$$

Since $A_c^{\omega}(G)$ is dense in $A_c^{\omega}(G)$, then given any $\hat{g} \in A^{\omega}(G)$ one can find $f \in A_c^{\omega}(G)$ such that $\|\hat{f} - \hat{g}\|^2 < \epsilon$. Then

$$\left\|\hat{\mathbf{g}} - \mathbf{e}_{\alpha} * \hat{\mathbf{f}}\right\|^{\omega} \le \left\|\hat{\mathbf{g}} - \hat{\mathbf{f}}\right\|^{\omega} + \left\|\hat{\mathbf{f}} - \mathbf{e}_{\alpha} * \hat{\mathbf{f}}\right\|^{\omega} \le 2\varepsilon \tag{4}$$

for all $\alpha \ge \alpha$. This completes the proof.

Corollary 3.4. If w and ω satisfy the conditions in Proposition 3.3. then $\bigwedge_{\kappa}^{W}(G)$ is dense in A(G).

Proof. Suppose $\widehat{g} \in A(G)$. Since $K(\widehat{G})$ is everywhere dense in $L^1(\widehat{G})$, then given any $\varepsilon > 0$ there exists $h \in K(\widehat{G}) \subset L^1_{\omega}(\widehat{G})$ such that

$$\left\|\hat{\mathbf{g}} - \hat{\mathbf{h}}\right\|_{\mathbf{A}} = \left\|\mathbf{g} - \mathbf{h}\right\|_{1} < \frac{\varepsilon}{2} \ . \tag{1}$$

Hence by the Proposition 3.3. one can find $k \in \bigwedge_{K}^{W}(G)$ such that

$$\left|\mathbf{k} - \hat{\mathbf{h}}\right|_{\mathbf{A}} \le \left|\mathbf{k} - \hat{\mathbf{h}}\right|^{\omega} < \frac{\varepsilon}{2} \ . \tag{2}$$

Combining (1) and (2) we have

$$\left\|\hat{\mathbf{g}} - \mathbf{k}\right\|_{\mathbf{A}} \le \left\|\hat{\mathbf{g}} - \hat{\mathbf{h}}\right\|_{\mathbf{A}} + \left\|\hat{\mathbf{h}} - \mathbf{k}\right\|_{\mathbf{A}} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \tag{3}$$

This proves our Corollary.

Now we recall that A(G) is a Banach algebra under pointwise multiplication operation with the norm $\|\hat{f}\|_A = \|f\|_1$. Every continuous linear functional on A(G) is called a pseudomeasure.

Proposition 3.5. If A'(G) denotes the algebra of all pseudomeasures on G, then $A'(G) \subset (E^W(G))'$.

Proof. Suppose that $u \in E^W(G)$. Then there exists a pair (K, \hat{L}) of compact sets such that $u \in E_{K\hat{L}}(G)$. We also have

$$\begin{aligned} \|\mathbf{u}\|_{\mathbf{A}} &= \left\| \sum_{\mathbf{k}=1}^{\infty} \mathbf{f}_{\mathbf{k}} * \mathbf{g}_{\mathbf{k}} \right\|_{\mathbf{A}} \leq \sum_{\mathbf{k}=1}^{\infty} \|\mathbf{f}_{\mathbf{k}} * \mathbf{g}_{\mathbf{k}}\|_{\mathbf{A}} = \sum_{\mathbf{k}=1}^{\infty} \|\mathbf{f}_{\mathbf{k}} * \mathbf{g}_{\mathbf{k}}\|_{1} \\ &= \sum_{\mathbf{k}=1}^{\infty} \|\mathbf{f}_{\mathbf{k}} \cdot \hat{\mathbf{g}}_{\mathbf{k}}\|_{\mathbf{A}} \leq \sum_{\mathbf{k}=1}^{\infty} \|\mathbf{f}_{\mathbf{k}}\|_{\infty} \cdot \|\hat{\mathbf{g}}_{\mathbf{k}}\|_{\infty} \cdot \mu(\hat{\mathbf{L}}). \end{aligned} \tag{1}$$

If one combines the inequality

$$\|\hat{\mathbf{f}}\|_{\infty} \le \|\mathbf{f}\|_{1} \le \|\mathbf{f}\|_{\infty} \cdot \mu(\mathbf{K})$$

with (1), obtains

$$\left\|\mathbf{u}\right\|_{A} \, \leq \, \sum_{k=1}^{\infty} \, \left\|\mathbf{f}_{k}\right\|_{\infty} \, \, . \, \, \left\|\hat{\mathbf{g}}_{k}\right\| \, \, . \, \, \, \mu(\hat{\mathbf{L}}) \, \, . \, \, \mu(K)$$

 $\leq \sum_{k=1}^{\infty} \|f_k\|_{\infty} \cdot \|g_k\|_1 \ \mu(\hat{L}) \ \cdot \mu(K) \leq \sum_{k=1}^{\infty} \|f_k\|_{\infty} \cdot \|g_k\|_{1,w} \ \mu(\hat{L}) \cdot \mu(K) < \infty. \tag{3}$ That means $E^W(G) \subset A(G)$. Now if $\sigma \in A'(G)$ and $u \in E^W_{K,\hat{L}}(G)$ then we

$$|\langle u,\sigma\rangle| \leq \|\sigma\|\cdot\|u\|_A \leq \|\sigma\|\cdot\sum_{k=1}^\infty \|f_k\|_\infty\cdot\|g_k\|_{1,w} \ \mu(\hat{L}) \ . \ \mu(K).$$

Therefore

$$|\left\langle u,\sigma\right\rangle |\,\leq\, \|\,\sigma\,\|\,\,.\,\,\|\,u\,\|_{k,\widehat{L}}^{W}\,\,\mu(\widehat{L})\mu(K)$$

Since σ is continuous on every $E_{K,\hat{L}}^W(G)$ then $\sigma \in (E^W(G))$. This completes the proof.

Theorem 3.6. Assume that w and ω satisfy (B.D) and W is symmetric. If $T \in M(A^p_{w,\omega}(G))$, then there exists a unique pseudo-measure $\sigma \in A'(G)$ such that $Tf = \sigma * f$ for all $f \in A^p_{w,\omega}(G)$.

Proof. Suppose that $T \in M(A^p_{w,\omega}(G))$. By the proposition 3.1, we have T(f *g) = Tf * g for all $f, g \in A^{p}_{w,o}(G)$, since $A^{p}_{w,o}(G)$ is commutative it is easy to see that Tf * g = f * Tg for all $f, g \in A^{p}_{w,o}(G)$. Then we write $(Tf)^{\hat{}}.\hat{g} = \hat{f}$. $(Tg)^{\hat{}}$. Since W satisfies (B.D) then $A_{wo}^{p}(G)$ has an approximate identities ([4], Theorem 4.2). Also it is known that A^p_{w.o.}(G) is a Banach convolution algebra ([4], Theorem 2.1). Hence A^p_{w.o.}(G) is a commutative Banach algebra without order (i.e if for all $f \in A^{p}_{w,m}(G)$, $f * A^{p}_{w,m}(G) = 0$ then f = 0). Again since W satisfies (B.D) then the regular maximal ideal space of $L^1_{w}(G)$ is the dual group \widehat{G} ([2], pp.15 and Theorem 2.11). It is also known that in the case W satisfies (B.D) condition the regular maximal ideal space of L¹_w(G) is homeomorphic to the one of $A_{w,\omega}^{p}(G)$, ([5], Th. 1.16), which implies that the regular maximal ideal space of $A_{w,o}^{p}(G)$ is the dual space \widehat{G} . Then there exists a unique bounded continuous function Φ on \widehat{G} such that $(Tf)^{\hat{}}(y)$ = $\Phi(y)$, $\hat{g}(y)$ for all $g \in A^p_{w,\omega}(G)$ by the Theorem 1.2.2. in [11], If $f \in \bigwedge^W_K(G)$ then $Tf \in L^1_w(G)$ and $(Tf)^{\hat{}} = \Phi.\hat{f} \in K(\widehat{G})$. Therefore $\bigwedge^W_K(G)$ is invariant under T. Since every element of $\bigwedge_{K}^{"}(G)$ is continuous (see introduction) then we can define a linear functional on $\bigwedge_{K} (G)$ as L(f) =Tf(0) for all $f \in \bigwedge_{K} (G)$. Also we write.

$$|L(f)| = |Tf(0)| \le ||Tf||_{\infty}$$
(1)

Since $Tf \in \bigwedge^W_K(G) \subset A(G)$ then there exists $g \in L^1(G)$ such that $\hat{g} = Tf$. If one uses the inequalities $\hat{g} = g$ and $|g|_1 = |g|_1$ writes

$$\left\|\widehat{\mathbf{H}}\right\|_{1} = \left\|\widehat{\widehat{\mathbf{g}}}\right\|_{1} = \left\|\widehat{\mathbf{g}}\right\|_{1} = \left\|\mathbf{g}\right\|_{1} \tag{2}$$

where $\widetilde{g}(x) = g(-x)$. Now if we combine (1) and (2) obtain

$$\begin{aligned} |L(\mathbf{f})| &\leq ||\mathbf{T}\mathbf{f}||_{\infty} = ||\hat{\mathbf{g}}||_{\infty} \leq ||\mathbf{g}||_{1} = ||\widehat{\mathbf{T}}\mathbf{f}||_{1} \\ &= ||\Phi\hat{\mathbf{f}}||_{\infty} \leq ||\Phi||_{\infty} \cdot ||\mathbf{f}||_{1} = ||\Phi||_{\infty} \cdot ||\hat{\mathbf{f}}||_{1} = \\ &= ||\Phi||_{\infty} \cdot ||\hat{\hat{\mathbf{f}}}||_{A} = ||\Phi||_{\infty} \cdot ||\mathbf{f}||_{A}. \end{aligned}$$

$$(3)$$

Thus L is a continuous linear functional on $\bigwedge_K^W(G)$. Since $\bigwedge_K^W(G)$ is dense in A(G) by the Corollary 3.4., then L can be extended uniquely as a continuos linear functional on A(G). Hence there exists a unique pseudo-measure σ such that

$$L(f) = Tf(0) = \langle f, \widetilde{\sigma} \rangle \tag{4}$$

for all $f \in \bigwedge_K^W(G)$. Then $Tf = \sigma * f$ for all $f \in \bigwedge_K^W(G)$. An examination proof of Theorem 3.2 and proposition 3.5 show that σ is a pseudo measure and is unique. Hence to complete the proof of this theorem it remains to show that $Tf = \sigma * f$ holds for all $f \in A^p_{w,\omega}(G)$. Let f be any element of $A^p_{w,\omega}(G)$. If $(e_\alpha)_{\alpha \in I}$ is a bounded approximate identity for $A^p_{w,\omega}(G)$ choosen from $\bigwedge_K(G)$ ([4], Th. 4.2) then for each $f \in A^p_{w,\omega}(G)$ the net $(e_\alpha * f)$ is Cauchy net in $\bigwedge_K(G)$ and since $T(e_\alpha * f) = \sigma * (e_\alpha * f)$, we have

$$\|\sigma^{*}(e_{\alpha}^{*}f) - \sigma^{*}(e_{\beta}^{*}f)\|_{w,\omega}^{p}$$

$$\leq \|T(e_{\alpha}^{*}f) - T(e_{\beta}^{*}f)\|_{w,\omega}^{p} \leq \|T\| \|e_{\alpha}^{*}f - e_{\beta}^{*}f\|_{w,\omega}^{p}$$
(5)

which implies that $(\sigma * (e_{\alpha} * f))_{\alpha \in I}$ is a Cauchy net in $A^p_{w,\omega}(G)$ and converges to a function $F \in A^p_{w,\omega}(G)$. That means

$$\|\mathbf{F} - \mathbf{\sigma} * (\mathbf{e}_{\alpha} * \mathbf{f})\|_{\mathbf{w},\omega}^{\mathbf{p}} \to 0. \tag{6}$$

Again it is clear that $\sigma * f \in A'(G)$ because $f \in L^1(G)$ and $\sigma \in A'(G)$. If we use (6) and the relation

$$\begin{aligned} & \left\| \hat{\mathbf{F}} - \widehat{\boldsymbol{\sigma}} \mathbf{f} \right\|_{\infty} \leq \left\| \hat{\mathbf{F}} - \widehat{\boldsymbol{\sigma}} \left(\hat{\mathbf{e}}_{\alpha} \hat{\mathbf{f}} \right) \right\|_{\infty} + \left\| \widehat{\boldsymbol{\sigma}} \cdot \left(\hat{\mathbf{e}}_{\alpha} \hat{\mathbf{f}} \right) - \widehat{\boldsymbol{\sigma}} \mathbf{f} \right\|_{\infty} \\ & \leq \left\| \mathbf{F} - \boldsymbol{\sigma} * \left(\mathbf{e}_{\alpha} * \mathbf{f} \right) \right\|_{1} + \left\| \widehat{\boldsymbol{\sigma}} \right\|_{\infty} \cdot \left\| \mathbf{e}_{\alpha} * \mathbf{f} - \mathbf{f} \right\|_{1} \\ & \leq \left\| \mathbf{F} - \boldsymbol{\sigma} * \left(\mathbf{e}_{\alpha} * \mathbf{f} \right) \right\|_{\mathbf{w}, \omega}^{\mathbf{p}} + \left\| \widehat{\boldsymbol{\sigma}} \right\|_{\infty} \cdot \left\| \mathbf{e}_{\sigma} * \mathbf{f} - \mathbf{f} \right\|_{\mathbf{w}, \omega}^{\mathbf{p}} \end{aligned} \tag{7}$$

find that $\hat{F} = \hat{\sigma}$. \hat{f} . From the inversion theorem we write $F = \sigma * f$. Also we have

$$\begin{split} & \| Tf - \sigma * (e_{\alpha} * f) \|_{w,\omega}^{p} = \| Tf - T (e_{\alpha} * f) \|_{w,\omega}^{p} \\ & \leq \| T \| \| f - e_{\alpha} * f \|_{w,\omega}^{p} \rightarrow 0. \end{split} \tag{8}$$

Consequently it follows from (6), (7) and (8) that $Tf = F = \sigma^* f$ for all $f \in A^p_{w,\omega}(G)$. This completes the proof.

ACKNOWLEDGEMENT

The auther wants to thank H.G. Feichtinger for his significant suggestions in the original version of this paper.

REFERENCES

- BURNHAM, J.T., KROGSTAD, H.E., LARSEN, R., Multipliers and the Hilbert distribution, Nanta Mathematica, Vol. VIII, No 2., 95-103, 1975.
- [2] DOMAR, Y. Harmonic analysis based on certain commutative Banach algebras, Acta Math. 96(1956), I-56.
- [3] FEICHTINGER, H.G., Results on Banach ideals and spaces of multipliers, Math. Sacand, 41., (1977), (315,324).
- [4] FEICHTINGER, H.G. and GÜRKANLI, A.T., On a family of weighted convolution algebras, Internat. J. Math. and Math. Sci. Vol. 13, No.3, (1990).
- [5] FISCHER, R.H., GÜRKANLI, A.T. and LIU, T.S., On a family of weighted spaces, Math. Slovaca, 46(1996), No.1, 71-82.
- [6] GÜRKANLI A.T., Some results in the weighted A_p(IRⁿ) spaces, Demonstratio Mathematica Vol. 19/4 (1986), 825-830.
- [7] GAUDRY, G.I., Multipliers of weighted Lebesque and measure spaces, Proc. Lon. Math. Soc. (3), 19, (1969).
- [8] GAUDRY G.I., Quasimesures and operators commuting with convolution, Pacific Journal of Mathematics, Vol. 18, No.3, 1966.
- [9] QUANGZHONG, Q., Multipliers of Segal Algebras, Proceedings of the Analysis Conference 1986, Elsevier Science Publishers B.V. (North Holland) 1988.
- [10] KESAVA MURTY G.N. and UNNI, K.R., Multipliers on weighted spaces, Functional Analysis and its Applications International Conference, Madras, 1973, Lecture Notes in Mathematics, Springer Verlag 399.

- [11] LARSEN, R., Introduction to the Theory of Multipliers. Springer Verlag, 1971.
- [12] LARSEN, R., Tensor product factorization and multipliers, Preprint Series, Matematisk Intitutt, Universitetet i Oslo, ISBN 82-533-0180-1, 1974.
- [13] LARSEN, R., The multipliers for functions with Fourier transfroms in L_p, Math. Scand. 28 (1971), 215-225.
- [14] LARSEN, R., LIU, T.S. and WANK, J.K., On function with Fourier transforms in L., Michigan Math. J., 11, 369-378, 1964.
- [15] REITER, W., Classical Harmonic Analysis and Locally Compact Groups, Oxford University Press, Oxford, (1968).
- [16] RUDIN, W., Fourier Analysis on Groups, Inter science Publishers, New York, 1962.
- [17] UNNI, K.R., A note on multipliers on Segal algebra, Studia Mathematica, TXLIX. (1974), 125-127.
- [19] UNNI, K.R., Parameasures and multipliers of Segal algebras, Lecture notes in Mathematics # 399, Functional Analysis and its Applications International conference, Madras, 1973.
- [19] WANG, H.C., Homogeneous Banach Algebras, Marcell Dekker Inc., New York -Basel, 1977.
- [20] WARNER, C.R., Closed ideals in the group algebra $L^1(G) \cap L^2(G)$, Trans. Amer. Math. Soc. 121 (1996), 408-423.