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ABSTRACT

Let G be a locally compact Abelian group (nondiscrete and non compact) with dual
group G For 1 £ P < oo, AP(G) denotes the vector space of all complex-valued functions in
L(G) whose Fourier transforms f belong to LP(G). Research on the spaces AP(G) was
initiated by Warner (20] and Larsen, Liv and Wang [14]. Later several generalizations of
these spaces to the weighted case was given by Giirkanli [6], Feichtinger and Giirkanh [4]
and Fischer, Girkanh and Liu [5]. One of these generalization is the space Ap (G), [4].
Also the multipliers of AP(G) were discussed in some papers such as [14], [1], [13] 31, 19}
and proved that the space of multipliers of A (G) is the space of all bounded
complex-valued regular Borel measures on G. i

In the present paper we discussed the multipliers of the Banach algebra AP (G) and
proved that under certain conditions for given any multiplier T of Ap (G) there exists a
unique pseudo measure G such that Tf = o * f for all f € prm(G)

1. INTRODUCTION

Let G be a locally compact Abelian group with dual group 8 and let
dx and dX be Haar measures on these groups respectively. We denote by
K(G) the vector spaces of continuous functions on G with compact
support and K (G) the subclass of thoso functions in K(G) whose supports
are contalned in C. For - functions m LY(G) the Fourler Transform is
denoted by f or Ff. It is known that f is continuous on G which, vanish
at infinity and the 1nequahty|| lL <|f], is satisfied ([16], 1.2.4. Theorem).
We will denote the space of pseudo-measures by A'(G), ([11], pp.97).

We set for 1 £ p < oo,

Lo = {fif, w e L©)},
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where w is the Beurling’s weight function on G, ie. w is a continuous
function satisfying w(x) > 1 and w(x+y) < w(x). w(y) for all x, y € G.
It is known hat L? (G) is a Banach space under the norm

1
Ifl,,, = [ f ey’ . w"(x)de"

G
LIW(G) is called a Beurling algebra [15]. In some parts of the present

paper it is used an extra condition on W: A weight w is said to satisfy
the Beurling-Domar condition (Shortly. (BD)) if one has

> n’ log (w(nx)) < oo

n=1

for all x € G, [2].

It is known that regular maximal ideal space of LY(G) can be
identified with the space of all generalized characters | on G such that
M e L7 (G) and N £ aixlae, [19]. If w satisfies the (B.D) conditii)\n
the regular maximal ideal space of LY(G) is equal to the dual group G.
(c.g[2] pp.15 and Theorem 2.11).

Now we set
i@ = [t e Lol e (0},
MG = {f e /\z(G)rf € Kda)}

where I (a).Again AYG) will denote the linear subspace of LY(G)
consisting of those f € LYG) such that Afe Ll(a)_ It is known by the
proof of ([11] Th. 6.2.2) that A{G) c A(G), where

AQ@ = {t] r e L'(G)).

Since AM(G) < A'(G), then we have A(G) < A'(G) c A(G)

Again the Banach algebra pr’m(G) is defined to be the set of
functions f € L' (G) such that fe L:,(a) with the norm

leh, =1t +1%l, » 1sp<e,

where w and ® are Beurling’s weight functions on G and G, respectively
[4]. It is known that if w satisfies (BD), then the regular maximal ideal
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space of Llw(G) is homeomorphic to the one of pr,m(G), ([5], Theorem.
1.16). It is also known that if W satisfies (B.D) then the regular maximal
ideal space of LIW(G) is the dual group G ([2], pp.15 and theorem 2.11).
Then if WAsatisﬁes (BD), the regular maximal ideal of APW@(G) is the
dual space G.

2. THE SPACES EY(G) AND THEIR PROPERTIES

Let G be a local compact abelian group, K and L be the compact
subsets of G and G respectively. We define the vector space EKi(G) as
the space of all function u which can be represented as

oo

W= rg L e KO ,ge L, e K0 ®
k=1
with

> 6k, - lediw <
=1

If one endows it with the norm
\' Lo
i = inf S L - gk < =

then it is easy to see that Ef(vﬁG) becomes a Banach space under this
norm, whevge the infimum is taken over all representations of u as an
clement EKﬂG) . The proof is similar to that of Guadry [4] and Larsen
[5]). Now we define the vector space EV(G) to be

w w

E'@ = UE; © B

KL

together with the internal inductive limit topology of the Banach spaces E, i(G)

Proposition 2.1.

If w satisfies the (BD) condition then to every compact subsetK « G
there is a constant C, >0 such that for every fe AP (G) whose - Fourier
transform vanishes outs1de of K satisfies

I, < G - 11l @

Proof. Since the (BD) condition is satisfied, then for given any
compact subset K c ’é one can find a function g € pr 0)(G) such that
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'ci(x) =1 for all x € ﬁ Take fe AP o(Q) satisfying supp f? c K. Hence
we have f * g € AP (G) and

P P
It * el <IEl, lgl,, )

because APW@(G) is a module over f € LIW(G), ([3]). If we set Cp= ||g||$v,m(G)
then find

P
I * g"w,m <& . ﬂf||1,w~ (3)

Because the hypothesis, supp F c Kand g(x) = 1 over K, we write { % g =
f g = f Hence combining (2) and (3) we have

P, =16 * gl < G - Il @

Lemma 2.2. If w satisfies the (BD) condition, then the norms ||o||
and |je]]P wa Are equivalent on A z(G)

Proof. It is casy to see that Ay '(G) c A (G) by the Theorem 4.2.
in [2]. Let f € Ax i(G) be given. Smce supp F o K, by the proposition
2.1, one can find a constant ¢ > 0 such that

P

o< C 1],

It is also known that
P
I£l,, < Vel
w

Therefore these two norms are equivalent on AKJ',(G)

Theorem 23. If w satisfies (B.D) then

1) EY@G) is continuously embedded into APW o0

\
2) EW(G) is everywhere dense in /\K(G) with respect to the norms
loll, ,, and jelF°,

3) EY(G) is everywhere dense in AP (G).
Proof.

w ~ ~
1) Let u € EY(G). Then u e Eki(G) for a pair K, L, where K and L
are compact subsets of G and G, respectively. Then u can be represent as
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u—Zf g f € KO, 2 e KgG),

w1th
Z If L. * ey <= (1)
=]
Since LIW(G) is a Banach convolution algebra then we write
Iluﬂl,w = 2 Ifk * gk“l,w < 2 !fkgl,w * "gknl,w (2)
k=l k=l
<M. Y6 - Ted, 3)
k=1

where M = sup [W(x) . i(K) and p(K) is the measure of K. Also we have
xeK

1

’ZAf "k“p <y ’ |% ® . gk@l". o (x)dx }p
k=1 k: l

1

s kz—l%k . ghﬂ { ' (x)dx }E Z It * &d, -
]

p.@ =

L

1
j . P(x)dx }" )

I
ST {J o (x)ix } WO =N S Bk

where N =

[. o'@dx {. pE)

o |

If one uses (3) and (4) obtains that EW(G) c APw@(G). Also by the
Lemma 2.2 and (2), (4) the rcstriction of the identity map i from EY(G)
into AP (G) to every subspace EKn(G) is continuous. Hence 1 is a
contmuous embedding from EV(G) into AP (G)

2) It is easy to see tl%s inclusion EY(G) /\IV(V(G) For the proof of
denseness of EV(G) m A @) with respect to the norm [le||, , take any
function h S (G) Bccause the deﬁn1t1on of/\K(G) thcre exists a
compact subset L Gsuch that he KN G . Since w has (B.D) condition
then /\K(G) c AP, (G) has an approximate identity (e,),.; bounded in
L' (G) with compactly supported Fourier transforms [2]. L' (G) also has
another approximate identity (uﬁ)’SEJ with compactly supported [6]. Hence
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h*e, *ug=uy*h* eBeEW(G),

for all BeJ and

Ih* e, * ughll, < llh * ¢, * ugh * el + lIh * ehll , — 0.

B

Also since by the Lemma 2.2. the norms llefl, , and ||o||Pwm are
equivalent on g ,x',(G) for each pair (K,L), then it is casy to see that
EW(G) is everywhere dense in /\WK(G) with respect to the norm ||o||PW °

3) We know that AP (G) has an approximate identity bounded in
the norm LIW(G) ({2], Theorem 4.2). Using this approximate identity, a
simple calculation shows that /\WK(G) is everywhere dense in APW@(G). If
one combines this result with the first part of this theorem, observe that
EY(G) is everywhere dense in pr’m(G).

Proposition 24, If 1 < p < oo then
1) LXW(G) X me@) is a Banach space with the norm

eI = 1Al + ligll
where (fg) € L' (G) x I (@.
2) AP (G) is a closed subspace of the space L S0 % pr(a).

3) Every bounded linear functional F on AP (G) is represented by
the formula

FO = [ f0 ¢ (dx + | T5) v (dy

G G
where f € A*;,m(G) , (O) € I;I‘I(G) X L((lo'l(G)
andl+1=1.
P q

Proof. The proof of (1) is easy. For the proof of (2), define
function <|>P(f) = (P frolm pr, ((}) into LIW(G) X me(a). q)P is an
isometry and Al;, JO) = L (G) x L (G. This proves part (2).

Since 113+ L =1, then the topological dual of L} (G) x L (@) is
isomorphic to ]_;J-I(G) X L‘jn.,(a) and every continuous linear functional on
L' (G) x Lqmﬁ) is represented by
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A

F() = j f() ¢ (dx + j fy) v ¢)dy €]

W) € Lwl(G) x L} 1(G) Bccause the fact (2) and by the Hahn Banach
theorem, every continuous linear functional on A?_ (G) is also represented
by the formula (1).

Proposition 2.5. If ye (AP, (G))" and fg € AP (G), then we have
£ 3 _
If g,y)_Lf(y).(ryg,y)dy,

where T is the translation operator defined by T, g(x) = g(x-y).

Proof. By the proposition 2.4. we write

et = [ @000 ¢ (3= = j@) ® v O, W
1::16 @W) € LA@G) x L. 1(G) and L L % = 1.A simple calculation shows

[0 ¢ dx = [10) (1 204y @
and G G

[0 © v o = (108 vy 3

G G
If one combines these results obtains

gy = ff(t) (’c g, )dt + f(t) <1:yg,\|;>d =
= If(t) {(T g ) + <‘cyg \|l>}dt jf(t)(t g y)dt

Proposmon 26. Let he /\K(G) If w is symmetric and u € EV(G),
then u o h*u is a continuous function from EY(G) into EY(G), where
h(x) = h(-x).

Proof. Let u € EW(G). There is a pair (K,f,) such that f € Ky (G),
g € KO,
u=Yf *g and 3 i}, . lgdiw <= - M
k= =
Since h, f e L,(G) then we have
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Feu=yt*(f+g)
and k=1

glqlw HH * gljl,w < Ili:Jll,w Z “kaee ' Hgkyl,w < o (2)

~ W S _
Hence h*ue E (G). For the continuity, it is enough to show the restriction
of the mappingu — h*u to each E "(G)IS continuous. But thlS is immediate

because if uu - uuK ol O then we havc
A

ﬂh *u - h* uﬂK£ < Hl,w u, - dgt — 0. 3)
The proof of the following proposition is clear because of the
Theorem 2.3. and Proposition 2.1.

Proposition 2.7. If w satisfies the (B.D) then we have (Ap (G)) C
EYG)Y, where (AP, (G))’ and EYG)Y are topological duals of AP (G)
and E™(G) rcspectwely

w
Definition 2.8. Let f € A (G, ce (EV(G)) and w be a symmetric
Beurling’s weight. We are going to define the convolution ¢ * f to be

wo*) = (Fru0) 1)

where u € EV(G). It is casly seen that (1) is well defined because the
Proposition 2.6.

Let w be a symmetric weight and v € (EY(G)). Then the linear
foctional v e (E (G))’ls defined to be ( ,’6) <~ u,0 for all u e EV(G).

3. MULTIPLIERS ON THE SPACE pr@(G).

Definition 3.1. A multipliers on AP (G) is a bounded linear
operator T on AF’w (@) which commutes with translation operators, that is
Tt = 1T for each s € G. The space of all multipliers on AP (G) will

S

be denoted by M(APW »(O)).

Proposition 3.1. If T € M(A?_ (G)), then T(f*g) = Tpg for all f,
ge A (G
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Proof. Take any Te M(AP, (G)), f € AP, (G) and ¥ € (AP, (G)).
It is easy to prove that the map f — (Tfy) is a continuous linear
functional on pr,m(G)‘ Then there exists Yy € (APW,Q(G))’ such that {f,y)
= (Tfy) for all f € AP (G). By the Proposition 2.5. one can write

(Tergn} = [ 2 (5, TE My

= [ (TGryf,y)dy = [ 8 (5,bu)dy
= (P“g,\y) = (T(f*g),’?).

Using the Hahn Banach theorem we obtain Tf*g = T(f*g) for every
f.g € AP (G).

Theorem 3.2. Let w be a symmetric weight on G satisfying (B.D).
If T e M(A?, (G)), then there exists a unique covrvltinous linear functional
ce (EV(G)Y such that Tf = ¢ * f for all f € ALO).

w
Proof. If u € EKJ’:(G) then one writes

u=3f*g @
=}

for some f € K.(G) and g e L' (G) satisfying g, € KNG. By the
Proposition 2.1. we have

I(fk * Tgk) (0)] < “fk“w . uTgkﬂl <| fklleo . "Tgkﬂi,m
< Cf . ||T|| || kam : ﬁgkﬁl,w- )

Hence the series
> £ * Tg, ©),
=}

converges uniformly. If we set

wWu) =3 £ * Tg, ©),

k=1

then it is easy to see that v is well defined in the following means: If
IR
=l

. . w
is a representation of 0 as an element of EKJ':(G) then
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pIR T Tgk(0)=0
kel
Using the formula (2) one obtains

fo wf < Cp [ . ol 2

forallve E‘Z!{G) Therefore v € (EV(G)Y. Hence we have ‘Su,g*t) = (f*u,l) =
(t*u,l)) = U*Tf(0) = (uTY) for %{Il u € EVG) and f € Ag @) . That means
Tf=7v *f for each f A@) . We set 6 =1

Also since w satisfies (B.D), then there is a bounded approximate
identity () in LIW(G) ([2] Th. 42)). Let

= w
h=2fk*gke E G
k=1 R W
be given. Then there exists a pair (K,T,) such that h € EK,I/:(G)' Since
I'eot * gk - gk‘l,w -0,

using the equality
W

w o
le, *h‘hlx,l,:isz*[(ea*gk)'gljle
= inf P UEL - Je, * & - g
one easily shows that the set
w w
{f * Hf e ~rGrheE (G)} 3)
is dense in EV(G).

Assume that s is not unique. Then there exists 6,0" € (EV(G)) such
thatTf—G*f—G*chncewehavc(f*hG) { * h, 6" for
all f e /\K(G) and h ¢ EV(G). Using the denseness of (3) in E¥(G) one
obtains that ¢ = ¢”. That means G is unique.

We denote by A® the Banach algebra E{L (G)) with its patural norm
13" = i1, 2.

Proposition 3.3. If w and o satisfy (BD) then /\:(G) is dense in
A%(G).
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Proof. Since « satisfies (B.D) then(L.(G)Jhas a bounded Approximate
identity (u)eJ (shortly BAI) whose Fourier transforms have compact
support ([3], Th. 4.2). So, it is easily proved that the set A®(G) = A®(G)
~ K(G) is dense in A®G). Since W satisfies (B.D) then Llw(G) also
has a BAI (e Doer  Whose Founcr transforms have compact support.
Suppose fe AC(G Thcn (c * f) C Ag (G) for all ooe I. Agam because the
regularit ty of [{L (G) . given any compact subset K, c (G) there exists
g e A(O such that 2x) =1 for all x € K. Therefore we obtaln

o il = sop R - 1 < B, 3 - AL
S ucu * g - g“l‘w - 0. (1)
we let C) = C + 1 where fle ]l < C, for all ae I Since § € A°(G),

then given € > O there exists a compact subset K G such that

fxjo (x) dx < £, 2
| Il @ . @
Moreg{'%r, because the formula (1) there exists an a, € I such that if

o> o then

Je, - i = sup le0 - 1] <
Using (2) and (3) we have

|t e, * 8 =le-2.4l,
= | fx) - € fEjoxdx + j i) - & @flex)dx
&

K
(1 +15,l) | ) folomdx + |1 - & |t ,

—£ )
Atl,, )

<(1+0)| |f(x)]a)(x)dx ' DI I 1 {
G

<C

LB s_&  |f] =e
0 2C0 ﬂful,m 10

Since A®(G) is dense in A®G), then given any 2 € A®G) one can find
fe A°(G) such that [f - g <e. Then
0] (0} A (6]
llg-ea*ﬂ <l -1 +ﬂf-ea*ﬂ.<2s @)

for all a2 «a. This completes the proof.
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Corollary 34. If w and o satisfy the conditions in Proposition 3.3.
then /\K(G) is dense in A(G).

Proof. Suppose g € A(G). Since K(G) is cvef\ywhere dense in L(G)
then given any € > 0 there exists h € K(G) cL (O such that

-8, =lg - n, <L 1)
Hence by the Proposition 3.3. one can find k € /\Z(G) such that

|k-ﬁ|ASIk-ﬁlm<§—. @)
Combining (1) and (2) we have

R-d,<k-f,+[fi-d,<ere-e ©

This proves our Corollary.

Now we recall that A(G) is a Banach algebra under pointwise
multiplication operation with the normg f H 4 = | £l Every continuous lincar
functional on A(G) is called a pseudomeasure.

Proposition 3.5. If A’(G) denotes the algebra of all pseudomeasures
on G, then A’(G) c EV(G)).

Proof. Suppose that u € EY(G). Then there exists a pair (K, i,) of
compact sets such that u e EK"(G) We also have

2 fk ¥ ““A - Ilfk * gle ”f * ]J|
- k=1 ' k=1
=y Wfk A RED N I - T (1)
k=1 k=1

If one combines the inequality
il <t <kl - w0
with (1), obtains
9] 1 I Y
=l

Tl - e n@) - uK) < ||fk||°° I, D) 1O <. O

k=
That means EV(G) c A(G). Now if e A'(G) and y e EK”(G) then we
have

ool <ol .Jul, <|o] -Eﬂfkllw~llgklll,w H@L) . K.
k=1
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Therefore

o)l < lol . Tuls nOu®

Since © is continuous on every E;Z'I:(G) then o € (EY(G)). This completes
the proof.

Theorem 3.6. Assume that w and @ satisfy (BD) and W is
symmetric. If T € M(AP (G)), then there exists a unique
pseudo-measure 6 € A’(G) such that Tf = ¢ * f for all f € AP (G).

Proof. Suppose that T € M(APW’Q(G)). By the proposition 3.1, we
have T(f *g) = Tf * g for al f, g € pr,m(G), since APW’(D(G) is
commutative it is casy to see that Tf* g=f*Tg for all f, g € pr’m(G).
Then we write (Tt)A.g = % . (Tg)A. Since W satisfies (B.D) then APW’Q(G)
has an approximate identities ([4], Theorem 4.2). Also it is known that
pr, o(0) is a Banach convolution algebra ([4], Theorem 2.1). Hence

(G) is a commutative Banach algebra without order (i.c if for all
fe AP (G), f * AP, (G) = O then f = 0). Again since W satisﬁes
(B.D) thcn the regular maxnnal ideal space of L! (@ is the dual group G
(21, pp.15 and Theorem 2.11). It is also known that in the case W
satisfies (B.D) condition the regular maximal ideal space of L (G) is
homeomorphic to the one of AP oG, ((5], Th. 1.16), which 1mphes that
the regular maximal ideal space of AP o0 is the dual space G. Then
there exists a unique bounded contmuous function <I>ongsuch that (T9)".(y)
= CIJ(y) g(y) for all g € AP (G) by the Theorem 1.2.2. in [ll]w If fe

(G) then Tf € L! N(S)) and T = ®f ¢ K(G). Therefore rNO
invariant under T. Since every element of /\K(G) is continuous (sec
introduction) then we can define a lincar functional on /\K(G) as L(f) =
Tf(0) for all f € AL(O). Also we write.

L) = [TROY < | Tf], (1)

Smce Tf € AV G c AG) then there exists g ne" LY(G) such that

g = Tf. If one uses the inequalities g =g and m writes

N - @
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where g(x) = g(-x). Now if we combine (1) and (2) obtain
Lot < 1mel, = | gl < el = |,

-latl, <lol, .k, 1ol .|l -

A
~

f

=lel. .itl, =Tl It )

w w
Thus L is a continuous linear functional on /\K(G). Since /\K(G) is dense
in A(G) by the Corollary 3.4., then L can be extended uniquely as a

continuos linear functional on A(G). Hence there exists a unique
pseudo-measure G such that

L©) = TO) = {£S) )

for all f € ,\X(G). Then Tf = ¢ * f for all f € /\K(G). An examination
proof of Theorem 3.2 and proposition 3.5 show that ¢ is a pseudo
measure and is unique. Hence to complete the proof of this theorem it
remains to show that Tf = o * f holds for all f € APW@(G). Let f be
any clement of pr,m(G). If (e,),.; is @ bounded approximate identity for
APW‘ »(G) choosen from /\K(G) ([4%«’/ Th. 4.2) then for each f € pr,m(G)
the net (¢, * f) is Cauchy net in /\K(G) and since T(e, *f) = ¢ * (¢, * f),
we have

o * (e, *f)- o * (cB * f)l;m

< [Mew * 0 - Tep * Poo <M e * £- 0 * ®)
which implies that (¢ * (e, * f)),_; is a Cauchy net in AP (G) and
converges to a function F e pr,m(G)' That means

[F -0 * (g * Dy = 0. ©)

Again it is clear that 6 * f € A’(G) because f € LY(G) and 6 € A'(G).
If we use (6) and the relation

sl <[F-5 @A+ (69 -5l
S"F-G*(ea*fll+ua|w.||ca*f-tﬂl

SF-o* (e g +lol fere- o, ®
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~ A

find that 'I:‘ = ¢ . f. From the inversion theorem we write F = ¢ * f. Also

we have
an -0 * (ca * f}r\’v@ = le -T (ea * f]iz,m
Sll’[”f—ea*q;m——)o. @®)

Consequently it follows from (6), (7) and (8) that Tf = F = ¢ * f for all
fe AP (G). This completes the proof.
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