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ABSTRACT

3
In this study, the idea of the conjugate of a surface in E given by TH. Hasanis and 

D. Koutroufiotis [3] has been generalized for a hypersurface in E . A necessary and 
sufficient condition for having the conjugate of a hypersurface has been given. Gauss and 
mean curvatures of the conjugate hypersurface have also been calculated.

1. INTRODUCTION

Let M be a smooth immersed regular hypersurface in E"^’ , which is
connected and oriented. Let us choose O e E"*’ as an origin. We denote
by X the position vector of a point in M, and set |xl = r for the 
corresponding distance function. Let N be the unit normal vector field of 
M. The support function f of M with respect to O is defined as f = -(x, N), 
which is also differentiable, where ( , ) is the inner product on E"^*. Let 
(u\ u”) be a local coordinate system on M. We denote the

components of the fîrst, second and third fundamental forms, respectively, 
by g . = (x.,x,), b . = -(x.,N) and n . = (N.,N), wherc x. = — and N, = — .

Let V be the Standard connection of V be the induced 
connection on M. The equations of Gauss and Weingarten are, 
respectively.

= ^xY + Y) N, 

and

V^N = - AX 

(1.1)

(1.2)

where X and Y are vector fields tangent to M and A is the Weingarten 
mapping of M. The eingenvalues of A are the principal curvatures
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s- k , ... k . The Gauss curvature is K
2 n n* “ 11 -

curvaturcs is H = J- V )ç ,
k k ...k and the mean 

1 2 n

Suppose now that there exist a point O with the property that it lies 
on no tangent hyperplane of M. If we choose such a point as origin, the 
corresponding support function clearly never vanishes. So, either f > 0 or 
f < 0, We can always choose an orientation of M which makes f > 0. 
Thus, M is obviously star-shaped.

We decompose the position vector x of a point of M into two parts 
a component normal to M, and a component tangent to M such that

X X,, - fN.T (1.3)

Let X be a tangent vector of M. Since V x = X,
X

X = VjjX = VjJkj, - fN) = Vj,x,[. - (?ff)N - fVjjN

or

X = V^x^ + <AX, x.pN -(Xf)N + f AX.

Taking the tangcntial component of this equation, we obtain

V^x^ = (I - fA)X, (1.4)

where I is the identity transformation, and taking the normal component 
we obtain

x^>N = (Xf)N

or

<X, Ax^)= <X, grad f).

So that

Ax,j, = grad f. (1.5)

Furöıermore, since
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or

X(?) = X(^, x))

= 2<V^x, x) 
= 2<X, x^),

X(r5 = 2rX(r)

= 2r(X, grad r),

then

grad r = (1.6)

2. THE CHARACTERISTIC MAPPING OF A HYPERSURFACE

Let M be oriented hypersurface and S" be the unit hypersphere 
centered at O. We define the smooth mapping : M -> S” by

C(x) = X + 21N 
r

Further, we define the mapping Tj : M -> S” by

Tl(x) = e = ir

that is. T) is a diffeomorphism of M onto the öpen subset A = Tl(M) of 
s”. Then we can define the characteristic mapping t : A -> S" of M, 
where T : C o T)by. Obviously, the position vector e of a point in A 
with respect to O can be written as

X(e) = e + 2 f N 
r

(2.1)

Let (u\ ..., u") be a local coordinate system of A, so we write e^ = 

and X. = — . From (2.1)
3u‘ 2?

1 - {r(e), e) = — (2.2)
r

Then, t can have no fixed points. Instead of x(e), we write simply x and 
using e = — , after a brief calculation we obtain

r
(X, ej = A (log r), 

3u'
(2.3)1 <i < n .

r
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From (2.2) and (2.3), we fmd the first-order system of differential 
equations

— (log r) = 
du‘ 1 - (ı, e) ’ (2.4)

The integrability conditions for this system, can be written as
3 [ ^j) 1 A f

au4ı - {ı, e)J L1 - (î. e)J

OT

1 - (t, e)
(2.5)

1 < i < n .

, 1 < i , j < n ,

The length of the position vector r of M satisfies the differential 
eguations system (2.4). If a given mapping T : A -> S” without fixed 
points is the characteristic mapping of a hypersurface, then the 
corresponding hypersurface M is given by its position vector x = re.

3. THE CONJUGATE OF A HYPERSURFACE

Let S” be unit hypersphere centered at O and e be the position
vector of S“. The mapping a ; S" —> S” , a(c) = -e, is called as an
antipodal mapping. If a given the characteristic mapping X of a 
hypersurface M, we set X = a o x .

Definition 3.1. Let x be the characteristic mapping of a hypersurface
M in E’i"*'. If T also the characteristic mapping of some hypersurface M, 
then M is called the conjugate hypersurface of M.

If T is the characteristic mapping of an M, then T has no fixed 
points.

Theorem 32. The hypersurface M has the conjugate Mif and only if 
grad r ît 0 and the vector fîeld grad r, grad f on M are linear depended 
at every point.

Proof. Suppose M has the conjugate M. Then T has no fixed points, 
that is, T(e) -e for every e in the domain of T. This means that x is

n
never perpendicular to M, and since grad r = r.—, 

'=1 du

_ 3r _
r.

du r
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grad r 0. Considering the integrability condition (2.5) for x and t, we 
obtain

(X., e; = <x., e.) .

From (3.1), wc compute

(3.1)

or

e.^ = ^r.f. - frj = 0 ,
r

f. r. = f. r. .
’ j j >

Thus, the vector fields grad r, grad f are linear depended.

Conversely grad r 0 and the vector fields grad r, grad f are linear 
depended. Since grad r 0 the mapping x = a o X has no fixed points. 
Since the grad r and grad f are linear depended, the equality (3.1) holds. 
Hence, the x satisfies the integrability condition (2.5), that is M has the 
conjugate M.

Theorem 3.2 holds for a hypersurface M. From (1.5) and (1.6)

= grad f = c grad r = & , c # 0 , c 6 ir.

this means the vector x^ is the eigen vector of A. Thus, M has conjugate 
hypersurface if and only if the tangential component x^ of the position 
vector X of M is the eigen vector of A. Setting X = x^ in (1.4), we 
obtain

V.xA “

where is the principal curvature the corresponding to x^.

Since the position vector of M can be written as x = re, we write
x= fe, where x is the position vector of M. Moreover X = Ş. and x(e) = -x(e). So, 

r r
X+2 fLN = . X . 2.XJN
r r r r

This relation telis us that N is the hyperplane spanned by x and N. We
compute (N, N) = 0, hence N is parallel to x^. 
of M, we write

For the position vector
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OT

X = î- X 
T = f ’

X = x^ - f N .

From this we obtain f = - (x, = - ^Xj,, Since N is parallel to x

choose N =
|Xj.| 

f = £ I24I

, which makes f positive and
t’ we

Theorem 3.3. The natural mapping from M to M preserves principal
directions. Moreover, the corresponding principal curvatures at
corresponding points are related by

7 2 f rk =---- k ,
1 . -2 *

k. =
1 - fk.

f
i , 2 < i < n ,

f r
where k^ is the principal curvature in the direction x^.

1

Proof. Let (u\ u^, u”) be the local coordinate system in the

neighbourhood of a point of M which is not an umbilic. Let the 
parameter curves of M be the curvature lines. Since, M has the conjugate 
M, the curves u^ = sbt. 2 < j < n, are the integral curves of the

b..11vectorfield x . Thus g = b = 0 and k. = T ®ıj ıj '
Moreover, r = r(uH and

1 «tt

f = f(u ) because x^ is parallel Xj. We can write the position vector x of
M with respect to the basis {x , ..., x , N) of 

1 n
D

= y c. X. + c ,
1 1 n+1

i=l
N.

We compute the coefficients, c. 
i 1, we obtain

- ^i) -

Sii

rr.
— and c
2.. n+1®ıı

= -f. Since r. = 0,

X

- f N .X
^11

(3.2)

From (1.3) and (3.2)

Since |x,j,î
Sn

12

Xı , n-ı = Tğ;; |X,| .

- the
with respect to u,

^11 depends on u' onIy. We differentiate (3.2)

’S- =

1 r
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X. = — Xjj - f Nj , 2 < i < n .
^11

Using Rodrigues formula N. = -k.x., we get
(1 ■ t

1x^,1
I 1
-X. = — X,.li •

If we product both sides of the last equation with x. then
(' - flŞ) _ 

1x^1
(log gii), 2 < i < n .

“ “X,v. ““ *’X
Since N = , we can take as N = ——

l\l
X. = h.x + hx., 1 1 1

. Set h = - , then x = hx and r

where =
1x^1

h-f^
and h. = 0,2 < i < n. Thus, g,, =----- g,,,g = 0 , i -t- j

’ " |x,| “

gy = h^gj. , 2 < i < n. Similarly bj^ =
1x^1

11 , i i, b. = 11
9g-^11

2 < i < n. Therefore, the parameter curves of M are the lines of 
curvature, so that the natural mapping preserves principal directions.

1

1

h
2 ’

For the principal curvatures of M, we obtain

=
? 2

= —k, .

and

k.

Sn

b..__ 11_

İü 21. Vğ- '
1 - fk.

f r

1
f

i , 2 < i < n .

This completes the proof.

Corollary. The Gauss curvature of Mis 

K =
n»4

-2 -n-2
h f f i=2 i=2

i<j

k.k
1 J

- f" y k.k.k, + ...
Zu 1 J 1 
i=2

i<j<l

n o
... - f 2 k,->S-k +

fP-2

K,
i=2

2 ”
1 - f 2 k; + f 2

n

_2 _n-2 
h f

in which K is the Gauss curvature of M are k. is meant dropping i-th 
curvature function k. of M.

1
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Corollary 3.5. The mean curvature of M is

H =
(n - 1) f + ? kj

nf f
- f H , 

f
where H is the mean curvature of M.
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