Commun. Fac. Sci. Univ. Ank. Series A1
V. 47. pp. 97-104 (1998)

# THE CONJUGATE OF A HYPERSURFACE 

E. KILIÇ, S. KELEŞ

Department of Mathematics, Inönĭ University, Malatya, TURKEY
(Received Feb. 10, 1998; Accepted May 1998)


#### Abstract

In this study, the idea of the conjugate of a surface in $\mathrm{E}^{3}$ given by TH. Hasanis and D. Koutroufiotis [3] has been generalized for a hypersurface in $E^{n+1}$. A necessary and sufficient condition for having the conjugate of a hypersurface has been given. Gauss and mean curvatures of the conjugate hypersurface have also been calculated.


## 1. INTRODUCTION

Let M be a smooth immersed regular hypersurface in $\mathrm{E}^{\mathrm{n+1}}$, which is connected and oriented. Let us choose $\mathrm{O} \in \mathrm{E}^{\mathrm{n}+1}$ as an origin. We denote by x the position vector of a point in M , and set $|\mathrm{x}|=\mathrm{r}$ for the corresponding distance function. Let N be the unit normal vector field of $M$. The support function $f$ of $M$ with respect to $O$ is defined as $f=-\langle x, N\rangle$, which is also differentiable, where $\langle$,$\rangle is the inner product on \mathrm{E}^{\mathrm{n}+1}$. Let ( $\mathbf{u}^{1}, \ldots, \mathbf{u}^{\mathrm{n}}$ ) be a local coordinate system on M . We denote the components of the first, second and third fundamental forms, respectively, by $g_{i j}=\left\langle x_{i}, x_{j}\right\rangle, b_{i j}=-\left\langle x_{i}, N_{j}\right\rangle$ and $n_{i j}=\left\langle N_{i}, N_{j}\right\rangle$, where $x_{i}=\frac{\partial x}{\partial u^{i}}$ and $N_{i}=\frac{\partial N}{\partial u^{i}}$.

Let $\bar{\nabla}$ be the standard connection of $\mathrm{E}^{n+1}, \nabla$ be the induced connection on M . The equations of Gauss and Weingarten are, respectively,

$$
\begin{equation*}
\bar{\nabla}_{\mathrm{X}} \mathrm{Y}=\nabla_{\mathrm{x}} \mathrm{Y}+(\mathrm{AX}, \mathrm{Y}) \mathrm{N}, \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\nabla}_{\mathrm{x}} \mathrm{~N}=-\mathrm{AX} \tag{1.2}
\end{equation*}
$$

where $X$ and $Y$ are vector fields tangent to $M$ and $A$ is the Weingarten mapping of M . The eingenvalues of A are the principal curvatures
$k_{1}, k_{2}, \ldots k_{n}$. The ${ }_{n}$ Gauss curvature is $K=k_{1} k_{2} \ldots k_{n}$ and the mean curvatures is $\stackrel{n}{H}=\frac{1}{n} \sum_{i=1}^{n} k_{i}$.

Suppose now that there exist a point $O$ with the property that it lies on no tangent hyperplane of M . If we choose such a point as origin, the corresponding support function clearly never vanishes. So, either f $>0$ or $\mathrm{f}<0$. We can always choose an orientation of M which makes $\mathrm{f}>0$. Thus, $\mathbf{M}$ is obviously star-shaped.

We decompose the position vector $x$ of a point of $M$ into two parts a component normal to M , and a component tangent to M such that

$$
\begin{equation*}
\mathrm{x}=\mathrm{x}_{\mathrm{T}}-\mathrm{fN} . \tag{1.3}
\end{equation*}
$$

Let $X$ be a tangent vector of $M$. Since $\bar{\nabla}_{x} x=X$,

$$
\mathrm{X}=\bar{\nabla}_{\mathrm{X}} \mathrm{x}=\bar{\nabla}_{\mathrm{X}}\left(\mathrm{x}_{\mathrm{T}}-\mathrm{fN}\right)=\bar{\nabla}_{\mathrm{X}} \mathrm{x}_{\mathrm{T}}-(\mathrm{Xf}) \mathrm{N}-\mathrm{f} \bar{\nabla}_{\mathrm{X}} \mathrm{~N}
$$

or

$$
X=\nabla_{x} x_{T}+\left\langle A X, x_{T}\right\rangle N-(X f) N+f A X
$$

Taking the tangential component of this equation, we obtain

$$
\begin{equation*}
\nabla_{\mathrm{x}} \mathrm{X}_{\mathrm{T}}=(\mathrm{I}-\mathrm{fA}) \mathrm{X}, \tag{1.4}
\end{equation*}
$$

where I is the identity transformation, and taking the normal component we obtain

$$
\left\langle A X, x_{T}\right\rangle N=(X f) N
$$

or

$$
\left\langle\mathrm{X}, \mathrm{Ax}_{\mathrm{T}}\right\rangle=\langle\mathrm{X}, \operatorname{grad} \mathrm{f}\rangle
$$

So that

$$
\begin{equation*}
\mathrm{Ax}_{\mathrm{T}}=\operatorname{grad} \mathrm{f} \tag{1.5}
\end{equation*}
$$

Furthermore, since

$$
\begin{aligned}
\mathrm{X}\left(\mathrm{r}^{2}\right) & =\mathrm{X}(\langle\mathrm{x}, \mathrm{x}\rangle) \\
& =2\left\langle\bar{\nabla}_{\mathrm{X}} \mathrm{x}, \mathrm{x}\right\rangle \\
& =2\left\langle\mathrm{X}, \mathrm{x}_{\mathrm{T}}\right\rangle,
\end{aligned}
$$

or

$$
\begin{aligned}
X\left(r^{2}\right) & =2 r X(r) \\
& =2 r\langle X, \operatorname{grad} r\rangle
\end{aligned}
$$

then

$$
\begin{equation*}
\operatorname{grad} \mathrm{r}=\frac{\mathrm{x}_{\mathrm{T}}}{\mathrm{r}} \tag{1.6}
\end{equation*}
$$

## 2. THE CHARACTERISTIC MAPPING OF A HYPERSURFACE

Let $M$ be oriented hypersurface and $S^{n}$ be the unit hypersphere centered at O . We define the smooth mapping $\zeta: \mathrm{M} \rightarrow \mathrm{S}^{\mathrm{n}}$ by

$$
\zeta(x)=\frac{x+2 \mathrm{fN}}{\mathrm{r}}
$$

Further, we define the mapping $\eta: M \rightarrow S^{n}$ by

$$
\eta(x)=e=\frac{x}{r},
$$

that is, $\eta$ is a diffeomorphism of $M$ onto the open subset $A=\eta(M)$ of $S^{n}$. Then we can define the characteristic mapping $\tau: A \rightarrow S^{n}$ of $M$, where $\tau: \zeta \circ \eta^{-1}$ by. Obviously, the position vector $e$ of a point in $A$ with respect to $O$ can be written as

$$
\begin{equation*}
\tau(\mathrm{e})=\mathrm{e}+\frac{2 \mathrm{f} \mathrm{~N}}{\mathrm{r}} . \tag{2.1}
\end{equation*}
$$

Let $\left(u^{1}, \ldots, u^{n}\right)$ be a local coordinate system of $A$, so we write $e_{i}=\frac{\partial e}{\partial u^{i}}$
and $\tau=\frac{\partial \tau}{\partial{ }^{i}}$. From $(2.1)$

$$
\begin{equation*}
1-|\tau(\mathrm{e}), \mathrm{e}|=\frac{2 \mathrm{f}^{2}}{\mathrm{r}^{2}} \tag{2.2}
\end{equation*}
$$

Then, $\tau$ can have no fixed points. Instead of $\tau(\mathrm{e})$, we write simply $\tau$ and using $\mathrm{e}=\frac{\mathrm{x}}{\mathrm{r}}$, after a brief calculation we obtain

$$
\begin{equation*}
\left(\tau, e_{i}\right)=\frac{2 f^{2}}{r^{2}} \frac{\partial}{\partial u^{i}}(\log r), \quad 1 \leq i \leq n \tag{2.3}
\end{equation*}
$$

From (2.2) and (2.3), we find the first-order system of differential equations

$$
\begin{equation*}
\frac{\partial}{\partial u^{i}}(\log r)=\frac{\left|\tau, e_{i}\right|}{1-|\tau, e|}, \quad 1 \leq i \leq n . \tag{2.4}
\end{equation*}
$$

The integrability conditions for this system, can be written as

$$
\begin{align*}
& \frac{\partial}{\partial u^{i}}\left[\frac{\left\langle\tau, e_{j}\right\rangle}{1-(\tau, e)}\right]=\frac{\partial}{\partial u^{j}}\left[\frac{\left\langle\tau, e_{j}\right\rangle}{1-(\tau, e)}\right], 1 \leq i, j \leq n, \\
& \left\langle\tau_{j}, e_{i}\right\rangle-\left\langle\tau_{i}, e_{j}\right\rangle=\frac{\left\langle\tau, e_{j}\right\rangle\left\langle\tau_{i}, e\right\rangle-\left\langle\tau, e_{i}\right\rangle\left\langle\tau_{j}, e\right\rangle}{1-\{\tau, e\rangle} .
\end{align*}
$$

The length of the position vector $r$ of $M$ satisfies the differential equations system (2.4). If a given mapping $\tau: \mathrm{A} \rightarrow \mathrm{S}^{\mathrm{n}}$ without fixed points is the characteristic mapping of a hypersurface, then the corresponding hypersurface $M$ is given by its position vector $x=$ re.

## 3. THE CONJUGATE OF A HYPERSURFACE

Let $S^{n}$ be unit hypersphere centered at $O$ and $e$ be the position vector of $S^{n}$. The mapping $\alpha: S^{n} \rightarrow S^{n}, \alpha(e)=-e$, is called as an antipodal mapping. If $a$ given the characteristic mapping $\tau$ of $a$ hypersurface M , we set $\bar{\tau}=\alpha$ o $\tau$.

Definition 3.1. Let $\tau$ be the characteristic mapping of a hypersurface $\mathbf{M}$ in $\mathrm{E}^{\mathrm{n}+1}$. If $\bar{\tau}$ also the characteristic mapping of some hypersurface $\overline{\mathrm{M}}$, then $\overline{\mathrm{M}}$ is called the conjugate hypersurface of M .

If $\bar{\tau}$ is the characteristic mapping of an $\bar{M}$, then $\bar{\tau}$ has no fixed points.

Theorem 3.2. The hypersurface $M$ has the conjugate $\bar{M}$ if and only if $\operatorname{grad} \mathbf{r} \neq 0$ and the vector field grad $r$, grad $f$ on $M$ are linear depended at every point.

Proof. Suppose M has the conjugate $\overrightarrow{\mathrm{M}}$. Then $\bar{\tau}$ has no fixed points, that is, $\tau(e) \neq-e$ for every $e$ in the domain of $\tau$. This means that $x$ is never perpendicular to $M$, and since grad $r=\sum_{i=1}^{n} r_{i} \frac{\partial}{\partial u^{i}}, r_{i}=\frac{\partial r}{\partial u^{i}}=\frac{\left|x, x_{i}\right|}{r}$,
grad $\mathrm{r} \neq 0$. Considering the integrability condition (2.5) for $\tau$ and $\bar{\tau}$, we obtain

$$
\begin{equation*}
\left\langle\tau_{i}, e_{j}\right\rangle=\left\langle\tau_{j}, e_{i}\right\rangle \tag{3.1}
\end{equation*}
$$

From (3.1), we compute

$$
\left\langle\tau_{i}, e_{j}\right\rangle-\left\langle\tau_{j}, e_{i}\right\rangle=\frac{4 f}{3}\left(r_{j} f_{i}-f_{j} r_{i}\right)=0,
$$

or

$$
\mathbf{f}_{i} \mathbf{r}_{\mathrm{j}}=\mathbf{f}_{\mathbf{j}} \mathbf{r}_{\mathrm{i}} .
$$

Thus, the vector fields grad r , grad f are linear depended.
Conversely grad $\mathbf{r} \neq 0$ and the vector fields grad $r$, grad $f$ are linear depended. Since grad $r \neq 0$ the mapping $\bar{\tau}=\alpha 0 \tau$ has no fixed points. Since the grad $r$ and grad $f$ are linear depended, the equality (3.1) holds. Hence, the $\bar{\tau}$ satisfies the integrability condition (2.5), that is $M$ has the conjugate $\overline{\mathbf{M}}$.

Theorem 3.2 holds for a hypersurface M. From (1.5) and (1.6)

$$
A x_{T}=\operatorname{grad} \mathbf{f}=\mathrm{c} \operatorname{grad} \mathbf{r}=\frac{\mathrm{c}}{\mathbf{r}} \mathrm{x}_{\mathrm{T}}, \quad \mathrm{c} \neq 0, \quad \mathrm{c} \in \mathbb{R},
$$

this means the vector $x_{T}$ is the eigen vector of $A$. Thus, $M$ has conjugate hypersurface if and only if the tangential component $X_{T}$ of the position vector $x$ of $M$ is the eigen vector of $A$. Setting $X=X_{T}$ in (1.4), we obtain

$$
\nabla_{\mathrm{X}_{\mathrm{T}}} \mathrm{X}_{\mathrm{T}}=\left(1-\mathrm{fk}_{\mathrm{l}}\right) \mathrm{x}_{\mathrm{T}}
$$

where $\mathrm{k}_{1}$ is the principal curvature the corresponding to $\mathrm{x}_{\mathrm{T}}$.
Since the position vector of $M$ can be written as $x=$ re, we write $\bar{x}=\bar{r} \mathrm{e}$, where $\bar{x}$ is the position vector of $\bar{M}$. Moreover $\frac{X}{r}=\frac{\bar{x}}{\bar{r}}$ and $\bar{\tau}(\mathrm{e})=-\tau(\mathrm{e})$. So,

$$
\frac{x}{r}+\frac{2 \mathrm{f} N}{r}=-\frac{x}{r}-\frac{2 \overline{\mathrm{f}} \overline{\mathrm{~N}}}{\overline{\mathrm{r}}} .
$$

This relation tells us that $\bar{N}$ is the hyperplane spanned by $x$ and $N$. We compute $\langle\overline{\mathbf{N}}, \mathbf{N}\rangle=0$, hence $\overline{\mathbf{N}}$ is parallel to $\mathrm{x}_{\mathrm{T}}$. For the position vector of $\bar{M}$, we write

$$
\overline{\mathrm{x}}=\underset{\mathbf{r}}{\overline{\mathbf{r}}} \mathrm{x}=\frac{\overline{\mathbf{r}}}{\mathbf{r}}\left(\mathrm{X}_{\mathrm{T}}-\mathrm{f} \mathrm{~N}\right),
$$

or

$$
\overline{\mathrm{x}}=\overline{\mathrm{x}}_{\mathrm{T}}-\overline{\mathrm{f}} \overline{\mathrm{~N}} .
$$

From this we obtain $\left.\overline{\mathrm{f}}=-\langle\overline{\mathrm{x}}, \overrightarrow{\mathrm{N}}\rangle_{-\overline{\mathrm{f}}}=-\underset{\mathrm{r}}{\overline{\mathrm{r}}} / \mathrm{X}_{\mathrm{T}}, \vec{N}\right\rangle$. Since $\overline{\mathrm{N}}$ is parallel to $\mathrm{x}_{\mathrm{T}}$, we choose $\overline{\mathrm{N}}=\frac{-\mathrm{X}_{\mathrm{T}}}{\left|\mathrm{X}_{\mathrm{T}}\right|}$, which makes $\overline{\mathrm{f}}$ positive and

$$
\overline{\mathbf{f}}=\frac{\overline{\mathbf{r}}}{\mathbf{r}}\left|\mathrm{x}_{\mathrm{T}}\right|
$$

Theorem 3.3. The natural mapping from $M$ to $\bar{M}$ preserves principal directions. Moreover, the corresponding principal curvatures at corresponding points are related by

$$
\overline{\mathbf{k}}_{1}=\frac{\overline{\mathbf{f}} \mathbf{r}^{2}}{\mathbf{f} \overline{\mathbf{r}}^{2}} \mathbf{k}_{1}, \quad \overline{\mathbf{k}}_{\mathbf{i}}=\frac{1-\mathbf{f} \mathbf{k}_{\mathrm{i}}}{\overline{\mathbf{f}}}, 2 \leq \mathrm{i} \leq \mathbf{n},
$$

where $k_{1}$ is the principal curvature in the direction $X_{T}$.
Proof. Let $\left(u^{1}, u^{2}, \ldots, u^{n}\right)$ be the local coordinate system in the neighbourhood of a point of $M$ which is not an umbilic. Let the parameter curves of $\mathbf{M}$ be the curvature lines. Since, $M$ has the conjugate $\bar{M}$, the curves $\mathbf{u}^{\mathbf{j}}=$ sbt. $2 \leq \mathrm{j} \leq \mathrm{n}$, are the integral curves of the vectorfield $\mathrm{x}_{\mathrm{T}}$. Thus $\mathrm{g}_{\mathrm{ij}}=\mathrm{b}_{\mathrm{ij}}=0$ and $\overline{\mathrm{k}}_{\mathrm{i}}=\frac{\mathrm{b}_{\mathrm{ii}}}{\mathrm{g}_{\mathrm{ij}}}$. Moreover, $\mathrm{r}=\mathrm{r}\left(\mathrm{u}^{1}\right)$ and $f=f\left(u^{1}\right)$ because $X_{T}$ is parallel $x_{1}$. We can write the position vector $x$ of $M$ with respect to the basis $\left\{x_{1}, \ldots, x_{n}, N\right\}$ of $E^{n+1}$,

$$
x=\sum_{i=1}^{n} c_{i} x_{i}+c_{n+1} N
$$

We compute the coefficients, $c_{i}=\frac{\left|x, x_{i}\right|}{g_{i i}}=\frac{r_{i}}{g_{i i}}$ and $c_{n+1}=-f$. Since $r_{i}=0$,
$i \neq 1$, we obtain

$$
\begin{equation*}
\mathrm{x}=\frac{\mathrm{r}_{1}}{\mathrm{~g}_{11}} \mathrm{x}_{1}-\mathrm{f} \mathbf{N} \tag{3.2}
\end{equation*}
$$

From (1.3) and (3.2)

$$
\mathrm{x}_{\mathrm{T}}=\frac{\mathrm{rr}_{1}}{\mathrm{~g}_{11}} \mathrm{x}_{1}, \mathrm{rr}_{1}=\sqrt{\mathrm{g}_{11}}\left|\mathrm{x}_{\mathrm{T}}\right|
$$

Since $\left|x_{T}\right|^{2}=r^{2}-f^{2}$, the $g_{11}$ depends on $u^{1}$ only. We differentiate (3.2) with respect to $\mathbf{u}^{\mathbf{i}}$,

$$
\mathrm{x}_{\mathrm{i}}=\frac{\mathrm{m}_{1}}{\mathrm{~g}_{11}} \mathrm{x}_{\mathrm{li}}-\mathrm{f} \mathrm{~N}_{\mathrm{i}}, 2 \leq \mathrm{i} \leq \mathrm{n} .
$$

Using Rodrigues formula $N_{i}=-k_{i} X_{i}$, we get

$$
\frac{\left(1-\mathrm{f} \mathrm{k}_{\mathrm{i}}\right)_{x_{i}}=\frac{1}{\sqrt{\mathrm{~g}_{11}}} \mathrm{x}_{1 \mathrm{i}} . . . . . . . . .}{}
$$

If we product both sides of the last equation with $\mathrm{x}_{\mathrm{i}}$ then

$$
\frac{\left(1-\mathrm{fk}_{\mathrm{i}}\right)}{\left|\mathrm{X}_{\mathrm{T}}\right|}=\frac{1}{2 \sqrt{g_{11}}} \frac{\partial}{\partial u^{i}}\left(\log \mathrm{~g}_{1 \mathrm{i}}\right), 2 \leq \mathrm{i} \leq \mathrm{n} .
$$

Since $\overline{\mathrm{N}}=\frac{-\mathrm{x}_{\mathrm{T}}}{\left|\mathrm{x}_{\mathrm{T}}\right|}$, we can take as $\overline{\mathrm{N}}=\frac{-\mathrm{x}_{1}}{\sqrt{\mathrm{~g}_{11}}}$. Set $\mathrm{h}=\frac{\overline{\mathrm{r}}}{\mathrm{r}}$, then $\overline{\mathrm{x}}=\mathrm{hx}$ and

$$
\bar{x}_{i}=h_{i} x+h x_{i},
$$

where $h_{1}=\frac{-h \sqrt{g_{11}}}{\left|x_{T}\right|}$ and $h_{i}=0,2 \leq i \leq n$. Thus, $\bar{g}_{11}=\frac{h^{2} f^{2}}{\left|x_{T}\right|} g_{11}, \bar{g}_{i j}=0, i \neq j$
$\overline{\mathrm{g}}_{\mathrm{ii}}=\mathrm{h}^{2} \mathrm{~g}_{\mathrm{ij}}, 2 \leq \mathrm{i} \leq \mathrm{n}$. Similarly $\overline{\mathrm{b}}_{11}=\frac{\mathrm{hf}}{\left|\mathrm{x}_{\mathrm{T}}\right|} \mathrm{b}_{11}, \mathrm{i} \neq \mathrm{j}, \overline{\mathrm{b}}_{\mathrm{ii}}=\frac{\mathrm{h}}{2 \sqrt{g_{11}}} \frac{\partial \mathrm{~g}_{\mathrm{ij}}}{\partial \mathrm{u}^{1}}$, $2 \leq \mathrm{i} \leq \mathrm{n}$. Therefore, the parameter curves of $\overline{\mathrm{M}}$ are the lines of curvature, so that the natural mapping preserves principal directions.

For the principal curvatures of M , we obtain

$$
\overline{\mathrm{k}}_{1}=\frac{\overline{\mathrm{b}}_{11}}{\overline{\mathrm{~g}}_{11}}=\frac{\overline{\mathrm{f}}^{2}}{\mathrm{f} \mathrm{r}^{2}} \mathrm{k}_{1},
$$

and

$$
\overline{\mathrm{k}}_{\mathrm{i}}=\frac{\overline{\mathrm{b}}_{\mathrm{ii}}}{\overline{\mathrm{~g}}_{\mathrm{ii}}}=\frac{1}{2 \mathrm{~h} \sqrt{\mathrm{~g}_{11}}} \frac{\partial}{\partial u^{1}}\left(\log \mathrm{~g}_{\mathrm{ij}}\right)=\frac{1-\mathrm{fk}}{\overline{\mathrm{f}}}, 2 \leq \mathrm{i} \leq \mathrm{n} .
$$

This completes the proof.
Corollary. The Gauss curvature of $\overline{\mathrm{M}}$ is

$$
\left.\begin{array}{r}
\bar{K}=\frac{k_{1}}{h^{-2} f f^{n-2}}\left[1-f \sum_{i=2}^{n} k_{i}+f^{2} \sum_{\substack{i=2 \\
i<j}}^{n} k_{i} k_{j}-f^{3} \sum_{i=2}^{n} k_{i} k_{j} k_{1}+\ldots\right. \\
i \ll 1
\end{array}\right] .
$$

in which $K$ is the Gauss curvature of $M$ are $\hat{k}_{i}$ is meant dropping i-th curvature function $k_{i}$ of M .

Corollary 3.5. The mean curvature of $\overline{\mathrm{M}}$ is $\stackrel{\rightharpoonup}{\mathrm{H}}=\frac{(\mathrm{n}-1) \mathrm{f}+\mathrm{r}^{2} \mathrm{k}_{1}}{\mathrm{nf} \overline{\mathrm{f}}}-\frac{\mathrm{f}}{\overline{\mathrm{f}}} \mathrm{H}$,
where H is the mean curvature of M .

## REFERENCES

[1] KILIÇ, E., Bir Hiperyüzeyin Pedalinin Bazı Karakteristik Özellikleri, Doktora Tezi, İnönü Üniversitesi, Fen Bilimleri Enst. Malatya (1996).
[2] THORPE, J.A., Elementary Topics in Differential Geometry, Springer-Verlag, New York (1979).
[3] HASANIS, T.H., KAUTROUFIOTIS, D., The Characteristic Mapping of a Reflector, Journal of Geometry, 24 (1985) 131-167.

