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ABSTRACT

In this study, a family of linear positive operators, which includes the sequence of
linear positive operators built in a paper of AD. Gadjiev and II. Ibragimov and later
investigated by B. Wood and P. Radatz is defined and the order of convergence of these
operators to continuous functions are studied.

We give the estimate of difference L& x) - fx), where L).(f; x) is a family of

linear positive operators, in terms of modulus of continuity of the mentioned function f.

1. INTRODUCTION

Let C([0, A]; x?) be the space of all functions f defined in [0, o)
and continuous in the interval [0, A] for which the inequality

fOl < M1 + x%), 0 < X < o, 0))
holds, where M is a positive constant depends on f.

For any positive A, we denote by ® A& 8) the modulus of continuity
of function f on closed interval [0, A], that is

0, 8 = sup {lf(t) - f®); x, t € [0, Al, |x — t| < &} 2)
It is well known that the function ® K¢S 8) has the following properties:

M If®) - f)} < of; |t - x)

G 10 - o < [t - 14 1) o 9

(iii) SSCf o(f; 8), where C; is a positive real constant, depends on f.
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2. GENERALIZED LINEAR POSITIVE OPERATORS

Let A and A be positive real numbers, {9,(0} and {y, ()} be the
family of functions in C[0, A] such that 9,0 = 0, y,(t) > 0, for each
t € [0, Al

Let also {o,} be a family of positive numbers such that
o
im = = im = A = im = 1 =
fop =0y = o fim = ok =L fim = =0,
Ay, 0)
Assume that {K,(x, t )} (x,t € [0, A, —o<u <o, A>0)isa
family of functions of three variables satisfying the following conditions:

1° Each function of this family is an entire analytic function with
respect to u for fixed x and t of the segment [0, Al.

2° K,(x,0,0) = 1 for any x € [0, A] and for any A>0.

20(Vx e [0,A], >0, v=0,1,2.)

v au
3° (_ 1) v (X » b
{ au\) KK uﬂ:):ul

=0

u

v -1
d 0
4° X, t,u =-AX (x, t, u)
0 ey [au et
Y
(WVx € [0, A, A e R*, v = 0, 1, 2, ..) where h()) is a
nonnegative function satisfying the condition ;PE,I}‘, = . = 1.
Consider the family of linear operators;
oo v v
0 (- ¥, )
. x) = i) AYA
L& x) =Y f > ) :é—u K &, t, u)|“=03~w’~(t) 5 3)
t=

= A y,0)
acting on function f € C ([0, Al; x).

Note that for A = n and hA) = m + n (m + n = 0, 1, 2, ..), the
operators defined by (3) are reduced to the operators defined in [4].

Remark. By choosing A = n (n = 1, 2, ..) we obtain, as in [4],
some known sequences of linear positive operators.

By choosing

Ko tw=[1- T o =ny0-=

1)

=
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we have h(n) = n - 1 and the operators defined by (3) are transformed
into Bemnstein polynomials.

For
= 0) = L llimb = lim 22 = 0
an_n""n()*ﬁf; e e e N
n
we obtain Bernstein-Chlodovsky polynomials.
By choosing
_ -n{t+ux) _ _ 1
Kn(x’ t, ll) =¢ ’ an =n, \|In(0) - H ’

we have h(n) = n and we get Szasz operators.
If K (2) is entire analytic function and

= = =1
Kn(x, t, u) = Kn(t + ux) , o =n, \|fn(0) =4
then we obtain Baskakov [1] operators, and for
2

n
o =n y@©) =L ad—=8,
n n an an n

we get the other Baskakov [2] operators.

The linear positive operators defined by (3) have the following
properties: (See [3]).

L(1;x) =1 C))
Lt 0 = 2 x ©)
A
2
Lk(tz; X) = (();va h(lﬁ + o;%x - | ©)
Ay, 0
Also from (4), (5) and (6), it is seen that
2
0<L((t-%)'; x)=(°°_;w— 2% 1)x2+°Lx _1 N
v AR A0

since L, are positive operators.

Denote for each A > 0
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12

2
R R ®)
where ||.||C[0 Al is a norm defined by
e 57 = oax ) . )

Using (9) in (8), we obtain
n»

2

5, = max [[Tah®) 5% gk %1 (10)

xe[0,A] )\’2 x ;\' )\' ;\'2"’ (O)

A
and since
im =1, imﬂ)_:undym 1 -9,
—eo ;\’ —>00 7\' =0 )
Ay, 0)

we can see that, for each x € [0, A],
ll_r)go 8, =0.
On the other hand, from (7) and (10) we get
2 2
L({t-x3;%) <8, . Y

Now using the Cauchy-Bunyakovskii’s inequality in Lk(lt - xj x)
and making the simplifications, we get

Lt - xl; x) < [L&% %) - 2xL, (6 x) + L (0] L, (%) (12)
Using (4) and the equality

[L, (%5 x) — 2xL,( x) + X’L,(5; 0] = [L(¢ - 0% 9)].
in (12), we have

Lt - xt x) < [L,(¢ - x5 0]
and by (11) we get

L(t - x; x) s 8, (13)

Now we can prove the following theorem.
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Theorem 2.1. Let f be continous in [0,0), satisfies (1) and o,, 8)
be its modulus of continuity on the finite interval [0, 2A]. Then for the
family of linear positive operators {L,} given by (3) having the properties
4, (5), (6), the inequality

Ly Ex) ~ £ o) < [Cf M, (5 + %) + 2} ©,,(£:5,) (14)

holds for all sufficiently large A, where M; is a positive constant which
depends on f, C; is as in property (iii) of modulus of continuity and SL
is defined as in (8).

Proof. It is obvious that for x € [0, A] and t € [0, ) we can
divide the line in two parts

E ={x t: x € [0, Al; t > 2A}

E, = {x,): x € [0, A]; t < 2A}
By using |[f(t)] < Mf (1 + %), we obtain for x € [0, Al and t € [0, o)
the inequality

f® - )] < M2 + (t - x)* + 2Alt - x| + 242

For (x, t) € E1 since |t — x| > A, we have

2
6 - foof < M, (2 Lz")_ Ft-% 4+ 2t-x) + 2t - x)2) :
A

and consequently
2
60 ~ o} < M, (¢ - %) (% ¥ 5) | 1s)
A
Let now (x, t) € E,. Then |t — x| < 2A and using the properties (i)
and (i) for modulus of continuity, we can write
Ifty — f(x){ < o,,(fit=xl) < sz(f;sz) Eél‘-l- + 1) . (16)

A
From (15) and (16) for x € [0, A] and t € [0, ), we get

Ift) ~ fx) < Mf(t—x)z (% + 5) + ,,(£3,) ("g—x' + 1) ) a7
A )
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Since L,(f; x) is monotone increasing and linear in f, we have

L (O — feokx) <M, §+ 5) L (¢x)'3%)

+0,,(£5,) (6L L,(t—xkx) + L, (L) | . (18)
3

Since 8, - O we have, for sufficiently large A, Szl < 8, and by the
property (iii) of the modulus of continuity

9, < C,0,, (:3))
Thus from (11) we can write
L(tx)5x) < 8, < Co,, (£3,) . (19)

Using (4), (13) and (19) in (18) we obtain

L® - foofx) < [chf(%+ 5)+ 2} 0, (£:8) . 20)
We obtain the desired result.

3. A GENERALITAZION OF THE r-th ORDER OF THE FAMILY
{L,} DEFINED BY (3)

By C®”[0,A], we denote the set of the functions f:[0,A] — R having
continuous 1-th derivative f© (fO(x) = f(x)) on the segment [0,A].

We consider a following generalization of the family of linear
positive operators defined by (3)

i

[,
2
i S ) Ay, (0
T Ak
’ Ay, (0)
¥ _ oy ©)
<2 (x,t,u),m%w:s_%; o

Operators (21) we call the r-th order of the family (3).
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Note that this definition for linear positive operators was given in

(6].
We can prove the following proposition.

Theorem 3.1. Let Lg](f;x) be a family of operators defined by (21),
L, is the family of linear positive operators defined in (3) and

r r+1 r+2
) =max( sup L (Ix-t{;x) , su x-t| ;x), sup L (Ix-t| ;x)}. (22
A xe[OgAJ i ) xe[ol,)A]L”( ) xe[olil *(, ))- @
If f e CY[0,2A], and

|f (t)|<M(r>(1+t) 0<t<eo,

then the inequality

|L£t](f;X) - f(x)l <M (% +5
A

holds, where ®,,(f;3,) is the modulus of continuity of f* in [0,2A].

28,  §,(r+1)+1 © ‘
f
)(r+2)! e Cal %) 23)

Proof. We can write

i

v

(X_ 2

r i Ay,

00-L60 = 3 [ 3 (2 2
=0 | i=0 )\'\Vx(o)

- ocm(o))

X = Kx(x t"’)| R A (24)
) !

Then from the Taylor’s formula we get

(X — v )‘ (x —— v )r

L) A 0 A 0

f(x) — ‘ E f() ( > v ) i:"x( ) = (r_z)“( ) X
=) v, ©0) ' '

+tHx -

1
x[ (1 _t)r—l[f(r)( - i) - v ))__f(r)( - iY) )J dt . (25
0 Ay, 0) Ay, 0) Ay, 0)

Using the similar arguments as when obtaining the inequality (17), we
can write
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(2 tx - ) -17 (2 )‘
Ay, 0) Ay, 0) Ay, 0
t(x - —Y
' Ay O ;
< (t(x v ))( ___SM_+ o, ”8) . e
A v, (0) h

In view of the inequality (26), we have from (25)

(x— , )1

2
(00~ 3, 7 (o L2 W0
= ?L wx(O) ' |

\IIX(O ‘

2
=t { (1 0 Mo £(x - Ly (2 + 5)dt
Ay, A

1
0 lde+ J a-o dt” . @7
A wx(0)| 0

+0,,@”8) {SL (1 ~o ek -

Since
! -1 1 r-1 r-12 2
-9 de=L | a-¢ tdt=—1—,f 1=ty tdt=—2
0 r 0 r(r+1) 0 r(r+1)(+2)
we have

x——20 \
-3 £ (-2 )( i"’%“”)

!
D WVy0 " |
v [

v, 0) 2

<L AnO) Mfm +5(x— y—2
1) A }»(0) r(r+1)(r+2)

X - — L
o, 75) AwO) 1

8, 1(r+1)

Using this inequality in (24) we obtain
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[l o ) 2 2 r+2'
th (£:x) f(x)| < Mg (E+ 5)(H_—2)!Lk(|x—t| X) +

r+1 r
L. (x| ;x) L,(Ixt;x) ()
A A £8,) .
@+1)18, ¥ ! O 3% (28)

Substituting the value of 87~ defined by (22) in (28), we have (23) and
thus theorem is proved.
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