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ABSTRACT

İn this paper we describe a package XMOD [2] of functions for computing with 
crossed modules, their morphisms and derivations; cat'-groups, Üıeir morphisms and sections, 

written using the GAP [5] group theory programming language. We have also enumerated 
the isomorphism classes of cat -groups in [3], Using these papers, we proved some 
mathematical results on cat'-group structures.

1. INTRODUCTION

The term crossed modüle was introduced by J.H.C. Whitehead in [6], 
Most references of crossed modules State the axioms of a crossed modüle 
using left actions, but we shall use right actions since this is the 
convention used by most computational group packages. In Section 2 we 
recall the basic properties of crossed modules and cat* -groups. In Section 3 

we describe he implementation methods of these structures in GAP and in 
Section 4 we discuss the algorithms used to compute cat’-groups. Then 
we proved some mathematical results on cat’-groups in Section 5.

2. CROSSED MODULES AND CAT^-GROUPS

In this scction we recall the descriptions of two equivalent categories: 
X Mod, the eategory of crossed modules and their morphisms; Cati, the 
category of cat^-groups and their morphisms.

A crossed modüle X (3 : S R) consists of a group
homomorphism d, called the boundary of together with an action 
a : R Aut(S) satisfying, for ali s, s' g S and r e R,
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X Mod 1: a(s') = r ‘(as)r
X Mod 2: s*' = s''’ss'.

The standart constructions for crossed modules are as follows:

1. A conjugation crossed modüle in an inciusion of a normal 
subgroup S < R, where R acts on S by conjugation.

2. A Central extension crossed modüle has a boundary a surjection 
3 : S -> R with Central kemel, where r g R acts on S by 
conjugation with 3 'r.

3. An automorphism crossed modüle has as range a subgroup R of 
the automorphism group Aut(S) of S which contains the inner 
automorphism group of S. The boundary maps s e S to the inner 
automorphism of S by s.

4. An R-Module crossed modüle has an R-module as source and 3 
is the zero map.

5. The direct product x of two crossed modules has source
Sj X S,2’ range x and boundary 3^ x d^, with R^
acting trivially on S^, respectively.

A morphism between two crossed modules Xj and X^ is a pair (a, p), 
where a : and p ; R^ R^ are homomorphisms satisfying

3^0 = p3^, o(s') = (0s)’’\

When X2 = X^ and a, p are automorphisms then (o, p) is an 
automorphisms of X^. The group of automorphisms is denoted by
Aut(X,).

1'

In [4] Loday reformulated the notion of a crossed modüle as a 
cat'-group, namely a group G with a pair of homomorphisms t, h : G -> G 

having a conunon image R and satisfying certain axioms. We find it 
convenient to define a cat'-group C = (e; t, h : G —> R) as a group G, 

two surjections t, h : G R and an embedding e : R -> G satisfying:
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Cat 1: te = he = idR,
Cat 2: [ker t, ker h] = {1^}-

The maps t, h are often referred to as the source and target, but we 
choose to cali them the tail and head of C, because source is the GAP 
term or the domain of a function. A morphism -> of cat'-groups
İS a pair (y, p) where y : G G, and p : R -> R,
homomorphisms satisfying

"221 1

*^2^ = P’^ı’ V = P‘ı’ ®2P = '^1-

are

(1)

The crossed modüle X associated to C has S = ker t and d = h/s. 
The cat'-group assoeiated to X has G = R S, using the action from X, 
and

t(r, s) = r, h(r, s) = r(3s), er = (r, 1).

3. GAP IMPLEMENTATION

The group theory program GAP [5] is designed to facilitate the 
implementation of new structures as record types with their own output 
form. A seperate operations record allows the overloading of functions 
such as identity mapping kemel, ete.. We have developed a package [2] 
of some 160 functions for crossed modules, their motphisms and 
derivations; cat'-groups have permutation groups and finitely presented 

groups are used in many of the constructions. The underiying groupoid G 
has not been inciuded, nor does the package [2] contain functions for 
pre-ca?-groups and Peiffer subsgroups. The following implementation 
method was explained very clearly in [3] and [1],

We implement a cat'-groups C = (e; t, h : G -> R) as a record 
with fıelds:

C. source,
C. range,
C. tail,
C. head,
C. embedRange

the source group G,
the range group R, 
the tail homomorphism t, 
the head homomorphism h, 
the embedding e of R in G,
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C. kemel,
C. embedKernel,
C. boundary,
C. isDomain, 
C. operations, 
C. name.

the permutation group S isomorphic to the kemel of t, 
the isomorphism e : S —> ker t, 
the restriction 3 of h to S, 
set true,
a special set of operations CatlGroupOps, 
a concatenation of the names of G and R,

C. is Cati Group, a boolean flag, norraally true.

The operations record Cati Ops inciudes functions for equality; size 
and list of elents and a special output form.

A morphisms mor = (7, p) : C D of cat^-groups is implemented 
as a record with fıelds:

mor .source, 
morj-ange, 
mor.sourceHom, 
morjrangeHom,

the source catl-group C,
the range catl-group D,
the homomorphism 7 from C.source to D,source, 
the homomorphism p from C.range to D.range,

mor.isCatlMorphism, a Boolean flag, normally true.
mor.operations, 
mor .name,

The operations 
equality; kemel and

a special set of operations CatlMorphismsOps, 
a concatenation of the names of C and D.

record Cati MorphismOps inciudes function for 
image; composite and inverse morphism; and tests 

such as IsEpimorphism.

Example 3.1 Let R be the group S C and S its normal subgroup 
S^. The inciusion crossed modüle X = (1 : —> S^C^) and cat -groups
stmcture are given as follows.

gap > X : ConjugationXMod (s3cl, s3);
Crossed modüle [s3 -> s3c7]
gap > XModPrint (X);
Crossed modüle [s3 -> s3c7] : -
; Source group has parent (s3c7) and has generators:
[ (1, 2), (2, 3) ]
: Range group = s3c7 has generators:
[ (1, 2), (2, 3), (4, 5, 6, 7, 8, 9, 10) ]
: Boundary homomorphism maps source generators to:
[ (1, 2), (2, 3) ]



SPECIAL CASES OF CAt'-GROUP 5

: Action homomorphism maps range generators to automorphism:
(1, 2) --> source gens -> [ (1, 2), (1, 3) ]
(2, 3) --> source gens -> [ (1, 3), (2, 3) ]
(4, 5, 6, 7, 8, 9, 10) -> source gens --> [ (1, 2), (2, 3) ]

These 3 automorphisms generale the group of automorphisms.

gap> C : = CatlXMod (X);
catl-group [Perm(s3c7 IX s3) ==> s3c7]
gap> CatIPrint (C);
catl-group [Perm(s3c7 IX s3) ==> s3c7] : -
: source group has generators:
[ (2, 6)(4, 5)(1, 8), (3, 6)(4, 5)(8, 9), {10, 11, 12, 13, 14, 15, 16), 
(1, 3)(2, 4)(5, 6), (1, 2)(3, 5), (4, 6) ]
: range group has generators:
[ (1, 2), (2, 3), (4, 5, 6, 7, 8, 9, 10) ]
: tail homomorphism maps source generators to:
[ (1, 2), (2, 3), (4, 5, 6, 7, 8, 9, 10), (1, 2), (2, 3) ]
: range embedding maps range generators to:
[ (2, 6)(4, 5)(1, 8), (3, 6)(4, 5)(8, 9), (10, 11, 12, 13, 14, 15, 16) ]
: kemel has generators:
[ (1, 2), (2, 3) ]
: boundary homomorphism maps generators of kemel to:
[ (1, 2), (2, 3) ]
: kemel embedding maps generators of kemel to:
[ (1, 3)(2, 4)(5, 6), (1, 2)(3, 5)(4, 6) ]
: assoiated crossed modüle is Crossed modüle [s3 -> s3c7]

4. Algoritbms for Cat^-groups

The follovving algorithms were explained very clearly in [1],

4.1. Algorithm for Cati

The function Cati is called as:

gap> Cati (G, t, h, [e] ).

The function requires three parameters and an öptional parameter: a 
group G, and the tail and head homomorphisms t, h and optional
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embedding homomorphism e. As output, the function retums a cat^-group 
with field as described in section 4.

Step 1

Step 2

Step 3
Step 4

Check that there are three parameters and that the first 
argument is a permutation group.
Check that t and h are homomorphisms with source G 
and with a common range R.
Set up the record fıelds which listed in section 4.
Cali the IsCatI function to verify the axioms.

4J. Algorithm for IsCatI

The function IsCatI is called as:

gap> IsCatI (C)

The function retums true when the input parameter C is a cat*-group 
and false otherwise. The function checks that the main fîelds of a 
cat-group exist, and that the axioms CATI and CAT2 are satisfied.

Step 1

Step 2

Step 3

Check that C is a record structure, that fîelds Cjsource 
and C.range exist, and that these are permutation group,. 
Check that tail and head exist, and that these are group 
homomorphisms.
Check that C.embedRange, C.embedKerncI, C.boundary 
and C.kernel exist.

Step 4 
satisfied.

Step 5

.1Check that the cat -group conditions CATI and CAT2 are

Add filed .isCatI to C.

4.3. Algorithm for CatlMorphism

The function CatlMorphism is called as:

gap> CatlMorphism (C, D, homs)

.1The function CatlMorphism require as parameters two cat -groups
and a two-element list containing the source and range homomorphisms. 
As output, it sets up the required fıelds for morphism g. The algorithm 
of this function as same as the algorithm of XModMorphism.
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In this implementation a morphism of cat'-groups is a record with 
fields as described in section 4.

4.4. Algorithm for CatlXMod

The function CatlXMod is called as:

gap> CatlXMod(X)

This function implements the functor XMod -> Catl.

Step 1
Step 2

Step 3

Step 4

Step 5

Cali IsXMod on the argument.
If X.actioıı is trivial then the source group is the 
constructed using the direct product G = R x S. If 
X.action is not trivial the source group is constructed as 
a permutation representation G of R x S.
The tail, head and embedding are defined using 
t(r, s) = r, h(r, s) = rds, e(r) = (r, 1).
Create the record structure with the required fields in 
section 4.
Add X.catl and C.xmod.

The procedure for XModCatl is similar.

5. Special cases for cat^-structures

By a cat‘-structure on G we mean a cat'-group C where R is a 
subgroup of G and e is the inciusion map, For such a structure to exist, 
G must contain a normal subgroup S with G/S s R. Furhthermore, since 
t, h are respectively the identity and zero maps on S, since G s R S 
we require R n S = (Ig)-

The boundary map 3 of a cat'-structure is the zero map if and only 
if t = h since

ker t = ker h =>3 = 0=^ h'(r,s) = r(3s) = r = t'(r,s) => h' = t' => h = t.

Furthermore, by Cat2, kert is abelian. This is precisely the situation 
for any cat-group whose source G is a group such that no two normal 
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subgroups are isomorphic. Examples of such groups are cyclic groups, 
simple groups and symmetric groups.

Proposition 5.1. Let (y, p) be an isomorphism from C = (e; h, t : 
G -> R) to C' (e'; h', t' : G' R'). Then 7: G -> G', p : R R' 
are isomorphisms, t' = pt7*, h' = ph7^ and e' = yep \

Proof: This follows from (1) since 7, p are invertible.

Proposition S J. Up to isomorphism, the only cat'-structure with R = G 
is the identity cat*-stmcture (id; id, id : G G) on G.

Proof: The condition R n S = {1^} implies that S = {1^} and 
hence t = h, e = t \ We then have a cat*-group isomorphism

(t, id) : (f‘; t, t: G G) (id; id, id : G G).

Proposition 5.3. The zero cat^-stmcture (0; 0, 0 : G {1^} on G 
is a ca?-group if and only if G is abelian.

Proof: When t = h = 0 condition Cat2: becomes [ker t, ker h] = 
[G, G] = {1^}.

Proposition 5.4. Up to isomorphism, the only cat*-structure on a 
finite non-abelian simple group is the identity cat*-group.

Proof: This foUows immediately from the previous two Propositions.

Poposition 53. Up to isomorphism, the only cat*-structure on the 
guatemionic group of order 2" is the identity cat*-group.

Proof: Let G be a group with normal subgroup N such that the only 
subgroup of G which does not contain N is Then the condition R 

S = (1 } is only satisfied if R = {1 } or S = {1 }, so the only G j G G
possible cat-stmctures are the identity stmcture and, provided G is 
abelian, the zero stmcture.

The
N = {1, -1}.

quatemion groups Q^„ are non-abelian and of this type, with

Proposition 5.6. Two abelian ca?-groups C, C' are isomorphic if 
and only if G = G', R s R' and ker 9 ker 9'.
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Proof: Since G is abelian, we may assume that it has direct sum 
decomposition of the form R ® S where R = R^ ® R^, S = S^^ ® Sp 
S^ = ker â and R^^ = imâ. If G = G' and R = R' then we may
decompose G' = R' ® S' = R' ® R'

1
Sp ® S'^. If y is any

isomorphism which maps the four factors of G onto those of G' then (7, 
7j^) : C C' is an isomorphism.

Proposition 5.7. Let C be a cyclic group and let n have exactly k 
distinct prime factors. Then there are 2*' isomorphism classes of 
cat’-structures on C . 

n

Proof: Recall that has n endomorphisms t^ : g g\ 1 < s < n 
where g is a generator of C , and that the idempotent endomorphisms are 

n
determined as follows. Let n = m ]

Pı 'P2
ın.... p^™k and let q. = n/p,™i for

each 1 < i < k. Euclid’s algorithm provides an identity 1 = a^g^ + ... + 
a|^q]^ and we set B = {b^ ..., b^^} where b. = a.q. reduced modn. Then if
s £ B and s is the sum of the elements in S, the endomorphism t^ is 
idempotent, with image C where ds = gcd(n, s). The 2*' subsets provide 

kthe 2 idempotent endomorphisms. Since no two subgroups of C are
isomorphic, it follows from Proposition 5.6 that the isomorphism classes o
cat’-structues on C have representatives (e; t, t : C -> C J. 

n s s s n d ■; s'

Proposition 5,8. Let G = C “ 1
number of isomorphism classes of cat-structures on G is

be an elemantary abelian group. The

I (1 + nnf , 

|(n + lX(n + 3)/4 ,
n even,

n odd.

Proof: When R = C
.... C, min(nı,n-ra) 

’p

, n-nı 

P

»5
for some 0 < m < n, imâ e {I, C , C , p p

}, so by Proposition 5.6 there are 1 + min (m,n-m)
İsomorphism classes for fixed m. Summing över ali m < n gives the 
required results.

m 2

s

e
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