Commun. Fac. Sci. Univ. Ank. Series A1 V. 47. pp. 1-10 (1998)

SPECIAL CASES OF CAT¹-GROUPS

M. ALP

Department of Mathematics, Faculty of Art and Sciences, Dumlupinar University, Kütahya, TURKEY.

(Received Sep. 22, 1997; Accepted Feb. 20, 1998)

ABSTRACT

In this paper we describe a package XMOD [2] of functions for computing with crossed modules, their morphisms and derivations; cat^{1} -groups, their morphisms and sections, written using the GAP [5] group theory programming language. We have also enumerated the isomorphism classes of cat^{1} -groups in [3]. Using these papers, we proved some mathematical results on cat^{1} -group structures.

1. INTRODUCTION

The term crossed module was introduced by J.H.C. Whitehead in [6]. Most references of crossed modules state the axioms of a crossed module using left actions, but we shall use right actions since this is the convention used by most computational group packages. In Section 2 we recall the basic properties of crossed modules and cat¹-groups. In Section 3 we describe he implementation methods of these structures in GAP and in Section 4 we discuss the algorithms used to compute cat¹-groups. Then we proved some mathematical results on cat¹-groups in Section 5.

2. CROSSED MODULES AND CAT¹-GROUPS

In this section we recall the descriptions of two equivalent categories: **X** Mod, the category of crossed modules and their morphisms; Cat1, the category of cat¹-groups and their morphisms.

A crossed module $\chi = (\partial : S \to R)$ consists of a group homomorphism ∂ , called the *boundary* of χ , together with an action $\alpha : R \to Aut(S)$ satisfying, for all s, s' \in S and $r \in R$, **X Mod 1**: $\partial(s^r) = r^{-1}(\partial s)r$ **X Mod 2**: $s^{\partial s'} = s^{-1}ss'$.

The standart constructions for crossed modules are as follows:

- 1. A conjugation crossed module in an inclusion of a normal subgroup $S \leq R$, where R acts on S by conjugation.
- 2. A central extension crossed module has a boundary a surjection ∂ : S \rightarrow R with central kernel, where $r \in R$ acts on S by conjugation with $\partial^{-1}r$.
- 3. An automorphism crossed module has as range a subgroup R of the automorphism group Aut(S) of S which contains the inner automorphism group of S. The boundary maps $s \in S$ to the inner automorphism of S by s.
- 4. An *R-Module crossed module* has an R-module as source and ∂ is the zero map.
- 5. The direct product $X_1 \times X_2$ of two crossed modules has source $S_1 \times S_2$, range $R_1 \times R_2$ and boundary $\partial_1 \times \partial_2$, with R_1 , R_2 acting trivially on S_2 , S_1 respectively.

A morphism between two crossed modules X_1 and X_2 is a pair (σ , ρ), where σ : $S_1 \rightarrow S_2$ and ρ : $R_1 \rightarrow R_2$ are homomorphisms satisfying

$$\partial_2 \sigma = \rho \partial_1, \ \sigma(s^r) = (\sigma s)^{\rho r}.$$

When $X_2 = X_1$ and σ , ρ are automorphisms then (σ, ρ) is an automorphisms of X_1 . The group of automorphisms is denoted by Aut(X_1).

In [4] Loday reformulated the notion of a crossed module as a cat¹-group, namely a group G with a pair of homomorphisms t, $h : G \to G$ having a common image R and satisfying certain axioms. We find it convenient to define a cat¹-group C = (e; t, h : G \to R) as a group G, two surjections t, h : G \to R and an embedding e : R \to G satisfying:

Cat 1: te = he = idR, Cat 2: [ker t, ker h] = $\{1_{c}\}$.

The maps t, h are often referred to as the *source* and *target*, but we choose to call them the *tail* and *head* of C, because *source* is the GAP term or the domain of a function. A morphism $C_1 \rightarrow C_2$ of cat¹-groups is a pair (γ , ρ) where γ : $G_1 \rightarrow G_2$ and ρ : $R_1 \rightarrow R_2$ are homomorphisms satisfying

$$\mathbf{h}_{2}\gamma = \rho\mathbf{h}_{1}, \ \mathbf{t}_{2}\gamma = \rho\mathbf{t}_{1}, \ \mathbf{e}_{2}\rho = \gamma\mathbf{e}_{1}. \tag{1}$$

The crossed module X associated to C has $S = \ker t$ and $\partial = h/s$. The cat¹-group associated to X has $G = R \ltimes S$, using the action from X, and

$$t(r, s) = r, h(r, s) = r(\partial s), er = (r, 1).$$

3. GAP IMPLEMENTATION

The group theory program GAP [5] is designed to facilitate the implementation of new structures as record types with their own output form. A seperate operations record allows the overloading of functions such as identity mapping kernel, etc.. We have developed a package [2] of some 160 functions for crossed modules, their morphisms and derivations; cat¹-groups have permutation groups and finitely presented groups are used in many of the constructions. The underlying groupoid G has not been included, nor does the package [2] contain functions for pre-cat¹-groups and Peiffer subsgroups. The following implementation method was explained very clearly in [3] and [1].

We implement a cat¹-groups $C = (e; t, h : G \rightarrow R)$ as a record with fields:

C. source,	the source group G,
C. range,	the range group R,
C. tail,	the tail homomorphism t,
C. head,	the head homomorphism h,
C. embedRange	the embedding e of R in G,

C. kernel,	the permutation group S isomorphic to the kernel of t,
C. embedKernel,	the isomorphism ε : S \rightarrow ker t,
C. boundary,	the restriction ∂ of h to S,
C. isDomain,	set true,
C. operations,	a special set of operations Cat1GroupOps,
C. name,	a concatenation of the names of G and R,
C is Catl Group	a boolean flag normally true

C. is Catl Group, a boolean flag, normally true.

The operations record **Cat1 Ops** includes functions for equality; size and list of elents and a special output form.

A morphisms mor = (γ, ρ) : C \rightarrow D of cat¹-groups is implemented as a record with fields:

mor.source,	the source cat1-group C,
mor.range,	the range cat1-group D ,
mor.sourceHom,	the homomorphism γ from C.source to D.source,
mor.rangeHom,	the homomorphism ρ from C.range to D.range,
mor.isCat1Morphism,	a Boolean flag, normally true,
mor.operations,	a special set of operations Cat1MorphismsOps,
mor.name,	a concatenation of the names of C and D.

The operations record **Cat1 MorphismOps** includes function for equality; kernel and image; composite and inverse morphism; and tests such as **IsEpimorphism**.

Example 3.1 Let R be the group S_3C_7 and S its normal subgroup S_3 . The inclusion crossed module $X = (1 : S_3 \rightarrow S_3C_7)$ and cat¹-groups structure are given as follows.

gap > X : ConjugationXMod (s3c7, s3); Crossed module [s3 -> s3c7] gap > XModPrint (X); Crossed module [s3 -> s3c7] : -: Source group has parent (s3c7) and has generators: [(1, 2), (2, 3)] : Range group = s3c7 has generators: [(1, 2), (2, 3), (4, 5, 6, 7, 8, 9, 10)] : Boundary homomorphism maps source generators to: [(1, 2), (2, 3)] : Action homomorphism maps range generators to automorphism: (1, 2) --> source gens --> [(1, 2), (1, 3)] (2, 3) --> source gens --> [(1, 3), (2, 3)] (4, 5, 6, 7, 8, 9, 10) --> source gens --> [(1, 2), (2, 3)]

These 3 automorphisms generate the group of automorphisms.

gap> C : = Cat1XMod (X): cat1-group [Perm(s3c7 |X s3) = > s3c7] gap> CatlPrint (C); cat1-group [Perm(s3c7 IX s3) ==> s3c7] : -: source group has generators: [(2, 6)(4, 5)(7, 8), (3, 6)(4, 5)(8, 9), (10, 11, 12, 13, 14, 15, 16),(1, 3)(2, 4)(5, 6), (1, 2)(3, 5), (4, 6): range group has generators: [(1, 2), (2, 3), (4, 5, 6, 7, 8, 9, 10)]: tail homomorphism maps source generators to: [(1, 2), (2, 3), (4, 5, 6, 7, 8, 9, 10), (1, 2), (2, 3)]: range embedding maps range generators to: [(2, 6)(4, 5)(7, 8), (3, 6)(4, 5)(8, 9), (10, 11, 12, 13, 14, 15, 16)]: kernel has generators: [(1, 2), (2, 3)]: boundary homomorphism maps generators of kernel to: [(1, 2), (2, 3)]: kernel embedding maps generators of kernel to: [(1, 3)(2, 4)(5, 6), (1, 2)(3, 5)(4, 6)]: assolated crossed module is Crossed module $[s_3 \rightarrow s_3c_7]$

4. Algorithms for Cat¹-groups

The following algorithms were explained very clearly in [1].

4.1. Algorithm for Cat1

The function Cat1 is called as:

gap> Cat1 (G, t, h, [e]).

The function requires three parameters and an optional parameter: a group G, and the tail and head homomorphisms t, h and optional

embedding homomorphism e. As output, the function returns a cat^{1} -group with field as described in section 4.

Step 1	Check that there are three parameters and that the first
	argument is a permutation group.
Step 2	Check that t and h are homomorphisms with source G and with a common range R.
Step 3	Set up the record fields which listed in section 4.
Step 4	Call the IsCat1 function to verify the axioms.

4.2. Algorithm for IsCat1

The function IsCat1 is called as:

gap> IsCat1 (C)

The function returns **true** when the input parameter C is a cat^{1} -group and **false** otherwise. The function checks that the main fields of a cat^{1} -group exist, and that the axioms CAT1 and CAT2 are satisfied.

Step 1	Check that C is a record structure, that fields C.source
	and C.range exist, and that these are permutation group
Step 2	Check that tail and head exist, and that these are group
	homomorphisms.
Step 3	Check that C.embedRange, C.embedKernel, C.boundary
	and C.kernel exist.
Step 4	Check that the cat ¹ -group conditions CAT1 and CAT2 are
satisfied.	

Step 5 Add filed .isCat1 to C.

4.3. Algorithm for Cat1Morphism

The function Cat1Morphism is called as:

gap> Cat1Morphism (C, D, homs)

The function **Cat1Morphism** require as parameters two cat¹-groups and a two-element list containing the source and range homomorphisms. As output, it sets up the required fields for morphism μ . The algorithm of this function as same as the algorithm of XModMorphism. In this implementation a morphism of cat¹-groups is a record with fields as described in section 4.

4.4. Algorithm for Cat1XMod

The function Cat1XMod is called as:

gap> Cat1XMod(X)

This function implements the functor XMod \rightarrow Cat1.

Step 1 Call IsXMod on the argument.

- Step 2 If X.action is trivial then the source group is the constructed using the direct product $G = R \times S$. If X.action is not trivial the source group is constructed as a permutation representation G of R x S.
- **Step 3** The tail, head and embedding are defined using t(r, s) = r, $h(r, s) = r\partial s$, e(r) = (r, 1).
- **Step 4** Create the record structure with the required fields in section 4.
- Step 5 Add X.cat1 and C.xmod.

The procedure for XModCat1 is similar.

5. Special cases for cat¹-structures

By a cat^{l} -structure on G we mean a cat^{l} -group C where R is a subgroup of G and e is the inclusion map. For such a structure to exist, G must contain a normal subgroup S with G/S \cong R. Furthhermore, since t, h are respectively the identity and zero maps on S, since G \cong R \ltimes S we require R \cap S = $\{1_{\Omega}\}$.

The boundary map ∂ of a cat¹-structure is the zero map if and only if t = h since

$$\ker t = \ker h \Rightarrow \partial = 0 \Rightarrow h'(r,s) = r(\partial s) = r = t'(r,s) \Rightarrow h' = t' \Rightarrow h = t.$$

Furthermore, by Cat2, kert is abelian. This is precisely the situation for any cat^{1} -group whose source G is a group such that no two normal

subgroups are isomorphic. Examples of such groups are cyclic groups, simple groups and symmetric groups.

Proposition 5.1. Let (γ, ρ) be an isomorphism from $C = (e; h, t : G \rightarrow R)$ to C' $(e'; h', t' : G' \rightarrow R')$. Then $\gamma : G \rightarrow G', \rho : R \rightarrow R'$ are isomorphisms, $t' = \rho t \gamma^{-1}$, $h' = \rho h \gamma^{-1}$ and $e' = \gamma e \rho^{-1}$.

Proof: This follows from (1) since γ , ρ are invertible.

Proposition 5.2. Up to isomorphism, the only cat¹-structure with R = G is the *identity* cat¹-structure (id; id, id : $G \rightarrow G$) on G.

Proof: The condition $R \cap S = \{1_G\}$ implies that $S = \{1_G\}$ and hence t = h, $e = t^{-1}$. We then have a cat¹-group isomorphism

 $(t, id) : (t^{-1}; t, t: G \rightarrow G) \rightarrow (id; id, id : G \rightarrow G).$

Proposition 5.3. The zero cat¹-structure (0; 0, 0 : G $\rightarrow \{1_G\}$ on G is a cat¹-group if and only if G is abelian.

Proof: When t = h = 0 condition **Cat2**: becomes [ker t, ker h] = [G, G] = $\{1_G\}$.

Proposition 5.4. Up to isomorphism, the only cat^{1} -structure on a finite non-abelian simple group is the identity cat^{1} -group.

Proof: This follows immediately from the previous two Propositions.

Poposition 5.5. Up to isomorphism, the only cat¹-structure on the quaternionic group Q_{2^n} of order 2^n is the identity cat¹-group.

Proof: Let G be a group with normal subgroup N such that the only subgroup of G which does not contain N is $\{1_G\}$. Then the condition R $\cap S = \{1_G\}$ is only satisfied if $R = \{1_G\}$ or $S = \{1_G\}$, so the only possible cat¹-structures are the identity structure and, provided G is abelian, the zero structure.

The quaternion groups Q_{2^n} are non-abelian and of this type, with $N = \{1, -1\}$.

Proposition 5.6. Two *abelian* cat¹-groups C, C' are isomorphic if and only if $G \cong G'$, $R \cong R'$ and ker $\partial \cong \ker \partial'$.

Proof: Since G is abelian, we may assume that it has direct sum decomposition of the form $R \oplus S$ where $R = R_0 \oplus R_1$, $S = S_0 \oplus S_1$, $S_0 = \ker \partial$ and $R_0 = \operatorname{im}\partial$. If $G \cong G'$ and $R \cong R'$ then we may decompose $G' = R' \oplus S' = R'_0 \oplus R'_1 \oplus S'_0 \oplus S'_1$. If γ is any isomorphism which maps the four factors of G onto those of G' then $(\gamma, \gamma_R) : C \to C'$ is an isomorphism.

Proposition 5.7. Let C_n be a cyclic group and let n have exactly k distinct prime factors. Then there are 2^k isomorphism classes of cat¹-structures on C_n .

Proof: Recall that C_n has n endomorphisms $t_s : g \mapsto g^s$, $1 \le s \le n$ where g is a generator of C_n , and that the idempotent endomorphisms are determined as follows. Let $n = p_1^{m_1} p_2^{m_2} \dots p_k^{m_k}$ and let $q_i = n/p_i^{m_i}$ for each $1 \le i \le k$. Euclid's algorithm provides an identity $1 = a_1q_1 + \dots + a_kq_k$ and we set $B = \{b_1, \dots, b_k\}$ where $b_i = a_iq_i$ reduced modn. Then if $S \subseteq B$ and s is the sum of the elements in S, the endomorphism t_s is idempotent, with image C_{d_s} where ds = gcd(n, s). The 2^k subsets provide the 2^k idempotent endomorphisms. Since no two subgroups of C_n are isomorphic, it follows from Proposition 5.6 that the isomorphism classes o cat¹-structues on C_n have representatives (e_s ; t_s , $t_s : C_n \to C_d$).

Proposition 5.8. Let $G = C_p^n$ be an elemantary abelian group. The number of isomorphism classes of cat¹-structures on G is

 $\begin{cases} (1 + n/2)^2, & n \text{ even,} \\ (n + 1)((n + 3)/4, & n \text{ odd.} \end{cases}$

Proof: When $R \cong C_p^{n-m}$ for some $0 \le m \le n$, $im \partial \in \{I, C_p, C_p^2, ..., C_p^{\min(m,n-m)}\}$, so by Proposition 5.6 there are $1 + \min(m,n-m)$ isomorphism classes for fixed m. Summing over all $m \le n$ gives the required results.

REFERENCES

 ALP, M., GAP, Crossed modules and cat¹-groups: Applications to the computational group theory, U. W. B. Ph. D. thesis (1997) 1-520.

M. ALP

- [2] ALP, M. and WENSLEY, C.D., XMOD Crossed modules and groups in GAP, Mannual for share package of GAP, (1996) 1-80.
- [3] ALP, M. and WENSLEY, C.D., Ennumeration of Cat¹-groups of low order, U. W. B. preprint, 97.05, 15.
- [4] LODAY, J.L., Spaces with finitely many non-trivial homotopy groups, J. App. Algebra, 24(1982) 179-202.
- [5] SCHÖNERT, M. et al., GAP: Groups, Algorithms, and Programming, Lehrstuhl D für Mathematik, Rheinisch Westfälische. Technische Hochschule, Aachen, Germany, third edition, 1993.
- [6] WHITEHEAD, J.H.C., Combinatorial homotopy II, Bull. A.M.S., 55(1949) 453-496.