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ABSTRACT

Let G be a semi-direct product of K by A where K and A are both cyclic groups of order n
(ne N) and p (p is a prime), respectively. Then we prove that G-has an efficient presentation on the

minimal number, that is 2, of generators. After all, as an application of our main result., we give the
efficiency of the dihedral group D, and the metacylic group of order 2m (m >4 and mis even ).

1. INTRODUCTION
1.1. EFFICIENCY

Let G be a finitely presented group, and let P = (x;r) be a finite presentation
for G. Then the Euler characteristic of P is defined by y(P) = 1—|x| +|r] where
| | denotes the number of elements in the set. Let

3(G) =1-1k, (H,(G)) +d(H, (G)), (1)
where 1k, () denotes the Z-rank of the torsion-free part and d( ) means the minimal

number of generators. Then, by [3,] [7] [11] for the presentation P, it is always true
that x(P) = 8(G). We then define

x(G) =min{x(P) :P is a finite presentation for G}
We then have the following definition.

Definition 1.1. Let G be a group.
i) A presentation P, for G is called minimal if
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X(Po) < x(P),
for all presentations P of G.
ii) A presentation P, is called efficient if

X(Pp) = 8(G).

iii) G is called efficient if
x(G) =8(G).

We note that if (G) <0 then G must be infinite, and if G is finite cyclic then
x(G)=1.

Examples of efficient groups are finitely generated abelian groups (Epstein
[t1]), fondamental groups of closed 3-manifolds [11]; also finite groups with
balanced presentations (such finite groups have trivial Schur multiplier [12]). Finite
metacyclic groups are efficient. This was shown by Beyl [5] and Wamsley [24].
Infinite metacyclic groups however need not be efficient, a result due to Baik and
Pride [3] (see also [1]). In [12] Harlander proved that a finitely presented group
embeds into an efficient group. For more references on the efficiency see Baik, Pride
[2] Beyl, Rosenberger [6], Champbell, Robertson, Williams [8] (and [9]). Cevik
[10] Harlander [13], Johnson, Robertson [15], Kenne [17], Kovacs 18, Swan [23],
Wiegold [26].

There is interest mot just in finding efficient presentations, but finding
presentations which are efficient on the minimal number of generators (see [25]). So
here we examine the efficiency of the semi-direct product and then we show that this
semi-direct product has an efficient presentation on 2-generators under some certain
conditions (see Theorem 1.4 below ). Then we give some consequences of this result
on the dihedral groups and metacyclic groups.

There is also interest in finding inefficient groups. The following remark is
defined to show that a group is inefficient.

Remark 1.2. Let P be a presentation for the group G, and let x(p) # 8(G). Then, by
Definition 1.1-(ii), P is an inefficient presentation. However we can still show that P
is a minimal presentation for the group G (see [19]). Hence there cannot be an
efficient presentation for G. This implies that G is an inefficient group.

An important remark for our result is the fact that the Schur multiplier M(G) of
a group G is isomorphic to second integral homology group H,(G) of that group.
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We should also note that the notation Z, denotes the cyclic groups of order
k(k e N) in this paper.

1.2. THE DEFINITION OF SEMI-DIRECT PRODUCT

Let A,K be groups, and let 8 be a homomorphism defined by

0:A - Au(K), a— 8,
for all e A.. Then the semi-direct product G =KxyA of K by A is defined as
follows.

The elements of G are all ordered pairs (@ k) (0e A,e K) and the
multiplication is given by
@k) (@, k") = (¥, (k84)k").

Similar definitions of a semi-direct product can be found in [4] or [22]. The
proof of the following lemma can be found in [14, Proposition 10.1, Corollary 10.1]

Lemma 1.3. Suppose that Py =(y;s) and P, =(x;r) are presentations for
the groups K and A respectively under the maps
y=ky (yey), x-a(xeX).

Then we have a presentation for G =KxyA

P= (y, X3, r,t)
where t = {yx?fyi x7 |y €y, X€ x} and A, is a word on y representing the element
(ky)ec,x of K (ae A, ke K, xe x, yey).

1.2. THE MAIN THEOREM

Let K be a cyclic group of order (ne N) with a presentation Py = <y; y" >
and let A be a cyclic group of order p (p is a prime) with a presentation
P, = (x, xP > Then, by Lemma 1.3 a presentation for G = K x A is given by

P=<y,x;yn =1,xP =1,x'1yx=y'>, (2)
where

(i (,n)=1,

(ii) (r —1,nt) = t with t = (r - 1,n),

(i) t=p,
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(iv) P =1 (mod nt),
) |G| =np,
for r,te N.

Thus we have the following main theorem.
Theorem 1.4. The presentation P, as given in (2), is efficient on 2-generators
for the group G.

2. PRELIMINARIES AND PROOF OF THE MAIN THEOREM

Though the rest of paper we will assume that K is a cyclic group of order n
with a presentation Py, A is a cyclic group of order p (p a prime) with a
presentation P, and G =KxyA with a presentation P as given in (2) which the

conditions (1), (ii), (iil), (iv) and (v) hold.

In 1904, Schur proved that when B is a finite group then H,(B) is a finite
group whose elements have order dividing the order of B, and when B is a (finite or
infinite) cyclic group then H,(B) =1 (The details of the proof of these facts can be
found in [16]). By using this Schur’s results, Park (se¢ {21]) proved the following
theorem.

Theorem 2.1. Let G =Kxy A . Then H,(G) is a cyclic group of order p.

We know that both A and K are finite abelian groups, and by conditions (ii)-
(iii), since (r—1,n)=p then (n,p)# 1. Therefore it is easy to prove the following

lemma (see [10] for the details).
Lemma 2.2. d(A@®K) =d(A)+d(K).

Now we can prove our main theorem.

In the first part of the proof we will calculate 8(G) as given in (1). By
condition (v), since G is a finite group then tk,(H;(G))=0, so we will just
calculate

3(G) =1+d(H,)(G)).

But, by Theorem 2.1, since H,(G) is a cyclic group of order p then it is easy to see
that d(H (G)) =1. We then get &(G) = 2.

In the second part of the proof we need to calculate the Euler characteristic of
P. In fact, since (P) =1-(1+D)+(1+1+H =2 in P, then we get
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3(G) = x(P),
so P is an efficient presentation for G.
In the final part of the proof let us show the efficiency of P is on 2-generators:
If 8 =1 (that is, the trivial homomorphism), then G is the direct product of the
groups A and K and so, by Lemma 2.2, d(G)=2. If 8 #1,, then G cannot be abelian

and hence d(G) #1 which gives that d(G)=2.
This completes the proof.

Remark 2.3. Suppose that t=1 in the conditions (i), (iii) and (iv). Then again
in [21] Park proved that H,(G) is trivial. Thus we get d(H,(G)) = 0. So the above

proof implies that P cannot be an efficient presentation for the group G. But if we
show that P is a minimal presentation then, by Remark 1.2, we can say that G is an
inefficient group.

3. APPLICATIONS OF THE MAIN THEOREM

Example 3.1. Let us take the dihedral group
Dy, =<y,x; y10 =1,x’ =l,x"1yx = y‘l>

of order 20. Then, by [16] H,(D,,) = Z, which gives the same result as in Theorem

2.1. Moreover it is easy to see that the five conditions in Section 1.3 hold. Hence, by
Theorem 1.4, we say that the above presentation of the group Dy, is efficient on 2-

generators.

Therefore, as an application of Theorem 1.4, we can generalize this example as
follows.

Corollary 3.2. The dihedral group

D, = <y, xy™ =1x?% =1, xtyx = y"]>

of order 2m (m >4 and is even) is efficient.

Proof. It is easy to see that the conditions (i), (ii), (ii1), (iv) and (v) in Section
1.3 hold. Also, as a consequence of Theorem 2.1, in [21] Park proved that H, (D _ )
is a cyclic group of order 2. Then, by Theorem 1.4, D, is efficient on 2-generators.

We should note that for m >3 and m is odd, the above proof cannot cover the
efficiency of D,
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Remark 3.3. In Example 3.1, one can show that the dihedral group D, is

isomorphic to the metacyclic group, say B, of order 20. Thus, by Theorem 1.4, we
say that B has an efficient presentation on 2-generators. In fact, we can extend the
isomorphism between these two groups to their general form under some conditions.

Therefore, as a consequence of the Theorem 1.4, we have the following well-
known result (see also [5] or [24]).

Corollary 3.4. Let B be a metacylic group of order 2m (m > 4 and m is even)
with a presentation

Py =<o,b;0m =1,b% =1 b b =a" >

Then Py is an efficient presentation on 2-generators for the group B.

Proof. A similar proof can be applied as the proof of Corollary 3.2.
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