THE CHARACTERIZATION OF THE LUNE DOMAINS

- S. AKBULUT* and M. BAYRAKTAR**
- * Department of Mathematics, Atatürk University, Faculty of Arts and Sciences, 25240 Erzurum-Turkey
- **Department of Mathematics, Uludağ University, Faculty of Arts and Sciences, Bursa-Turkey

(Received June 11, 1998; Revised June 14,1999; Accepted Sept. 7,1999)

ABSTRACT

Let us consider a domain D that is bounded by two arcs of circles that intersect at points α and β at angle $\gamma = \frac{\pi}{m}$. This domain is called a lune. Let B(D) be an algebra of bounded analytic functions on D. In this paper, taking complex algebra R, we give an algebra characterization of conformal mappings from D to U, by taking $\alpha \in R$ that satisfies certain conditions, where $U = \left\{ w \in C : \left| w \right| < 1 \right\}$

1. INTRODUCTION

This paper presents a solution to a problem in subject of rings of bounded analytic functions. In late 1940's it was shown that two domains, D_1 and D_2 in the complex plane, are conformally equivalent iff the rings $B(D_1)$ and $B(D_2)$ of all bounded analytic functions defined on them are algebraically isomorphic. Let R be a ring which is known to be isomorphic with the ring of bounded analytic functions on an annulus $A = \left\{z \in C: \rho_1 < |z| < \rho_2\right\}$ where ρ_1 and ρ_2 are not known. From the ring R deduce the number ρ_1/ρ_2 [2]. The characterization of Schwarz Theorem and Unit Disc has been done [5].

In our study we take the ring and give an algebraic characterization.

ALGEBRAIC CHARACTERIZATION

Let ϕ be an isomorphism from B(D) onto R. We will denote the elements of B(D) by f,g,h, ... and the elements of R by a,b,c,... Let e and 1 be multiplicative

identities of R and B(D), respectively. Thus, $1 \in B(D)$ is the function identically equal to 1 on D. Since $\phi: B(D) \to R$ is an isomorphism, $\phi(1) = e$ Furthermore $\phi(n1) = ne$ so that $\phi(\pm(m/n).1) = \pm(m/n)e. - e$ has two square roots in R, one is the image of i.1, the other is the image of -i.1. It is algebraically impossible to distinguish between these, since R has an automorphism which takes one into the other (corresponding to the mapping $f \to \bar{f} \in B(D)$ Thus, we choose one root of -e and make it correspond to i.1; denote it as ie.

Hencefort, we will denote the complex number field by C and the complex rational number field by C_r where a complex number, both real and imaginary parts are real rationals, is called a complex rational number. Clearly, C_r and C are subrings of B(D).

Lemma 2.1. For each $\alpha \in \mathbb{C}_r$, $\phi(\alpha) = \alpha$ (or $\overline{\alpha}$).

Proof. If $\alpha \in \mathbb{C}_r$, there are two rational number r_1 and r_2 such that $\alpha = r_1 + ir_2$. Since $\phi(1) = e$ and $\phi(i) = i$ (or -i), we get $\phi[(r_1 + ir_2)] \cdot 1 = r_1e + r_2ie$ (or $r_1e - r_2ie$), ([3] [4]).

Lemma 2.2. For each real number $c, \phi(c1) = ce$.

Proof. If c is a rational number, by the lemma (2.1) $\phi(c1) = ce$. If c is an irrational number, for each rational number, number $c, c-r \neq 0$. Thus there exist

$$(c-r)^{-1} = \frac{1}{c-r} \,. \quad \text{Then} \quad \phi[(c-r).1] = \phi(c1) - re \quad \text{ and } \quad \phi\left[\left(\frac{1}{c-r}\right).1\right] = \frac{e}{\phi(c1) - re} \,.$$
 Therefore $\phi(c1) = ce$.

Corollary 2.3. If $c \in \mathbb{C}$, $\phi(c1) = ce[2]$

Lemma 2.4. Let $f \in B(D)$ and let \overline{R}_f be the closed range of f. Then $\lambda \in \overline{R}_f$ iff $f - \lambda.1$ has no inverse in B(D).

Proof. If $\lambda \in \overline{R}_f$ there is a $z_0 \in D$ such that $f(z_0) = \lambda$. Then $(f - \lambda.1)(z_0) = 0$. Hence $f - \lambda.1$ has no inverse in B(D). Now we suppose that $f - \lambda.1$ has no inverse in B(D). Then at least for one point $z_0 \in D$, $(f - \lambda.1)(z_0) = 0$. It follows that $f(z_0) = \lambda$, i.e., $\lambda \in \overline{R}_f$.

Lemma 2.5. $\lambda \in \overline{R}_f$ iff $\phi(f)$ has no inverse in R.

Proof. If $\lambda \in \overline{R}_f$, $f - \lambda.1$ has no inverse in B(D) by Lemma 2.4. Since ϕ is an isomorphism, $\phi(f - \lambda.1) = \phi(f) - \lambda e$ has no inverse in R, ([1], [2]).

Let $\sigma(f)$ and $\sigma(a)$ be the spectrums of $f \in B(D)$ and $a \in R$ respectively. If $\rho(a) = \sup \{ |\lambda| : \lambda \in \sigma(a) \}$,

then $\rho(G)$ is also the maximum modulus (Hereinafter abbreviated MM) of $\phi^{-1}(G)$.

In this paper, we always consider the complex algebra. Now we give our first theorem connected with algebraic characterization.

Lemma 2.6. Let $\mu = \frac{\alpha + \beta}{2}$. Suppose that $f \in B(D)$ satisfies the following conditions.

- 1. $f(\mu) = 0$,
- 2. MM(f) = 1,
- 3. f is schlicht.

Then.

$$f(z) = \frac{(z - \alpha)^{m} - (\beta - z)^{m}}{(z - \alpha)^{m} + (\beta - z)^{m}}$$
(2.5.1)

where $m \ge 2$ and $m \in N$.

Proof. $I_{\mu}=\left\{f\in B(D): f(\mu)=0\right\}$ is the maximal ideal of B(D). I_{μ} is generated by $h(z)=z-\mu$, i.e. $I_{\mu}=\left\langle z-\mu\right\rangle$. The function that we are looking for must be in I_{μ} . By means of the theorem of maximum modulus, $MM(z-\mu)\neq 1$ for any z in D. Therefore $f(z)\neq z-\mu$. If $f(z)=(z-\mu)g(z)$, $f(\mu)=0$ and MM(f)=1, then g(z) must be

$$g(z) = \frac{2[(z-\alpha)^{m-1} + \dots + (\beta-z)^{m-1}]}{(z-\alpha)^m + (\beta-z)^m},$$

Thus

$$f(z) = \frac{(z - \alpha)^{m} - (\beta - z)^{m}}{(z - \alpha)^{m} + (\beta - z)^{m}}$$

where $m \ge 2$ and $m \in N$. Furthermore if f is schlicht, $f(\mu) = 0$ and MM(f) = 1, then this function must be in the form of (2.5.1) [6].

Theorem 2.7. Let R be any algebra such that ϕ is an isomorphism from B(D) to R which satisfies $\phi(\alpha) = \alpha$ for every complex number α . Furthermore, suppose that the following condition are satisfied for some $Q \in R$.

- a) For each $\lambda_0 \in \sigma(Q) = U$, there is only one point z_0 .
- b) For each $\mu \in C$, $\langle b \mu e \rangle$ is a maximal ideal of R. Furthermore, $\phi^{-1}(b) = z$ and $C \in \langle b \mu e \rangle$, where $b \in R$.
- c) $\rho(a) = MM(\phi^{-1}(b)) = 1$.

Then $\phi^{-1}(Q)$ is a conformal mapping from D to U and

$$\phi^{-1}(Q)(z) = \frac{(z-\alpha)^{m} - (\beta-z)^{m}}{(z-\alpha)^{m} + (\beta-z)^{m}}.$$

Proof. Since $\Box \in \langle b - \mu e \rangle$, there is an element $c \in \mathbb{R}$ such that $(b - \mu e)c = \Box$. Since ϕ is an isomorphism, we can write $\phi^{-1}(\Box) = \phi^{-1}(b - \mu e)\phi^{-1}(c)$ and $\phi^{-1}(\Box) = [\phi^{-1}(b) - \phi^{-1}(\mu e)] \phi^{-1}(c)$. Thus we find $\phi^{-1}(\Box) = (z - \mu)\phi^{-1}(c)$.

By lemma (2.6), $MM(\phi^{-1}(Q)) = 1$ and hence

$$\phi^{-1}(c) = \frac{2[(z-\alpha)^{m-1} + (z-\alpha)^{m-2}(\beta-z) + \dots + (z-\alpha)(\beta-z)^{m-2} + (\beta-z)^{m-1}]}{(z-\alpha)^m + (\beta-z)^m}$$

Clearly, as $\phi^{-1}(c) \in B(D)$ we obtain

$$\begin{split} c &= \frac{\phi \Big[2[(z-\alpha)^{m-1} + \dots + (\beta-z)^{m-1}] \Big]}{\phi [(z-\alpha)^m + (\beta-z)^m]} \\ &= \frac{\phi(2) \Big[\phi(z-\alpha)^{m-1} + \dots + \phi(\beta-z)^{m-1}] \Big]}{\phi [(z-\alpha)^m] + \phi [(\beta-z)^m]} \\ &= \frac{2e \, \Big[(be-\alpha e)^{m-1} + \dots + (\beta e-be)^{m-1}] \Big]}{(be-\alpha e)^m + (\beta e-be)^m} \end{split}$$

from the equality, and hence $\,c\in R\,$. Thus

$$\alpha = (b - \mu e) \frac{2e \left[(be - \alpha e)^{m-1} + \dots + (\beta e - be)^{m-1} \right]}{(be - \alpha e)^m + (\beta e - be)^m}$$

and we deduce the mapping

$$\phi^{-1}(Q) = \frac{(z-\alpha)^{m} - (\beta-z)^{m}}{(z-\alpha)^{m} + (\beta-z)^{m}}$$

It is well known that this is the mapping form D onto U. At the same time, the mapping $\phi^{-1}(C)$ is unique. Because, $\lambda_0 \in \overline{R}_{\phi^{-1}(C)}$, by $\lambda \in \sigma(C)$. Since to each point of $\overline{R}_{\phi^{-1}(C)}$ there corresponds a unique z_i by Lemma 2.4. and part a) of the theorem, $\phi^{-1}(C) \in B(D)$ is one-to-one. Since ϕ is an isomorphism and $\langle b - \mu e \rangle$ is a maximal principal ideal in R, $\phi(z - \mu e)$ is a maximal principal ideal in B(D). This maximal principal ideal generated by the $\phi(b) - \phi(\mu e) = z - \mu$ then $\phi^{-1}(C) \in \langle z - \mu \rangle$ by (b), $\phi^{-1}(C)$ is schlicht. Thus

$$\phi^{-1}(Q) = \frac{(z-\alpha)^{m} - (\beta-z)^{m}}{(z-\alpha)^{m} + (\beta-z)^{m}}$$

by Lemma 2.6.

REFERENCES

- [1] BAYRAKTAR, M., Üst yarı düzlemin birim daireye konform tasvirinin cebirsel karakterizasyonu, Journal of Mathematics and Statistics of the Faculty of Arts and Sciences, Gazi University, Volume 2, (1989), 111-116.
- [2] BECK, A., On Rings On Rings, Proc. Amer. Math. Soc. 15 (1964), 350-353.
- [3] BERS, L., On Rings of Analytic Functions, Bull. Amer. Math. Soc. 54(1984), 311-315.
- [4] KAKUTANI, S., Rings of Analytic Functions, Proc.Michigan Conference on Functions of a Complex Variable, (1955), 71-84.
- [5] KAMALİ, M., BAYRAKTAR, M., The Characterization of Schwarz Theorem and Unit Disc, Commun. Fac. Sci. Univ. Ank. Series A1, V. 43 (1994) 49-55.
- [6] KODAIRA, K., Introduction to Complex Analysis, Cambridge University Press-Cambridge, (1997). P. 120-154.