Commun. Fac. Sci. Univ. Ank. Series A1 V. 50 pp. 65-73 (2001)

THE CURVATURE CENTER OF THE CURVES ON A HYPERSURFACE IN LORENTZIAN n-SPACE L^n

E. İYİGÜN

Mathematics Dept., Art and Science Faculty, Uludag University, 16059 Bursa, Turkey.

(Received Aug. 10, 2001; Revised Nov. 26, 2001; Accepted Nov. 28, 2001)

ABSTRACT

In this paper, we define i^{th} e-curvature function, $r^{th}(a_1,...,a_r)$ -curvature center and (n-r)-curvature hyperplane for the curve of Lorentzian space. We prove that the locus of centers of spheres that has p as the r-multiple contact point with curve is the (n-r)-curvature hyperplane in the n-dimensional Lorentzian space. We also consider some special cases. In the final section we calculate the $r^{th}(a_1,...,a_r)$ -curvature centers $C_r(t)(r=2 \text{ or } 3)$ of some special curves.

KEYWORDS

Hypersurface, Lorentzian space.

AMS SUBJECT CLASSIFICATION : 53C40.

1. INTRODUCTION

Let V be an n-dimensional vector space over **R** and let \langle , \rangle be an inner product on V. The subspace dimension with maximal dimension in which the inner product is defined negative is called the index of vector space V [7]. If the kernel of this inner product is $N_{\nu} = \{0\}$ the inner product is called nondegenerate [2].

If the index of the inner product that is nondegenerate on V is 1, V is called Lorentzian vector space and the inner product is called Lorentzian inner product [7].

The manifold which is determined with this geometrical structure is called Lorentzian manifold or Semi-Riemannian manifold with index 1, [7].

Let L^n be a Lorentzian space and the inner product \langle , \rangle on it. Then a vector X of L^n is called

i) time-like if $\langle x, x \rangle < 0$,

ii) space-like if $\langle x, x \rangle > 0$, or x = 0,

iii) null or null vector if $\langle x, x \rangle = 0, x \neq 0, [7]$.

In [5] the present author consider the curvature center of the curves on a hypersurface M^n in \mathbf{E}^{n+1} which was partially contained some results from [4].

In the present study we consider the curvature center of the curves on a hypersurface in a n-dimensional Lorentzian space L^n . We have shown that the locus of centers of spheres that has $\alpha(s)$ as the r-multiple contact point with α are on the (n-r)-curvature hyperplane $D_{(n-r)}(s)$. We also consider some special cases for the $r^{th}(a_1,...,a_r)$ -curvature centers $C_r(t)$ of the curve $\alpha: I \to L^n$. In the final section we calculate the $r^{th}(a_1,...,a_r)$ -curvature centers $C_r(t)$ of some special curves.

2. BASIC DEFINITIONS AND PROPERTIES OF Lⁿ

The Frenet curvatures and Frenet equations of L^n can be defined as follows. **Definition 2.1.** Let $M \subset L^n$ and $\alpha: I \to L^n$ be a curve on L^n and $k_1^{\alpha}, ..., k_{(n-1)}^{\alpha}$ the Frenet curvatures of α . Then for the unit tangent vector $V = \alpha'(t)$ over M the i^{th} e-curvature function m_i of M is defined by (see [4])

$$m_{i} = \begin{cases} 0 & , \quad i = 1 \\ (\varepsilon_{1}\varepsilon_{2})/k_{1}^{\alpha} & , \quad i = 2 \\ [V_{1}(m_{(i-1)}) + \varepsilon_{(i-2)}k_{(i-2)}^{\alpha}m_{(i-2)}](\varepsilon_{i})/k_{(i-1)}^{\alpha} & , \quad 2 < i \le n \end{cases},$$

where ε_i the sign of V_i which is +1 if the vector V_i is space-like and -1 if the vector V_i is time-like; in other words, $\varepsilon_i = \langle V_i, V_i \rangle$.

Lemma 2.1. [3] Let B be the second fundamental form of the surface M and U is a open neighborhood of a point p. Then for $p \in U$

i) For any two unit vectors X, Y in the tangent space $T_n M$

$$\langle B(X,X), B(X,X) \rangle = \langle B(Y,Y), B(Y,Y) \rangle.$$

ii) If X, Y are orthonormal vectors in the tangent space $T_p M$

$$\langle B(X, X), B(X, Y) \rangle = 0, \langle B(X, X), B(X, X) \rangle = \langle B(Y, Y), B(Y, Y) \rangle$$

and

$$\langle B(X,X),B(X,X)\rangle = \langle B(X,X),B(Y,Y)\rangle + 2\langle B(X,Y),B(X,Y)\rangle.$$

Lemma 2.2. [1] Let $f: M_r^n \to \mathbf{R}_s^N$ be a planar geodesics immersion and X, Y be two orthogonal non-null vectors in T_pM . Then

$$\langle B(X,X), B(X,Y) \rangle = 0.$$

If X, Y are unit vectors, then $\langle B(X,X), B(Y,Y) \rangle + 2 \langle B(X,Y), B(X,Y) \rangle = (-1)^d L$, where $d = \langle X, X \rangle \langle Y, Y \rangle$ and $L = \langle B(X,X), B(X,Y) \rangle = \text{constant}$.

Furthermore, let $f: M_r^n \to \mathbf{R}_s^N$ be an isometric immersion. Then f is said to be a planar geodesics immersion if the image of each geodesic of M lies in a 2-plane of \mathbf{R}_s^N .

Theorem 2.3. [4] Let $M \subset L^n$, dim M = 2 and X, Y be two orthonormal vectors in the tangent space T_pM at $p \in M$. If M has planar geodesics and B(X, X) = B(Y, Y), then B(X, Y) = 0, where B is the second fundamental form of M.

Definition 2.2. Let $M \subset L^n$ be a 2-surface and U be an open neighborhood of $p \in M$. Then for an r-plane Π which passed through the point $p \in M$ defined by $U \cap \Pi$ regular curve α at the point $p \in M$ is called the section curve determined by Π . If the plane Π is orthogonal to M then the section curve is called the normal section curve and for a tangent vector X_p while $X_p \in \Pi$ the section curve determined by Π is called the section curve passed through the point X_p , [4].

Definition 2.3. Let $\alpha: I \to \mathbf{R}_1^n = L^n$ be a non-null curve. If $m_1, ..., m_n$ denote the ecurvature functions of α and $\{V_1, ..., V_n\}$ the Frenet frame field of α then the point

(2.1)
$$C_r(t) = \left(\alpha + \sum_{j=2}^r a_j m_j V_j\right)(t), \quad a_j = \pm 1$$

is called $r^{th}(a_1,...,a_r)$ -curvature center of α at the point $\alpha(t)$, [4]. The (n-r)-hyperplane which is spanned by $Sp\{V_{r+1}(t),...,V_n(t)\}$ and passed through the point $C_r(t)$ is called the (n-r)-curvature hyperplane of α at the point $\alpha(t)$ and is denoted by $D_{(n-r)}(t)$, where m_j and V_j are the e-curvature functions and Frenet vectors of α , respectively.

Definition 2.4. Let $M \subset L^n$ be a 2-surface and $\alpha: I \to L^n$. A normal section curve determined by $V_p \in T_p M$ which is non-null then

$$C_r^N(t) = \left(\alpha + \sum_{j=2}^r a_j^N m_j^N \xi_{(j-1)}\right)(t), \quad a_j^N \in IR, \quad (2 \le r \le (n-2))$$

E. İYİGÜN

is called $r^{th}(a_1^N,...,a_r^N)$ -curvature center of normal section curve α determined by V_p of M at p. Here $m_1^N,...,m_n^N$ and $k_1^N,...,k_n^N$ are the e-curvature functions and Frenet curvatures of the non-null normal section curve respectively. Furthermore the Frenet frame field of the curve is $\{V_1^N,\xi_1,...,\xi_{(n-1)}\}, V_j^N = \xi_{(j-1)}, 2 \le j \le (n-1), [4].$

Theorem 2.4. [6] If $\beta: I \to \mathbf{R}_1^n$ is non-null curve and the Frenet frame of β is $\{V_1, ..., V_s\}$ then

$$V'_{1} = \nabla_{v1}V_{1} = \varepsilon_{2}k_{1}V_{2},$$

$$V'_{i} = \nabla_{v1}V_{i} = -\varepsilon_{(i-1)}k_{(i-1)}V_{(i-1)} + \varepsilon_{(i+1)}k_{(i+1)}V_{(i+1)},$$

$$V'_{s} = -\varepsilon_{(s-1)}k_{(s-1)}V_{(s-1)},$$

where $\varepsilon_i = \langle V_i, V_i \rangle = \pm 1$, $1 \le i \le s$, and k_i are curvature functions of β .

Theorem 2.5. Let $M \subset L^n$ be a surface whose geodesics α are planar. The locus of centers of spheres that has $\alpha(s)$ as the r-multiple contact point with α are on the (n-r) -curvature hyperplane $D_{(n-r)}(s)$.

Proof. Let us define the function

$$f(\alpha(s)) = <\alpha(s) - c, \alpha(s) - c > -r^2.$$

If $\alpha(s)$ is the r-multiple contact point of the curve α and the sphere $S_r(c)$. Then

$$f(\alpha(s)) = f'(\alpha(s)) = \dots = f'(\alpha(s)) = 0$$

Therefore

(2.2) $f'(\alpha(s)) = <\alpha'(s), \alpha(s) - c > = < V_1(s), \alpha(s) - c > = 0$ and generally for n = 2, 3, ..., r

(2.3)
$$f''(\alpha(s)) = \langle V_n(s), \alpha(s) - c \rangle = -(m'_{n-1} + \varepsilon_{n-2}k_{n-2}(s)m_{n-2})\frac{\varepsilon_n}{k_{n-1}(s)} = -m_n$$

Let C be the curvature center of the sphere $S_r(c)$. Consider the vector

$$\overrightarrow{\alpha(s)C} = C - \alpha(s) = \sum_{j=1}^{n} a_{j}\lambda_{j}V_{j}(s)$$

or similarly

(2.4)
$$C = \alpha(s) + \sum_{j=1}^{r} a_j \lambda_j V_j(s) + \sum_{j=r+1}^{n} a_j \lambda_j V_j(s)$$

where $\lambda_j \in \mathbf{R}$ are arbitrary parameters and $\lambda_i = \langle V_i(s), c - \alpha(s) \rangle$.

On the other hand form (2.2) we get

$$\lambda_1 = \langle V_1(s), \alpha(s) - c \rangle = 0.$$

From (2.3) we also get

$$-\lambda_n = \langle V_n(s), \alpha(s) - c \rangle = -m_n \Longrightarrow \lambda_n = m_n, \quad 2 < n \le r.$$

Thus, (2.4) becomes

$$C = \alpha(s) + \sum_{j=1}^{r} a_{j}m_{j}V_{j}(s) + \sum_{j=r+1}^{n} a_{j}m_{j}V_{j}(s)$$

This completes the proof of the theorem. 3. SOME SPECIAL CASES

Consider $r^{th}(a_1,...,a_r)$ -curvature centers $C_r(t)$ of the curve $\alpha: I \to L^n$ defined by (2.1). We consider the following cases:

Case I : i) Let $a_j = +1$ and r = 2 then the curvature hyperplane $D_{(n-2)}(s)$ is defined by

$$\left\{ (\alpha + m_2 V_2)(s) + \lambda_3 V_3(s) + \dots + \lambda_n V_n(s) \mid s \in I, \ \lambda_3, \dots, \lambda_n \in \mathbf{R} \right\}$$

which is the locus of the (n-1)-sphere centers those have $\alpha(s)$ as an 2-multiple common point with α passes through the point $\alpha(s)$. Thus the (n-2)-hyperplane $D_{n-2}(s)$ is an affine subspace that associated with $Sp\{V_3,...,V_n\}$ and passes through $C_2(s)$.

ii) For r = 3, $D_{n-3}(s)$ is defined by

 $\left\{ (\alpha + m_2 V_2 + m_3 V_3)(s) + \lambda_4 V_4(s) + \dots + \lambda_n V_n(s) \mid s \in I, \quad \lambda_4, \dots, \lambda_n \in \mathbf{R} \right\}$

which is the locus of the (n-2)-sphere centers those have $\alpha(s)$ as an 3-multiple common point with α passes through the point $\alpha(s)$. Thus the (n-3)-hyperplane $D_{n-3}(s)$ is an affine subspace that associated with $Sp\{V_4,...,V_n\}$ and passes through $C_3(s)$.

iii) For r = 4, $D_{n-4}(s)$ is defined by

 $\left\{ (\alpha + m_2 V_2 + m_3 V_3 + m_4 V_4)(s) + \lambda_5 V_5(s) + \dots + \lambda_n V_n(s) \ | s \in I, \ \lambda_n \in \mathbf{R} \right\}$

which is the locus of the (n-3)-sphere centers those have $\alpha(s)$ as an 4-multiple common point with α passes through the point $\alpha(s)$. Thus the (n-4)-hyperplane $D_{n-4}(s)$ is an affine subspace that associated with $Sp\{V_5,...,V_n\}$ and passes through $C_4(s)$.

iv) Similarly, for r = (n-1), $D_1(s)$ is defined by

 $\left\{ (\alpha + m_2 V_2 + m_3 V_3 + m_4 V_4 + \dots + m_{(n-1)} V_{(n-1)})(s) + \lambda_n V_n(s) \mid s \in I, \ \lambda_n \in \mathbf{R} \right\}$

which is the locus of the 2-sphere centers those have $\alpha(s)$ as an (n-1)-multiple common point with α passes through the point $\alpha(s)$. Thus the 1-hyperplane $D_1(s)$ is an affine subspace that associated with $Sp\{V_n\}$ and passes through $C_{(n-1)}(s)$,

v) For r = n, $D_0(s)$ is defined by

E. İYİGÜN

$$\left\{ (\alpha + m_2 V_2 + m_3 V_3 + m_4 V_4 + \dots + m_n V_n)(s) \mid s \in I \right\}$$

which is the locus of the 1-sphere centers those have $\alpha(s)$ as an *n*-multiple common point with α passes through the point $\alpha(s)$. Thus the 0-hyperplane $D_0(s)$ that is $C_n(s)$ denoted point.

Case II: i) Let $a_j = -1$ and r = 2 then the curvature hyperplane $D_{n-2}(s)$ is defined by

$$\{ (\alpha - m_2 V_2)(s) - \lambda_3 V_3(s) - \dots - \lambda_n V_n(s) | s \in I, \lambda_3, \dots, \lambda_n \in \mathbf{R} \}$$
ii) For $r = 3$, $D_{n-3}(s)$ is defined by
 $\{ (\alpha - m_2 V_2 - m_3 V_3)(s) - \lambda_4 V_4(s) - \dots - \lambda_n V_n(s) | s \in I, \lambda_4, \dots, \lambda_n \in \mathbf{R} \}$
iii) For $r = 4$, $D_{n-4}(s)$ is defined by
 $\{ (\alpha - m_2 V_2 - m_3 V_3 - m_4 V_4)(s) - \lambda_5 V_5(s) - \dots - \lambda_n V_n(s) | s \in I, \lambda_5, \dots, \lambda_n \in \mathbf{R} \}$
iv) Similarly, for $r = (n-1)$, $D_1(s)$ is defined by
 $\{ (\alpha - m_2 V_2 - m_3 V_3 - m_4 V_4 - \dots - m_{(n-1)} V_{(n-1)})(s) - \lambda_n V_n(s) | s \in I, \lambda_n \in \mathbf{R} \}$
v) For $r = n$, $D_0(s)$ is defined by
 $\{ (\alpha - m_2 V_2 - m_3 V_3 - m_4 V_4 - \dots - m_n V_n)(s) | s \in I \}$

4. EXAMPLES

In this section we will calculate the $r^{th}(a_1,...,a_r)$ -curvature centers $C_r(t)$ of some special curves.

Example 4.1. Let

$$\alpha(s) = \left(\cos\frac{s}{\sqrt{2}}, \sin\frac{s}{\sqrt{2}}, \cos\frac{s}{\sqrt{2}}, \sin\frac{s}{\sqrt{2}}\right).$$

Since

$$V_1(s) = \frac{\alpha'(s)}{\|\alpha'(s)\|} = \alpha'(s), \ V_2(s) = \frac{\alpha''(s)}{\|\alpha''(s)\|}$$

we get

$$k_1(s) = \langle V_1'(s), V_2(s) \rangle = \langle \alpha''(s), V_2(s) \rangle = \frac{1}{\sqrt{2}}, \quad (V_1(s) = \alpha'(s))$$

where $\alpha'(s)$, $\alpha''(s)$ the first and second differential of $\alpha(s)$ respectively. If the vector V_1 is time-like and $a_j = +1$ then,

$$C_{2}(s) = (\alpha + m_{2}V_{2})(s)$$

$$= \alpha(s) + \left(\frac{\varepsilon_{1}\varepsilon_{2}}{k_{1}(s)}\right)V_{2}(s)$$

$$= \alpha(s) - \frac{1}{k_{1}(s)}V_{2}(s), \quad \varepsilon_{i} = \langle V_{i}, V_{i} \rangle$$

$$= 2\alpha(s).$$

If the vector V_1 is time-like and $a_j = -1$ then,

$$C_2(s) = (\alpha - m_2 V_2)(s)$$
$$= \alpha(s) - \left(\frac{\varepsilon_1 \varepsilon_2}{k_1(s)}\right) V_2(s)$$
$$= \alpha(s) - \frac{1}{k_1(s)} V_2(s)$$
$$= (0,0,0,0),$$

where $\varepsilon_1 = \langle V_1, V_1 \rangle$. Example 4.2. Let

$$\alpha(s) = (\cos s, \sin s, \cos 2s, \sin 2s),$$

then differentiating $\alpha(s)$ we get

$$E_1(s) = \alpha'(s) = (-\sin s, \cos s, -2\sin 2s, 2\cos 2s), \quad ||E_1(s)|| = \sqrt{5}$$
$$V_1(s) = \frac{E_1(s)}{||E_1(s)||} = \frac{1}{\sqrt{5}} (-\sin s, \cos s, -2\sin 2s, 2\cos 2s),$$

and

$$E_{2}(s) = \alpha''(s) - \langle \alpha''(s), V_{1}(s) \rangle V_{1}(s) = \alpha''(s), \quad ||E_{2}(s)|| = \sqrt{17},$$

$$V_{2}(s) = \frac{E_{2}(s)}{||E_{2}(s)||} = \frac{1}{\sqrt{17}} (-\cos s, -\sin s, -4\cos 2s, -4\sin 2s),$$

and

$$E_{3}(s) = \alpha^{m}(s) - \langle \alpha^{m}(s), V_{1}(s) \rangle V_{1}(s) - \langle \alpha^{m}(s), V_{2}(s) \rangle V_{2}(s)$$

= $\frac{1}{5}(-12\sin s, 12\cos s, 6\sin 2s, -6\cos 2s), \quad ||E_{3}(s)|| = \frac{6\sqrt{5}}{5},$
 $V_{3}(s) = \frac{E_{3}(s)}{||E_{3}(s)||} = \frac{1}{\sqrt{5}}(-2\sin s, 2\cos s, \sin 2s, -\cos 2s).$

By using

$$k_i(s) = \frac{\|E_{i+1}(s)\|}{\|E_1(s)\| \|E_i(s)\|}$$

we obtain

$$k_1(s) = \frac{\sqrt{17}}{5}, \quad k_2(s) = \frac{6}{5\sqrt{17}}.$$

If the vector V_1 is time-like and $a_i = +1$,

$$C_{2}(s) = (\alpha + m_{2}V_{2})(s)$$

= $\alpha(s) + \left(\frac{\varepsilon_{1}\varepsilon_{2}}{k_{1}(s)}\right)V_{2}(s)$
= $\frac{1}{17}(22\cos s, 22\sin s, 37\cos 2s, 37\sin 2s),$

and

$$C_3(s) = (\alpha + m_2 V_2 + m_3 V_3)(s)$$

= $\alpha(s) + \left(\frac{\varepsilon_1 \varepsilon_2}{k_1(s)}\right) V_2(s) + \left(\frac{\varepsilon_1 \varepsilon_2}{k_1(s)}\right)' \frac{\varepsilon_3}{k_2(s)} V_3(s)$
= $C_2(s)$.

If the vector V_1 is time-like and $a_j = -1$,

$$C_2(s) = (\alpha - m_2 V_2)(s)$$

= $\alpha(s) - \left(\frac{\varepsilon_1 \varepsilon_2}{k_1(s)}\right) V_2(s)$
= $\frac{1}{17} (12 \cos s, 12 \sin s, -3 \cos 2s, -3 \sin 2s),$

and

$$C_3(s) = (\alpha - m_2 V_2 - m_3 V_3)(s)$$

= $\alpha(s) - \left(\frac{\varepsilon_1 \varepsilon_2}{k_1(s)}\right) V_2(s) - \left(\frac{\varepsilon_1 \varepsilon_2}{k_1(s)}\right)' \frac{\varepsilon_3}{k_2(s)} V_3(s)$
= $C_2(s)$,

where $\left(\frac{1}{k_{i}(s)}\right)' = 0.$

Acknowledgement: The author would like to express her sincere thanks to Prof. Dr. Kadri Arslan and Assoc. Prof. Dr. Rıdvan Ezentaş for their valuable comments.

REFERENCES

- [1] Blomstrom, C., Planar Geodesic Immersions in Pseudo-Euclidean Space. Math. Ann., 274 (1986), 585-598.
- [2] Greub, W.H., Linear Algebra. Springer-Verlag New York Heidelberg Berlin, Fourth Edition, 1975.
- [3] Hong, S.L., Isometric Immersions of Manifolds with Plane Geodesics Into Euclidean Space. J. Differential Geometry, 8 (1973), 259-278.
- [4] İyigün, E., Eⁿ Öklid Uzayı ve Lⁿ Lorentz Uzayında Meusnier Teoremi. PhD Thesis, Uludağ Üniv., Fen Bilimleri Enstitüsü, 1998.
- [5] İyigün, E., The Curvature Axis of Curves on a Hypersurface in Euclidean Space Eⁿ. Fırat Üniv., Fen ve Mühendislik Bilimleri Dergisi, in print, (2001).
- [6] Murathan, C., Riemannian Manifoldların Katlı Çarpımlarının k-Noktasal Düzlemsel Normal Kesitli İmmersiyonları, PhD Thesis, Uludağ Üniv., Fen Bilimleri Enstitüsü, 1995.
- [7] O'neill, B., Semi-Riemannian Geometry with Applications to Relativity. Academic Press, Inc, 1983.