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ABSTRACT -

In this paper, we define i" e-curvature function, r" (a,,-..,a,) -curvature center and (n~r)
~curvature hyperplane for the curve of Lorentzian space. We prove that the locus of centers of spheres
that has p as the r-multiple contact point with curve is the (n—7) -curvature hyperplane in the n-
dimensional Lorentzian space. We also consider some special cases. In the final section we calculate the
r*(a,,...,a,) -curvature centers C,(1)(r =2 or 3) of some special curves.
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1. INTRODUCTION

~ Let ¥ be an n-dimensional vector space over R and let (,) be an inner
product on V. The subspace dimension with maximal dimension in which the inner
product is defined negative is called the index of vector space V' [7]. If the kernel of
this inner productis N, = {0} the inner product is called nondegenerate [2].
If the index of the inner product that is nondegenerate on ¥ is 1, V is called
Lorentzian vector space and the inner product is called Lorentzian inner product [7].

The manifold which is determined with this geometrical structure is called
Lorentzian manifold or Semi-Riemannian manifold with index 1, [7].

Let L' be a Lorentzian space and the inner product (,) on it. Then a vector
X of L is called -
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i) time-like if (x,x) <0,
ii) space-like if (x,x) >0, or x=0,
iii) null or null vector if (x, x) =0,x#0, [7].
In [5] the present author consider the curvature center of the curves on a
hypersurface M" inE™" which was partially contained some results from [4].
In the present study we consider the curvature center of the curves on a

hypersurface in a n-dimensional Lorentzian space L'. We have shown that the locus
of centers of spheres that has a(s) as the r-multiple contact point with o are on the

(n - r) -curvature hyperplane D,,_,,(s). We also consider some special cases for the
r"(a,,...,a,) -curvature centers C,(t) of the curve a:/ — L". In the final section
we calculate the 7*(a,,...,a,) -curvature centers C,(f) of some special curves.

2. BASIC DEFINITIONS AND PROPERTIES OF L'

The Frenet curvatures and Frenet equations of L" can be defined as follows.
Definition 2.1. Let M < L" and a:I — L" be a curve on L' and k..., kG, the
Frenet curvatures of . Then for the unit tangent vector ¥ =q'(¢) over M the i"
e-curvature function m, of M is defined by (see [4])

0 , I=1
m, =3(£,6,) k' , i=2
(Vi(mg_y) + 5(;—2)"(7-2)'"(:'-2)](3.')/k(axf-l) , 2<iZn

where ¢, the sign of ¥V, which is +1 if the vector V, is space-like and -1 if the

I i

b

vector ¥, is time-like; in other words, &, = (K,K)
Lemma 2.1. [3] Let B be the second fundamental form of the surface M and U is a
open neighborhood of a point p. Then for p e U
i) For any two unit vectors X,Y in the tangent space T M
(B(X,X),B(X,X))=(B(,Y),B(Y,Y)).

ii) If X,Y are orthonormal vectors in the tangent space T,M
(B(X,X),B(X,Y))=0,
(B(X,X),B(X,X))=(B(Y,Y),B(Y, Y))

and
(B(X,X),B(X,X))=(B(X,X),B(Y, V))+2(B(X,Y),B(X, Y)).
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Lemma 2.2. [1] Let f:M” - RY be a planar geodesics immersion and X,Y be
two orthogonal non-null vectors in TpM . Then
(B(X,X),B(X,Y))=0.

If X,Y are unit vectors, then (B(X, X), B(Y,Y))+2(B(X,Y),B(X,Y))=(-1)L,
where d = (X,X)(Y, Y)and L= (B(X,X),B(X, Y)) = constant.

Furthermore, let f: M — R be an isometric immersion. Then f is said to
be a planar geodesics immersion if the image of each geodesic of M lies in a 2-
plane of RY.
Theorem 2.3, [4] Let M — L', dimM =2 and X,Y be two orthonormal vectors in
the tangent space T,M at peM. If M has planar geodesics and

B(X,X)=B(Y,Y), then B(X,Y)=0, where B is the second fundamental form of
M.

Definition 2.2. Let M c L" be a 2-surface and U be an open neighborhood of
p € M. Then for an r-plane II which passed through the point p e M defined by
U N1II regular curve o at the point p € M is called the section curve determined

by Il If the plane IT is orthogonal to M then the section curve is called the
normal section curve and for a tangent vector X , While X, eIT the section curve

determined by 11 is called the section curve passed through the point X, [4].

Definition 2.3. Let a:/ - R} =L’ be a non-null curve. If m,,...,m, denote the e-
curvature functions of @ and {V,,..., V,,} the Frenet frame field of a then the point

(2.1) C,(t)=(a+zr: ajmjV}.J(z), a; =%1

is called 7* (a,,...,a,) -curvature center of & at the point a(¢), [4]. The (n—7)-
hyperplane which is spanned by Sp{V,+1 ®),....V, (t)} and passed through the point
C,(2) is called the (n-r)-curvature hyperplane of « at the point a(f) and is
denoted by D, (r), where m; and ¥, are the e-curvature functions and Frenet
vectors of &, respectively.

Definition 2.4. Let M < L' be a 2-surface and «: 7 — L. A normal section curve
determined by ¥, € T,M which is non-null then

C'()= (a +Y “fvmf“e”(;-l)](t), a"eIR, (2<r<(n-2))
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is called " (a},...,a")-curvature center of normal section curve o determined by

V,of M at p. Here m,",..,m, and k,...,k) are the e-curvature functions and
Frenet curvatures of the non-null normal section curve respectively. Furthermore the
Frenet frame field of the curve is {Vl e ,é(”_l)}, =&, 25j<(n-1),[4]

Theorem 2.4. [6] If f:1 — R} is non-null curve and the Frenet frame of £ is
{Vl, " s} then

VW=V, V =¢&kV,,

Vi=V,V, = ~€i- I)k(z N ‘9(,+x)k(,+1)V(,+1)’

Vi ==k
where g, = (I/,,V,) 11, 1<i<s, and £, are curvature functions of .
Theorem 2.5. Let M c L" be a surface whose geodesics ¢ are planar. The locus of
centers of spheres that has a(s) as the r-multiple contact point with o are on the
(n—r) -curvature hyperplane D, _,,(s).
Proof. Let us define the function

f(a(s)) =< a(s) —c,a(s)—c > -r’.
If a(s) is the r-multiple contact point of the curve « and the sphere S,(c).

Then

fa(s)=f(as) =..= f(a(s) =0.

Therefore
(2.2) f(a(s)) =<a'(s),a(s) —c >=<V,(s),a(s)—c>=0
and generally for n=23,...,r
(23)  fas) =<V, (s)a(s)—c>=—(m,_, +&,,k, ,(s)m, ) —"—=—m,.

n—l( )

Let C be the curvature center of the sphere §,(c). Consider the vector
a(s)C=C-a(s)=Y. a,AV,(s)
j=l
or similarly

(2.4) C=a(s)+ z a;, AV (s)+ z a,AV.(s)
) j=l Jjer+l
where A; € R are arbitrary parameters and 4; = (V,.(s), c— a(s)).
On the other hand form (2.2) we get
A =¥ (s), a(s)—c)=0.

From (2.3) we also get
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-2, =(V,(s), a(s)—c)=-m, = A, =m,, 2<n<r.
Thus, (2.4) becomes
C=a(s)+). amV(s)+ Y amV,(s)
J=1

J=r+t
This completes the proof of the theorem.
3. SOME SPECIAL CASES

Consider r" (a,,...,a,) -curvature centers C.(t) of the curve a:1 - L"
defined by (2.1). We consider the following cases:
Casel:i)Let a, =+1and r =2 then the curvature hyperplane Dy, (s) is defined
by

{@+mP) )+ 4V (s)+ .+ AV, () [s € ], 2,02, R}

which is the locus of the (n—1)-sphere centers those have a(s) as an 2-multiple
common point with a passes through the point a(s). Thus the (z - 2)-hyperplane
D,_,(s) is an affine subspace that associated with Sp{V3,..., V,,} and passes through
C,(s).

ii) For » =3, D, ,(s) is defined by

{@+mV, + mp)5)+ AV (5) ot AV () [s€ 1, Agrnd, €R}

which is the locus of the (n—2)-sphere centers those have a(s) as an 3-multiple
common point with o passes through the point a(s). Thus the (n-3) -hyperplane
D,_,(s) is an affine subspace that associated with Sp{V4,..., V,,} and passes through
C,(s).

iif) For r =4, D, ,(s) is defined by

{(a+mP, +mp, +mp)s)+ AVy(s) +..k AV, (s) |se 1, 2, R}

which is the locus of the (n—3) -sphere centers those have a(s) as an 4-multiple
comnmon point with a passes through the point a(s). Thus the (n ~4) -hyperplane
D,_,(s) is an affine subspace that associated with Sp{Vs,..., V,,} and passes through
C,(s).

iv) Similarly, for » = (n-1), D,(s) is defined by

{amp, +m¥, e mp, 4.t Vo X5)+ A V,(5) [sel, 4, R}
which is the locus of the 2-sphere centers those have a(s) as an (n-1)-multiple
common point with & passes through the point a(s). Thus the 1-hyperplane D,(s)
is an affine subspace that associated with Sp{V,,} and passes through C,_,,(s),

v) For r =n, D,(s) is defined by
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{(a +mV, +mV, +mV, + . +mV )(s) ls € I}
which is the locus of the 1-sphere centers those have a(s) as an n-multiple
common point with o passes through the point a(s). Thus the 0-hyperplane D,(s)
thatis C,(s) denoted point.
CaseIl: i) Let a; =-1 and r =2 then the curvature hyperplane D, ,(s) is defined
by
{a-mV)(s) = AWy(s) == AV, (5) s € 1, Ay 4, € R}
ii) For r =3, D, ,(s) is defined by
{(a -mV, —mV,((8) = AV, () —...— AV, (s) |s el, 2,,...4, € R}
iii) For r =4, D,_,(s) is defined by
{(a —-mV, ~mV, —mV )(s) = AV (s)—..— A, V,(5) Is el, A,..., 4, € R}
iv) Similarly, for r =(n-1), D,(s) is defined by
{(a —mVy, —mV,—mV, —...—m, Vi, ) )s) =4V, (s) IS el, e R}'
v) For r =n, D,(s) is defined by
{(a -m,V, —myV,—-myV, —...-mV, )s) ls € I}
4. EXAMPLES

In this section we will calculate the r” (a,....,a,) -curvature centers C,(t) of
some special curves.

Example 4.1. Let
a(s)—(cosJ_ s1nJ.. COSJ— ,8in \/—J
Since
alls) _ a'(s)
Vi(s) = T =a(s), Vy(s) =
Jel Jeel
we get

ki(s) = (V(9), V() = (@"(s), 2 (9)) = -\/17 V(s) =a'(s))

where «'(s), @"(s) the first and second differential of a(s) respectively. If the
vector V| is time-like and a; = +1 then,
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C,(s) =(a+m¥))(s)

—a(s)+( 1% jV( )

ky(s)
_.a(s)—-k—z—)V ) &={.V)
=2a(s).

If the vector ¥, is time-like and a; =1 then,
C(s) =(a-mY;)(s)

=a(s)— [kl( Z)JV (s)

=0!(S)—sz(S)

=(0,0,0,0,
where &, = (V,,K).
Example 4.2. Let
a(s) = (coss,sin s, cos 2s,sin 25),
then differentiating a(s) we get

E,(s) = a'(s) = (—sins,cos s,~2sin 25,2 cos 25), "E, (s)" =45

E\(s) 1 . .
V(s)=7t 0= ———( sin s, cos 5,~2sin 25,2 cos 2s),
e Vs
and
Exs)=a"()~(a" () (W) =a'(s), |E ()] =417
E (s) 1
Vi(s) = ( cos s,—sin 5,—4 cos 2s,—4 sin 2s),
[e.l~ 17
and

Ey(s) =a"(s) = (@"(s),V,(s)WV;(s) = {a"(s), V, ()W, (5)
6J'

= ——( 12sin 5,12 cos 5,6 sin 25,—6 cos 2s), "E (s)" =

E (s) 1

= —2sins,2 ,8in 2s,—cos 2s).
Vi(s) = ||E( )“ JE( sin 5,2 cos s, sin 2s,~ cos 2s)

By using

71
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|E..9)|
IE&)] |E: )]

k(s)= ﬁ k(s)= _6

1 5’ 2 P \/ﬁ
If the vector V) is time-like and a; = +1,
C,(s) =(ax+m,V,)(s)

=a(s)+ (kl(s)) Va(s)

= —117(22 cos 5,22sin 5,37 cos 25,37 sin 2s),

ki(s) =

we obtain

and
Ci(s) = (a + myV, + mV;)(s)

!

£,8,
'“(”{k( )j V) (k,(s)) O
=G, (s).

If the vector V] is time-like and a; = -1,
G, (s) =(a—ml;)s)

=a(s) - (k( )JV()

= % (12cos s,12sin5,-3 cos 2s,—3sin 2s),

and
Cy(s) = (a —mV, —mV;)(s)

’

)
e 5 (25
=C2(S))

r

Where( ! ):
k,(s)
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