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A GENERALIZATION OF PURELY EXTENDING MODULES

RELATIVE TO A TORSION THEORY

Semra DOĞRUÖZ and Azime TARHAN
Adnan Menderes University, Aydın, TURKEY

Abstract. In this work we introduce a new concept, namely, purely τs-extending
modules (rings) which is torsion-theoretic analogues of extending modules and

then we extend many results from extending modules to this new concept. For

instance, we show that for any ring R with unit, RR is purely τs-extending
if and only if every cyclic τ -nonsingular R-module is flat. Also, we make a

classification for the direct sums of the rings to be purely τs-extending.

1. Introduction

Injective modules have been intensively studied in the 1960s and 1970s in module
theory and more generally in algebra. As a generalization of injective modules,
extending modules (CS), that is every closed submodule is a direct summand,
have been studied widely in last three decades. In general setting, Chatters and
Hajarnavis [7], Harmancı and Smith [23], Kamal and Muller [24] and their schools
can be mentioned involving studies of extending modules.

Recently, torsion-theoretic analogues of extending modules has been studied on
many results and concepts, such primarily studies as, Asgari and Haghany [4],
Berktaş, Doğruöz and Tarhan [6], Crivei [11], Çeken and Alkan [12], Doǧruöz [13].
Clark [8] defined a module M is purely extending if every submodule of M is
essential in a pure submodule of M , equivalently every closed submodule of M
is pure in M . A submodule K of a module M is essential (in M ) if N ∩ K ̸=
0 for every non-zero submodule K of M . A submodule K of a module M is
closed (in M ) if K has no proper essential extension in M , i.e., whenever L
is a submodule of M such that K is essential in L, then K = L. Al-Bahrani
[1] generalized purely extending modules as a purely y-extending module using
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s-closed submodules which was defined by Goodearl [21] such as a submodule N of
a module M is s-closed in M if M/N is nonsingular. So a module M is called purely
y-extending if every s-closed submodule of M is pure in M . In fact, Al-Bahrani [1]
belike misused the terminology of s-closed submodules. They used the term y-closed
(purely y-extending) instead of s-closed (purely s-extending) respectively. In this
study, we use s-closed submodule and purely s-extending module instead of y-closed
submodule and purely y-extending module in the sense of Al-Bahrani [1].

We use the concept ’purity’ in the sense of Cohn [10] (as in [8]) which implies
definition of Anderson and Fuller [3], that is, a submodule N of an R-module M
is called pure submodule in M in case IN = N ∩ IM for each finitely generated
right ideal I of the ring R (see also [26] ). In the present paper we introduce purely
τs-extending modules and then we extend many results from [1], [8] and [21] to this
new concept.

For instance, we show that:
Theorem 1: Let R be a τ -torsion ring and M be an R-module. Let E(M)

be an injective hull of M . Then M is a purely τs-extending module if and only if
A∩M is pure in M for every direct summand A of E(M) such that the submodule
A ∩M is τs-closed in M .

Proposition 5: Let R be a ring with identity. Then RR is purely τs-extending
if and only if every cyclic τ -nonsingular R-module is flat.

and
Theorem 6: Let R be a commutative domain and every essential ideal of R is

τ -dense in R. Then the following properties are equivalent:

(1): R is a semi-hereditary ring.
(2): R⊕R is an extending module.
(3): R⊕R is a purely extending module.
(4): R⊕R is a purely s-extending module.
(5): R⊕R is a purely τs-extending module.
(6): for each n ∈ N,

⊕
n R is an extending module.

(7): for each n ∈ N,
⊕

n R is a purely extending module.
(8): for each n ∈ N,

⊕
n R is a purely s-extending module.

(9): for each n ∈ N,
⊕

n R is a purely τs-extending module.

which is a torsion-theoretic analogue of [8, Proposition 1.6].
Throughout the workR will be an associative ring with identity and allR-modules

will be unitary left R-modules unless otherwise stated. R-Mod will be the category
of unitary left R-modules, and all modules and module homomorphisms will belong
toR-Mod. By a class X ofR-modules we mean a collection ofR-modules containing
the zero module and closed under isomorphism, i.e., any module which is isomorphic
to some module in X also belongs to X . If a submodule N of a moduleM belongs to
X class, then N is called X -submodule of M . The class of X closed under extension
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by short exact sequence we mean for a short exact sequence

0 C B A 0- - - -

of R-modules A, B, C, if A and C are bought belong to the class of X , then B is
also belongs to X class.

Let τ := (T ,F) be a hereditary torsion theory on R-Mod. The modules in
T are called τ -torsion modules and the modules in F are called τ -torsion-free
modules. Let M ∈ R-Mod. Then the τ -torsion submodule of M , denoted by τ(M),
is defined to be the sum of all τ -torsion submodules of M . Thus τ(M) is the unique
largest τ -torsion submodule of M and τ(M/τ(M)) = 0 for an R-module M . Also
the module M is τ -torsion (resp. τ -torsion-free) if and only if τ(M) = M (resp.
τ(M) = 0). In our study, we mean a ring R is τ -torsion if RR is τ -torsion.

Let M be an R-module. A submodule N of M is called τ -dense in M if M/N is
τ -torsion. A submodule N of M is called τ -essential in M denoted by (N ≤τe

M)
if N is essential in M and M/N is τ -torsion (see [19], originally defined by Tsai in
1965 [29]). Define the set Zτ (M) = {m ∈ M | Ann(m) ≤τe R}. Here Zτ (M) is
called the τ -singular submodule of M . Then the module M is called τ -singular if
Zτ (M) = M and τ -nonsingular if Zτ (M) = 0 ( [20]). We mean Z(M) the singular
submodule of a module M which is consists of singular elements of M , i.e., elements
annihilated by essential left ideals. The module M is singular (resp. nonsingular)
if Z(M) = M (resp. Z(M) = 0). For the singular and nonsingular notions (see
also [21], [22]). If a ring R is τ -torsion, then every left ideal I of R is τ -dense in it,
i.e., R/I is τ -torsion in the sense of [19]. Therefore, clearly Zτ (M) = Z(M) over a
τ -torsion ring R.

For elementary, additional and unexplained terminology the reader is referred
to [3] or [30] for module and ring theory, [19] and [28] for torsion theory, [15] for
extending modules and [26] for homological algebra.

2. Purely τs-Extending Modules

Definition 1. Let M be an R-module and N be a submodule of M . We call N
is a τs-closed submodule of M if the factor module M/N is τ -nonsingular and it is
denoted by N ≤τsc M .

Definition 2. Let M be an R-module. We call M is a purely τs-extending module
if every τs-closed submodule of M is pure in M .

Lemma 1. Let R be a τ -torsion ring. Then every τs-closed submodule of a module
M is closed in M .

Proof. Let N be a τs-closed submodule of M . Then the factor module M/N
is τ -nonsingular i.e., Zτ (M/N) = 0. Since R is τ -torsion, clearly Zτ (M/N) =
Z(M/N). Assume N is not closed in M . Then there exists a submodule K of M
such that K contains N as an essential submodule. So the factor module K/N
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is singular [21]. Hence Z(K/N) = K/N . On the other hand, Z(K/N) = 0 since
Z(K/N) is a submodule of Z(M/N). Hence K/N is nonsingular. But since K/N
is singular, it must be zero (i.e K/N = 0). Therefore, N = K and so N is closed
submodule of M . □

Corollary 1. Let R be a τ -torsion ring. Then every purely extending R-module is
purely τs-extending.

Proof. Let M be a purely extending module and N be a τs-closed submodule of
M . Since R is τ -torsion N is closed in M by Lemma 1. From [8, Lemma 1.1] every
closed submodule of M is pure in M . So N is pure in M . Therefore M is purely
τs-extending module. □

As in general extending module theory we have some of the fundamental properties
of purely τs-extending modules as follows:

Lemma 2. Let M = M1 ⊕ M2 be a purely τs-extending module. Then M1 and
M2 are also purely τs-extending modules i.e., any direct summand of a purely
τs-extending module is purely τs-extending.

Proof. LetM = M1⊕M2 be a purely τs-extending module and letN1 be a τs-closed
submodule of M1. Then Zτ (M1/N1) = 0. For the proof we want to show that
N1 is pure in M1. First let us show that N1 is τs-closed in M i.e., (M/N1) is
τ -nonsingular.

Assume M/N1 is not τ -nonsingular module. Thus Zτ (M/N1) ̸= 0. Then there
exists an element N1 ̸= m + N1 ∈ M/N1 such that Ann(m + N1) ≤τe

R. On the
other hand, since m ∈ M = M1⊕M2, there exist m1 ∈ M1 and m2 ∈ M2 such that
m = m1 +m2 and this writing unique. Thus

Ann(m+N1) = Ann((m1 +m2) +N1) = Ann(m1 +N1 +m2 +N1)
= Ann(m1 +N1) ∩Ann(m2 +N1)

(see [3, Proposition 2.16]). In addition, since Ann(m + N1) ≤τe
R, we have

Ann(m1 +N1) ∩ Ann(m2 +N1) ≤τe
R. Since Ann(m1 +N1) ∩ Ann(m2 +N1) ⊆

Ann(m1 + N1) ⊆ R, we have Ann(m1 + N1) ≤τe R. But this contradicts with
Zτ (M/N1) ̸= 0. Hence Zτ (M/N1) = 0 i.e., N1 is a τs-closed submodule of M . By
the hypothesis N1 is pure in M since M is purely τs-extending module. By [17,
Proposition 1.2 (2)] N1 is pure in M1. Thus M1 is purely τs-extending module.
Similarly it can be shown that M2 is also purely τs-extending module. □

Corollary 2. Let M =
⊕

i∈I Mi be a purely τs-extending module where I is a
finite index set. Then for every i ∈ I, Mi is purely τs-extending.

Proof. It is clear from Lemma 2. □

Lemma 3. Let C be an R-module. Then C is a τ -nonsingular module if and only
if HomR(A,C) = 0 for every τ -singular R-module A.
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Proof. Let f : A −→ C be an R-module homomorphism where C is a τ -nonsingular
module and A is a τ -singular R-module. Then f(A) = f(Zτ (A)). We show
f(Zτ (A)) ≤ Zτ (C). If x ∈ f(Zτ (A)) then there is an element a ∈ Zτ (A) such
that x = f(a). So Ann(a) ≤τe

R. If r ∈ Ann(a), then rx = rf(a) = f(ra) = 0 i.e.,
r ∈ Ann(x). Since Ann(a) ≤ Ann(x) ≤ R, we have Ann(x) ≤τe

R i.e., x ∈ Zτ (C).
By the hypothesis, since Zτ (C) = 0, f = 0 and thus HomR(A,C) = 0.

For the converse let HomR(A,C) = 0 for every τ -nonsingular R-module A.
Specially HomR(Zτ (C), C) = 0. So the inclusion map Zτ (C) −→ C is zero. Hence
Zτ (C) = 0 and so C is τ -nonsingular module. □

Lemma 4. The class of τ -nonsingular modules is closed under extensions by short
exact sequences.

Proof. Let C and A be τ -nonsingular modules and consider the following short
exact sequence

0 C B A 0- - - -

For every τ -singular R-module M , using Lemma 3, we have HomR(M,C) = 0
and HomR(M,A) = 0. Then the following short exact sequence

0 −→ HomR(M,C) −→ HomR(M,B) −→ HomR(M,A) −→ 0

yieldsHomR(M,B) = 0. Again by Lemma 3 theR-moduleB must be τ -nonsingular.
□

Next we can show τs-closed submodules have transitivity property.

Lemma 5. Let M be an R-module and let K and N be submodules of M such that
K ⩽ N . If K is τs-closed submodule of N and N is τs-closed submodule of M ,
then K is τs-closed submodule of M .

Proof. Since K is τs-closed submodule of N and N is τs-closed submodule of M ,
Zτ (N/K) = 0 and Zτ (M/N) = 0. We must show that Zτ (M/K) = 0. Consider
the following short exact sequence

0 N/K M/K M/N 0- - - -

By Lemma 4, the class of τ -nonsingular modules are closed under extensions
by short exact sequences. Since N/K and M/N are both τ -nonsingular, M/K is
τ -nonsingular. Hence Zτ (M/K) = 0. Thus K is τs-closed submodule of M . □

Now we have some basic properties as follows.

Lemma 6. Any τs-closed submodule of a purely τs-extending module is purely
τs-extending.
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Proof. Let M be a purely τs-extending module and let N be a τs-closed submodule
of M . Then M/N is τ -nonsingular. Let K be a τs-closed submodule of N . Then
by Lemma 5, K is a τs-closed submodule of M . Since M is purely τs-extending
module, K is pure in M . By [17, Proposition 1.2 (2)], K is pure in N . So N is
purely τs-extending module. □

There exist submodules K,L of a module M such that K and L both closed
submodules of M but K ∩ L is not closed in K,L or M (see [21, Example 1.6]).
But we have the following in our case.

Proposition 1. Let M be an R-module and N,K be τs-closed submodules of M .
Then N ∩K is a τs-closed submodule of M .

Proof. Let M be an R-module and N , K be τs-closed submodules of M . Then
M/K and M/N are τ -nonsingular, i.e., Zτ (M/N) = 0 and Zτ (M/K) = 0. Assume
Zτ (M/(N ∩ K)) ̸= 0. Then there is a (N ∩ K) ̸= m̄ ∈ M/(N ∩ K) such that
Ann(m̄) ≤τe R. Now for m̄ = m + (N ∩ K), m ̸∈ N ∩ K. On the other hand
for m ∈ M , choose the elements m̂ = m + N ∈ M/N and m̃ = m + K ∈ M/K.
Then we have Ann(m̄) ⊆ Ann(m̂) and Ann(m̄) ⊆ Ann(m̃). Indeed, now let
0 ̸= r ∈ Ann(m̄). Then rm̄ = 0 and so rm+(N ∩K) = N ∩K. Hence rm ∈ N ∩K.
So we have rm ∈ N and rm ∈ K. Thus rm+N = N and rm+K = K, i.e. rm̂ = 0
and rm̃ = 0. Consequently r ∈ Ann(m̂) and r ∈ Ann(m̃). Hence Ann(m̄) ⊆
Ann(m̂) and Ann(m̄) ⊆ Ann(m̃). On the other hand, since Ann(m̄) ≤τe R we
have Ann(m̂) ≤τe

R and Ann(m̃) ≤τe
R. Then by hypothesis Zτ (M/N) = 0

and Zτ (M/K) = 0, we have m ∈ N and m ∈ K and so m ∈ N ∩ K. Hence
m̄ = m + (N ∩K) = N ∩K. This is a contradiction. Thus Zτ (M/(N ∩K)) = 0.
Therefore, N ∩K is a τs-closed submodule of M . □

Corollary 3. Any intersection of τs-closed submodules is also τs-closed.

Proof. It is an evident result of Proposition 1. □

Lemma 7. Let M be an R-module and let K,L be submodules of M such that
K ⩽ L. If L is a τs-closed submodule of M , then L/K is a τs-closed submodule of
M/K.

Proof. Let L be a τs-closed submodule of M . Then Zτ (M/L) = 0. On the other
hand, (M/K)/(L/K) ∼= M/L and since τ -nonsingular modules are closed under
isomorphisms, Zτ ((M/K)/(L/K)) = 0. Hence L/K is τs-closed in M/K. □

Lemma 8. Let M be an R-module and let K,L be submodules of M such that K ≤
L . If the submodule L/K is τs-closed in M/K, then L is a τs-closed submodule
of M .

Proof. Since L/K is a τs-closed submodule ofM/K, Zτ ((M/K)/(L/K)) = 0. Since
(M/K)/(L/K) ∼= M/L and τ -nonsingular modules are closed under isomorphisms,
Zτ (M/L) = 0. Hence L is a τs-closed submodule of M . □
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Proposition 2. Let M be a purely τs-extending R-module and N be a τs-closed
submodule of M . Then the factor module M/N is purely τs-extending.

Proof. Let M be a purely τs-extending R-module and N be a τs-closed submodule
of M . By the definition of purely τs-extending module, N is pure in M . For
N ≤ K ≤ M let K/N be τs-closed in M/N . Now (M/N)/(K/N) ≃ M/K and
since the τ -nonsingular modules are closed under isomorphisms, Zτ (M/K) = 0.
So K is τs-closed submodule of M . Since M is purely τs-extending, K is pure
in M . By [17, Proposition 1.2 (3)] K/N is pure in M/N . Thus M/N is purely
τs-extending. □

Let M be an R-module. For an arbitrary submodule N of M by Zorn’s Lemma
there is a submodule K of M maximal with respect to N is essential in K. The
submodule K is called closure of N in M ( [27]). See also [14] for torsion theoretic
version of closures.

Now we give another generalization of closures relative to a torsion theory as
follows:

Definition 3. Let M be an R-module and let N be a submodule of M . The
smallest τs-closed submodule K of M which is containing N is called τs-closure of
N in M . The τs-closure of N is denoted by N−τs .

Lemma 9. Every submodule N of an R-module M has a τs-closure in M .

Proof. Let M be an R-module and N be a submodule of M . Now define the set
S = {K ≤ M | N ⊆ K and K ≤τsc M}. Since Zτ (M/M) = 0, M is τs-closed in M
and so M ∈ S. Then S is non-empty. Let C be a chain in S. Take C =

⋂
Ki∈C Ki.

By Corollary 3 C is a τs-closed submodule of M . Then C ∈ S. By Zorn’s Lemma
there is a minimal element in S. If we call this element such as H then H is
τs-closure of N in M . Thus every submodule N of M has a τs-closure in M . □

Proposition 3. An R-module M is a purely τs-extending if and only if the τs-closure
of N (i.e., N−τs ) is pure in M for every submodule N of M .

Proof. Let M be a purely τs-extending module. Then every τs-closed submodule
of M is pure in M . By Zorn’s Lemma every submodule N of M has a τs-closure
in M . By the definition of τs-closure, the submodule N−τs is τs-closed in M and
by the hypothesis the submodule N−τs is pure in M .

Conversely, letK be a τs-closed submodule inM . By the definition of τs-closure,
K−τs = K. By the hypothesis K−τs i.e. K is a pure submodule in M . Then
any τs-closed submodule of M is pure in M . Thus M is a purely τs-extending
module. □

Theorem 1. Let R be a τ -torsion ring, let M be an R-module and E(M) be the
injective hull of M . Then, M is a purely τs-extending module if and only if A∩M
is pure in M for every direct summand A of E(M) such that the submodule A∩M
is τs-closed in M .
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Proof. Let R be a τ -torsion ring, M be an R-module, E(M) be the injective hull
of M and M be a purely τs-extending module. Then for every direct summand A
of E(M) such that A ∩M is a τs-closed submodule of M it is clear that A ∩M is
pure in M .

Conversely, let A be a τs-closed submodule of M and let B be a complement
of A in M . Then A ⊕ B is essential in M [21, Proposition 1.3]. Now it is clear
that A ⊕ B is essential in E(M). Hence E(A) ⊕ E(B) = E(A ⊕ B) = E(M) [22].
Since A = A ∩ M ≤e E(A) ∩ M , (E(A) ∩ M)/A is singular (see [21]). Moreover,
since R is τ -torsion ring (E(A) ∩ M)/A is τ -singular. On the other hand since
(E(A) ∩M)/A ≤ M/A and A is τs-closed submodule of M , M/A is τ -nonsingular
and thus (E(A) ∩ M)/A is τ -nonsingular. Therefore, (E(A) ∩ M)/A = 0 and so
E(A)∩M = A. Since A is τs-closed in M , E(A)∩M is also τs-closed in M . Since
E(A) is a direct summand of E(M) by the hypothesis E(A)∩M is a pure submodule
of M . Hence A is pure in M . Thus M is a purely τs-extending module. □

Theorem 2. Let R be a τ -torsion ring, let M be an R-module and let E(M) be the
injective hull of M . Assume A+M be a flat module for every direct summand A of
E(M) with A ∩M is τs-closed submodule of M . Then M is a purely τs-extending
module.

Proof. Let A be a direct summand of E(M) such that A ∩ M is τs-closed in M .
Consider the following short exact sequences of R-modules

0 A ∩M M M/(A ∩M) 0- -i1 -f1 -

and

0 A A+M (A+M)/A 0- -i2 -f2 -

where i1, i2 are inclusion maps and f1, f2 are natural epimorphisms. Since A is a
direct summand of E(M), there is a submodule A

′
of E(M) such that E(M) =

A⊕ A
′
. Thus A is also a direct summand of A+M such as A+M = (A+M) ∩

E(M) = (A +M) ∩ (A ⊕ A
′
) = A ⊕ ((A +M) ∩ A

′
). Here ((A +M) ∩ A

′
) is flat

as a direct summand of a flat module A+M . Since (A+M)/A ∼= ((A+M)∩A
′
),

(A+M)/A is flat. On the other hand, the factor module M/(A ∩M) is again flat
since M/(A∩M) ∼= (A+M)/A. By [17, Theorem 1.7] A∩M is pure in M . Hence
by Theorem 1, M is a purely τs-extending module. □
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3. Purely τs-Extending Rings

If the ring R is purely τs-extending as an R-module over itself then R is called
purely τs-extending.

A (von Neumann ) regular ring R as an R-module over itself, i.e., RR can be
given an example of purely τs-extending ring since every left ideal is pure in it
by [17, Theorem 2.1].

Fieldhouse in [17] generalizing (von Neumann) regular ring and define, for any
ring R, an R-module M is called (von Neumann) regular if all its submodules are
pure in M .

Therefore, since all (left) R-modules over a (von Neumann) regular ring is regular
by [17, Theorem 3.1], thus all R-modules over a (von Neumann) regular ring R is
purely τs-extending. Also any regular module over any ring R can be given as an
example of purely τs-extending modules.

3.1. Multiplication Modules. LetR be a commutative ring andM be anR-module.
For every submodule N of M if there exists an ideal I of R such that N = IM ,
then M is called a multiplication module. For every submodule N of M let us define

(N : M) = {r ∈ R | rM ⊆ N}.
Then M is an multiplication R-module if and only if N = (N : M)M ( [5]).

Definition 4. [9] Let M be an R-module and N be a submodule of M . If

N = Hom(M,N)N = Σ{φ(N) | φ : M → N}
then N is called an idempotent submodule of M . If every submodule of M is
idempotent, then M is called a fully idempotent module.

Theorem 3. [16, Teorem 2.11] Let M be a multiplication R-module and M =
M1 ⊕M2, is a direct sum of fully idempotent submodules M1 and M2. Then M is
a fully idempotent module.

Lemma 10. [16, Lemma 2.13] Let M be a fully idempotent R-module, N be a
submodule of M and I be an ideal of R. Then N ∩MI = NI, i.e., N is pure in
M .

Now we can give the following teorem by using fully idempotent submodules:

Theorem 4. Let R be a commutative ring and let M = M1⊕M2 be a multiplication
R-module with fully idempotent submodules M1, M2 of M . Then M is a purely
τs-extending module.

Proof. Let M be a multiplication R-module and N be a τs-closed submodule of
M . By Teorem 3 M is fully idempotent R-module and by Lemma 10 the τs-closed
submodule N of M is pure in M . Hence M is purely τs-extending. □

Now we can give a characterization of a purely τs-extending R-module with a
ring as follows:
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Proposition 4. Let R be a commutative ring and let M be a faithful multiplication
R-module. If RR is purely τs-extending module then M is also purely τs-extending
module.

Proof. Let N be a τs-closed submodule of M . Since M is multiplication R-module,
we can write N = (N : M)M . Claim: (N : M) is τs-closed submodule in RR.
Assume (N : M) is not τs-closed in R. Then R/(N : M) is not τ -nonsingular
that is, Zτ (R/(N : M)) ̸= 0. Then there exists at least one non-zero element r̄
of R/(N : M) such that Ann(r + (N : M)) is τ -essential in R. So r̄ = r + (N :
M) ̸= (N : M). Then there is an element 0 ̸= m0 ∈ M such that rm0 ̸∈ N .
Now Ann(r + (N : M)) ⊆ Ann(rm0 + N). If s ∈ Ann(r + (N : M)), then
sr + (N : M) = (N : M). Hence we have sr ∈ (N : M) so it is easy to check that
(sr)M ⊆ N (*). Let us show that s ∈ Ann(rm0+N). Now s(rm0+N) = srm0+N
but since (sr)M ⊆ N and by (*) for m0 ∈ M , srm0 ∈ N , i.e., srm0 + N = N .
So s ∈ Ann(rm0 + N). Hence we have Ann(r + (N : M)) ⊆ Ann(rm0 + N).
On the other hand, since N is τs-closed in M it is clear that M/N τ -nonsingular.
So rm0 + N = N but it contradicts with rm0 ̸∈ N . Hence (N : M) must be
τs-closed in R. Moreover since RR is purely τs-extending, (N : M) is pure in R,
i.e., I(N : M) = IR ∩ (N : M) for every finitely generated ideal I of R. Thus
I(N : M) = IR ∩ (N : M) = I ∩ (N : M). Therefore, by N = (N : M)M we
write IN = I(N : M)M = (I ∩ (N : M))M . On the other hand, the equality
(I ∩ (N : M))M = IM ∩ (N : M)M holds since R is a commutative ring and M is
a faithful multiplication R-module by applying [2, Proposition 1.6 (i)].

Now for the finitely generated ideal I of R, we have
IN = I(N : M)M = (I ∩ (N : M))M = IM ∩ (N : M)M = IM ∩ N ( [5]).
Therefore, the τs-closed submodule N of M is pure in M . Hence M is a purely
τs-extending module. □

Remark 1. [26, Proposition 3.46] Let R be an arbitrary ring. The left R-module
R is a flat left R-module.

In the sequel we use the flat ring in the sense of Rotman [26, Proposition 3.46],
i.e the ring R is flat if RR is flat.

Proposition 5. Let R be an arbitrary ring. Then RR is purely τs-extending if and
only if every cyclic τ -nonsingular R-module is flat.

Proof. Let RR be a purely τs-extending module. LetM = Ra be a cyclic τ -nonsingular
R-module which is generated by a. Define the map f : R → M with f(r) = ra.
Clearly f is an epimorphism and Ker(f) = Ann(a). So R/Ker(f) = R/Ann(a) ∼=
Ra. Moreover, since Ra is a τ -nonsingular module and the class of τ - nonsingular
modules is closed under isomorphisms R/Ann(a) is τ -nonsingular. Hence Ann(a) is
τs-closed in R. By the hypothesis Ann(a) is pure in R. Since R is flat and Ann(a)
is pure in R, R/Ann(a) is flat by [3, Lemma 19.18]. Therefore, Ra is flat.
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Conversely, let K be a τs-closed ideal of R. Then R/K is τ -nonsingular. By the
hypothesis R/K is flat as a left R-module. Thus by [3, Lemma 19.18], K is pure
in R. Thus RR is a purely τs-extending. □

Theorem 5. Let R be a ring. Then R ⊕ R is purely τs-extending if and only if
every τ -nonsingular 2-generated R-module is flat.

Proof. Let M = Rm1 + Rm2 be a τ -nonsingular R-module. Define the map f :
R⊕R → M with f(r1, r2) = r1m1+r2m2. Now it is clear that f is an epimorphism.
Hence (R ⊕ R)/Ker(f) ∼= M . Since (R ⊕ R)/Ker(f) is τ -nonsingular, Ker(f) is a
τs-closed submodule of R ⊕ R. By the hypothesis Ker(f) is pure in R ⊕ R. Since
R is is flat as an R-module, R⊕R is flat ( [21]). Thus by [17, Proposition 1.3 (3)],
we have the R-module M is flat.

For the converse, let C be a τs-closed submodule of R⊕R. Then (R⊕R)/C is
τ -nonsingular. On the other hand, sinceR⊕R is a 2-generatedR-module, (R⊕R)/C
is also a 2-generated τ -nonsingular R-module. By the hypothesis (R⊕R)/C is flat.
Then by [17, Theorem 1.7] we get C is pure in R ⊕ R. Thus R ⊕ R is purely τs-
extending. □

Corollary 4. Let R be a ring and I be a finite index set. Then ⊕IR is purely
τs-extending if and only if every τ -nonsingular I-generated R-module is flat.

3.2. Semi-hereditary Rings. Let R be a ring with unit element. If every left
(right) ideal of R is projective then R is called a left (right) hereditary ring . If
every finitely generated left (right) ideal of R is projective then R is called a left
(right) semi-hereditary ring ( [28]). A module M over a commutative domain R is
said to be torsion-free if for m ∈ M and r ∈ R, rm = 0 ⇒ r = 0 or m = 0 [25].

Now we can give the following generalized characterization of purely τs-extending
modules.

Theorem 6. Let R be a commutative domain and every essential ideal of R is
τ -dense in R. Then the following properties are equivalent:

(1): R is a semi-hereditary ring.
(2): R⊕R is an extending module.
(3): R⊕R is a purely extending module.
(4): R⊕R is a purely s-extending module.
(5): R⊕R is a purely τs-extending module.
(6): for each n ∈ N,

⊕
n R is an extending module.

(7): for each n ∈ N,
⊕

n R is a purely extending module.
(8): for each n ∈ N,

⊕
n R is a purely s-extending module.

(9): for each n ∈ N,
⊕

n R is a purely τs-extending module.

Proof. The equivalence of (1), (2) and (6) are given in [15, Corollary 12.10].
In addition the equivalence of (1), (2), (3), (6) and (7) are given in [8, Proposition

1.6].
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(3) ⇔ (4). Every s-closed submodule of a moduleM is closed inM . But converse
is true if M is nonsingular [21, Proposition 2.4]. Here since R is commutative
domain, R is nonsingular. Therefore, the notion of closed submodule and s-closed
submodule coincide. Thus the proof is clear by [8, Lemma 1.1] in fact, Lemma 1.1
is originally given by Fuchs [18].

(7) ⇔ (8). It can be easily checked be like (3) ⇔ (4).
(5) ⇒ (4). Let K be a s-closed submodule of R ⊕ R. Then (R ⊕ R)/K is

nonsingular. Since any nonsingular module is τ -nonsingular. (R ⊕ R)/K is a
τ -nonsingular. By the hypothesis K is pure in R ⊕ R. Hence R ⊕ R is a purely
s-extending module.

The implication of (9) ⇒ (8) is a generalization of (5) ⇒ (4).
(1) ⇒ (5). Let K be a τs-closed submodule of R ⊕ R. Then (R ⊕ R)/K is

τ -nonsingular. Claim that (R ⊕ R)/K is torsion-free R-module. For this fact, let
us assume m.r = 0 and r ̸= 0 for m ∈ (R ⊕ R)/K and r ∈ R. Here 0 ̸= r ∈
Ann(m). Thus Ann(m) ̸= 0. Since also R is a commutative domain, then all
non-zero ideals of R are essential [25, 7.6]. Thus Ann(m) is essential ideal in R.
By hypothesis of the theorem, Ann(m) is τ -dense in R. Thus Ann(m) ≤τe

R and
so, m ∈ Zτ ((R ⊕ R)/K). In this case, m = 0 since (R ⊕ R)/K is τ -nonsingular.
Therefore (R⊕R)/K is torsion-free. Thus applying [25, Collary 2.31] (R⊕R)/K is
projective since (R⊕R)/K is 2-generated over the Prüfer domain R. So (R⊕R)/K
is flat by [26, Proposition 3.46]. Thus K is pure in R⊕R by [17, Proposition 1.3].
Hence R⊕R is a purely τs-extending module

(1) ⇒ (9) is also similar to (1) ⇒ (5). This completes the proof.
In fact, the proof can be also completed by the following implications.
(4) ⇒ (5). Let K be a τs-closed submodule of R ⊕ R. Then (R ⊕ R)/K is

τ -nonsingular, i.e., Zτ ((R ⊕ R)/K) = 0. By assumption, since R is a ring with
essential ideal of R is τ -dense in it, τ -nonsingular and nonsingular modules are
coincide. Therefore (R ⊕ R)/K is nonsingular and so K is s-closed in R ⊕ R. By
hypothesis, K is pure in R⊕R. Therefore, R⊕R is purely τs-extending module.

(8) ⇒ (9) is also similar to (4) ⇒ (5). □
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