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ABSTRACT

In this paper the author define Balazs-Stancu type rational functions and prove the approximation
theorems for them.

1. INTRODUCTION

Bemstein polynomials play an important role in approximation theory and in
other fields of mathematics. The classical Bernstein polynomials are, as well-known,
the following ~

B(f0)=3 f[i‘«I"Jxk(l —) (1=12,.). 1)
k=0 n\k

It is also known that if f(x) is continuous in the interval [0,1], these
polynomials converge uniformly to f(x). Later, Stancu [2] defined the following
generalization of Bernstein polynomials:

BEP(f,x) = Zf[’”“ )x(l 0" (@, f20) @)

and proved the theorem about its convergence to function f.

K. Balazs[1] introduced and considered some approximation properties of
Bernstein type rational functions

1

R,,(f,x) ='——2( J( x) f( J: (n = 1’2:) (3)
(+a,x)" i3

and proved that if f* is continuous in [0,%0), f(x)=0(e”)(x — ©) with some ¥ .

then in any interval [0, 4] (4 > 0) the estimate

lF ()= R, (f, 0| < C,,(n)  (0<x<4) (4)
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holds for sufficiently large n’s provided a, =n™"?,b, =n*”*. Here C, depends only
on 4 and @, and w,,(f,5) is the modulus of continuity of f on the interval
[0,24], that is @, ,(f,8) = sup{| (1) - f(x)] :1,x €[0,24], |t - x] 6} As it was
noted in [1], the convergence of R,(f,x) holds under the more general conditions

a,=-=—0, b, > o(n—-> w) as well.
n

In this work, we define a Stancu type generalization of Balazs type rational
functions in the form

R™P(f,x) —————i(k)(anx)"f( kta ],(a,,ﬁ 20)(n=12,.) .5

a p b+p
We shall prove convergence theorems for them. Moreover, we shall prove an
asymptotic approximation theorem and show that the derivatives of Balazs-Stancu
type rational functions also convergence to the derivative of the function.
In order to establish the approximation theorems for (5) we need the
following results.
Lemma 1. [1], For x > 0, then the following identities hold:

1 2 (n . )
mg;(k](anx) =1 (n=12,.), ©
B i N

1 > :b,?f +b x
fﬁ???é(}%”(kb = BT o

b . .
where a, = and b, >0 is an arbitrary real number.
n

(In what follows c¢;, i=0,1,2,... will denote constants independent of n).
Lemma 2. If x >0, then the inequality

4-—1 ¥ e'(;:;)(l}anxf <

(1+a,%)" ||

T ©)
. { by 4y | 2fx—a)abx (a_ﬁx)z}
TG, + 8| (+ax)? 1+a,x

holds for sufficiently large n where & >0 and Y are arbitrary fixed real numbers.

b
a,=——0, b, >0 asn->w.
n
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Proof. By the Lagrange’s theorem
4 /4 14

P =X B TV biB <c, /4
b, +p b,+p b, +p
for some 0 <@ <1 as y isfixedand b, >, f20.
Also,
' z ’ b, xc, —~
b+ b+p _ no
1+a,xe _{1+a,x+a,x(e 1) <1+ b, +pf <e™ (10)
1+a,x 1+a,x n(l+a,x)
where a, =é'-'-.
n
v k+a
With the notation ¢ = xe**? we have, if -x|26,
r y
|k+a B =|k+a Y =_k:§i_x+x(1_eb"+p)
b.+8 | |o,+8 b+ B
11
k+a Y] Y
2 —x-—le—e" 25—lxl—e" >25*
b,+p
. . k+a .
for sufficiently large n, where 6* >0 is constant. If —x|2 8, then (11) gives
that
2
((k+2) =16, + B | | (12)

b, +p)6*
Using (10), (12) and summing for all k, the inequality

A I > er[b’:%](n)(anx)"

=
(+a,x)" :—""’—-xzs k
+

y n

k
_re b+p 4
1+a xe™ 1 n
=eh*f 2 -y a,xe™*? (13)
l+a,x Y kra | k
-~ X[2
1+a,xe™*? "

b+p
vl X n

b+f 4 1 n . _ _ ,
= G Aray é(kj(“"’) (k-5.+@-m)
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holds.
7
Using (13) and (8), applying ¢ = xe”*? | where r 0,if n>cw,
we get
272 _4
4 < c, ! ab x +b2,,x . 2(fx - a)a"bnx +a-port,
b, +5) (1+a,x) I+a,x

which proves the lemma.
Corollary 2. lim4, =0.

It is well-known [3] that if A and & are arbitrary positive values, then
@, ,(A8) S @, (S)A +1). (14)
We now give the following convergence theorem.
Theorem 3. Let f(x) be a continuous defined in {0,c0) such that

f(x) = O(e”)(x —> ), for some real number Y . Then in any interval 0 < x < 4
(4 2 0) the inequality

|f(x)—R,§”’ﬂ>(f,x)| < ((”“3/12 +(ﬁz‘i—o¢))2 +n2/3A\’/2

/3
+
/ (15)
b S [n (4 A+ 242 (BA - + (a - pa)’]
(nz/s +,3)2
is valid for sufficiently large n.
Proof. Consider the difference A, = l f(x)-R*P(f ,x)l . By (5) and (6) we get
1 k+a \(n ‘
A, ,X)-——--— fx)- f( ] J(a,,X)
v 1+ kzo + Bk
(16)
1
S + =S8 +8,.
(1+a,x)" KLY f’—zu L
b,+f b,+p
We obtain by (14)
k+a k+a 1 k+a
_—— 1) O —ix—
f(x)- f(b +ﬂ] G)ZA(X b_‘_ﬁJ ZA(né\nIx bn"’ﬂJ )

1
< wZA(é‘n)(_g_ X

n

k+a

b,+p

+1].

Using (16), (17) and (6)
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1 k+a
Sussz(5,,)m kmz“’)f b, 4/3[ )( ) +0,,(5,) 18)
B

=8 +a,,(8,).
Using the Schwarz inequality, then considering (6) and (8) we obtain

1 u k+a *n % 1 "
<ottt Sl ) (e T )

© ) Qb +hx | APr-adapxt  (Pi-a)’ v 9
©24 LB, + B (1 +a,x)} (b +B)? (1+ax) b, +p7|
Since a, = b and b, =n*”, then by (18) and (19) we have
n
1 1 / / 5 J2
S, <, (5, ){En—nm v [(n' (A -a)” A] +1}. (20)
2 23 /2
Chosing & =Jr(n”3A2 +(/3A—a)y/ +n A] we get
n /3 +)B ’
(02 (=) e w2 4)”
S, <w,, e (21)

Since f(x)= O(e™)(x — o,y fixed) , the estimation of S, is an easy consequence
of Lemma 2, if § is chosen small enough:

5= 3 U(ax) £ - f[’”‘;)

L5 et
S
24

(1 + an.x) kl>
b+p

k+a

c n b8

s T (e
n k+a_x 5

b+p

<G
- (n2/3+ﬂ)

Since 0 <x < 4, then we can obtain S, in the following way

[nm(x +x)+2(fx - a)x’n l/3+(a—ﬂx)2].
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S, < Wchrﬂ—)z-[nm(A‘ + A)+2(BA - ) A" + (o - BA)?]. (22)

Finally, using (21) and (22), the inequality (16) may be written in the following way

n?P A2 4 (pA-a)+n4)"
A (f,x)Lw,, ( (nﬂz/s_*_; )

bl [ (A" + 4) + 2P - ) A" + (@ - BAY] (0< x5 4).
_ (™" + p)
This establishes the proof of Theorem 3.

Now, we prove an asymptotic approximation theorem for Balazs-Stancu
type rational functions.

Theorem 4. Let f(¢) be a function defined in [0,0) such that
f(t)=0(e")(t = o,y is a fixed real number). If f(¢) has a finite second

derivative at each point ¢ = x, then

@f) = ‘) - b o
RXP(f.x)=f(x)+a,f (x)( (b, + )1 +a,x) " a,(b, + ﬂ))

abix* + b—"x 5 5
+a f"(x) an - (a _ ﬂx)bnx + (a _ ﬁx)
’ 2b, + B+ a,x) (b, +B)(1+a,x) 2a,(b,+B)

+a,p, (23)

b 172
where p, -0, a,=—-—>0 and
n

—>0as n—o>w,

n

Proof. By the conditions of the theorem, f"(x) is finite, thus we may write
fO=fx)+f )N -x)+ (f—z(—xl + i(t))(t ~x)’ (24)

where A(t) > 0 as t = x. Hence,

2
k+a | _ . k+a (%) k+a k+ta
f(b,, N ﬂ} =f(x)+ f (x)(b" y xJ+[ 5 +l[bn " ’BJK% y, x} . (25)
Writing this expression in R,(,“"’ )(f,x) and using the identities (6), (7) and (8) we
get

(@.5) _ fx) 1 K(m kg
REPU(f,x)=f(x)+ bt farar) ;}(J(anx) (k-b,x)

L@ 1 &
b+ (I+a,x)" ix\k

a,x)t

n
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S'(x) 1 e o
Z(b" + ,3)2 (1+a"x)" g(kj(a,,X) (k b"x)

(@ - Bx)f"(x) 1
TG p)? (raxy §( )(a X' (k=b,x)

(a B’ f(x) 1
20, + ) (+aqx) sz;( J(a 2

1 2 (n o k+a P k+a
+———(1+a,,x)" go(k](a,,x) (b,,+,8 x) i[anrﬂJ

= ! _ anbnx2 (a - ﬁC)
f(x)+f(x)[ G+ P+ ayx) b+ p J

{ o thy _ (a-Maby | (@-p)° } @ er, 26)
2b, + B)*(1+a,x)* (b, +p) (1 +a,x) 2(b + B)?
where
_ 1 Lin i k+a ' (k+a
" v axy ;(k](a"x) (b,, ny x] }{ b+ /3} (27)

Now, for a given arbitrary small number &£ >0, there exists 6 >0 such that
|t - xl <& which implies Il(t)] <& . With such a §, decompose the sum (27) into
two parts:

=Xy t2, : (28)

. k+
where Zl contains the members ‘ﬁ —x
+

k+a

b,+p

<6 ,and ) the ones

— X

> ¢ . Using the property of A(f) and (8) we obtain

IZ I e alblx* +b,x _ Aa-fxa,b,x’ G fr)? 29)
b, + B’ A+a,x)? b, +P)’(A+a,x) (b, +B)]

Now we obtain an upper estimation for e")(t — o,y fixed) it

follows from (25) for some ¢,

kva Y k+a Y| | (k+a kta ) S0 kta
sl s o) 485

b, +p + 4 2 \b+B
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k+a
< cser[b”ﬁ ] (k=012,...,n). (30)
By (27), (28), (30) and (9) we get

IZ I jbnzx‘t +b X + 2(ﬂx a)an g
(b,, + ﬂ) (1+a,x)’ (1+a,x)
Let now

P =t (32)

Using (32), (28), (29) and (31) the relation

(a—ﬂX)Z}- (31

2.4 b
a,bix” +—= 5 )
a, _2a-poby  (a-f)
(b, + B) (b, + )’ a,(b, + B)’

p.)<€

Cy

e ————
(&, + )’

holds, because a, = b — 0 and nb— —>0 as n—> ©.(26), (27), (32) and (33) give
n

n

{a2b2x* + b x+ 2 e - a)a,bx + (@ — )’ > 0 (n—>w)  (33)

the proof of Theorem 4.
Finally, we prove a convergence theorem concerning the derivative of

REA(f,x).
To prove the theorem we need the following lemma proved in [1].
Lemma 5. In every interval 0 <x < 4 <, the inequality

(l+a x)" |2 Z( el ( J{a 2

holds for sufficiently large n, where K, (A4) is a number depending only on A,

<K, (A)a'b" (m=012,..) (34)

a =l p o

n n 2 n
Theorem 6. Let f(¢) be a function defined in [0,0) such that
S(@)=0(e")(t > o,y is fixed). If f'(¢) exists at the point ¢ = x, then
(R=2)(f,%) = f@)if n >,

b
where a, =—— 0 and b, = n*"
n

Proof. Firstly, consider the case x > 0. Using (5) and (6) we get
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R} 0= s Z[j,wﬂfﬂ{:ji k‘éié]
bl
s 35)
Since f'(x) exists and is ﬁnlte, 50
f{f*%}=fuy4}«m+z{£121[::;-w], (36)

where A(f) > 0 as t — x By taking (35), (36), (7) and (8) it follows by 51mp1e
calculations that

(R=P) (f,2) == ()21

+A,,
b, +ﬂ(l+a x)?

@37

where

A, = ( ](a x) }{
x(b, +,B)(l+a x)" =0

L Pr-a) 1 n _
T30, + B) Ut ax) f O(kJ(“ %) ’1[ 5, ﬂj[(kw) x(b, + B)]

][(k +a) - x(b, + I

;‘N

a,b,x ax)
(b +pB)1+a, x)"*‘ o\k

1
x(b + f3) (l+a x)"

k+rz

T
i

x(b,+ )1+ a,,x)

k+a
b +/3

ab,x

(b + 8 (1+a x)"+l

Ic+a
b +ﬁ

=A + A, + A+ A + A+ 4. (38)
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Let £ >0 be an arbitrary number, then by A(z) — 0(t — x) there exists a number
6 >0 for which [A(1)] < & is valid, if |t — x| < § , and so by (38) and (8)

2723 _ _ 2
| A1|<5{ abix' b, Aa-foabx (e~ fx)

(b, + B ++a,x)* (b, + B)1+a,x) x(b, + )
for sufficiently large n. Similarly,

'A3l <€ (@-pab, _(a- )* <C\E (40)
&, +PHA+a,x) x(b,+ )

} <cpe (39)

and

b, + B1+a,x)| 1+a,x | (b, +B)1+a,x)
Since f(t) = O(e”)(t —> =,y is fixed), by (36)
,1( k+a )
b" + ﬂ
We have from (38) and (42)
[ 1 n k 7(%) -
|4, < B AT E )5(k)(a”x) e "k +a)-x, + BT -

b,+p
Applying the Cauchy-Schwarz inequality, we get

c 1 n 7
A< 12 ax)e
4| x(b, + f) A +a,x)" _Z J(k]‘ )

b,+f

. \/__l___i(Z)(a"x)k [(k-b,x)+ (@~ )} .

(1 + an‘x)n k=0

—_— 2 —_—
|A5|<5{ a,b,x ( a,b,% J+ (@ - fa,byx }<c,2£. (41)

k+a
b +

n

)
<cpe -x>8. (42)

Using Lemma 2 as & = 2y and Lemma 5, we have

afbfx4 +b,x+2(fx —Ot)a,,b,,x2 +(a - ,Bx)z
|A2|Scl4 b3 h) .

.JK,, (A)a’b? +4(a - fo)K,(A)a’h} +6(a - ) K, (A)alb? + Ha - fx)’ K, (Aa,b, +(a - )’
—0(n— ). (43)

It follows from (36), that
( ko ]
’ b+f lf

k+a | k+a
A -Xx
[b,,+ﬂ b,+p )

k+a

A L (44)

<5 - X
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We can obtain 'A4| using (44) and Lemma 2:
e co(fr+a) |albix* +bx LA -a)a,b,x’
170, 4 B | (e (1+a,x)
Similarly, we can obtain
)| <c a,b,x° +a,blx’ +2(fx— a)ab’x (o - ) a,b,x
R (b, + B
We can see from (39), (40), (41), (43), (45), (46) that
6
<Y ld|<cqe
i=1
for sufficiently large n, thus it follows from (37)

(R=P)(f,%) = f'(x) as n— wand x> 0.
In the other hand, let X = 0. Hence

+(a—/ix)2} = 0(n —> «). (45)

} — 0(n - ) .(46)

A"

1

1 a 1 l+a.
o {(1 var (b,, +/3J+ a7 (bﬂ +ﬂ)}

1+a a )
=b,,[f(b"+ A ﬂj}f«»,

Since b, — o as n — o . This completes the proof of Theorem 6.

(R=PY (£, %)

x=0
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