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ABSTRACT

In this article convergence of singular integrals with non-isotropic kernels and an application of
integrals of Gauss-Weierstrass and Abel-Poisson type with non-isotropic kernels are studied.

INTRODUCTION

It is well known that the problem of convergence of the sequences or families
of integral operators with positive kernels have many applications in different
problems, in the theory of differential equation, approximation theory, harmonic
analysis etc. ([3],(4]) We refer to the original monographies (Stein [5], Stein-Weiss
[6], Altomare-Compity [1]). Note that the integral operators of convolution type,
that is integrals with the kernels, depending on difference between the variables have
principal applications. In multidimensional case, this type of kernels are function of
euclidean distance between two points.

In this paper, we introduce multidimensional integral operators with the
kernels, depending on non-isotropic distance and study the problem of
approximation of function by the families of a such type of integrals. As an
application of our result Gauss-Weierstrass and Abel-Poisson type integrals with
non isotropic kernels are also given.

First, we define a non isotropic distance in n dimensional euclidean space

R". Let 4,4,,..,4, be positive numbers and let ]/II =4 +A4+..+4,. For xeR",
12l

1 \a
An

is the non-isotropic distance or A -distance between x and origin .

I+, = (|x1|i—. Pl e,
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It is easy to see that the distance has the following non-isotropic homogeneity
properties for > 0:

12}

L}n 14
A, ="

We can also see that this distance has triangle inequality in the form

(v )l:"l
ee o, <2 (], +o1,)
Now we introduce analogies of some known kernels in non-isotropic case.
1. A~ Gauss-Weierstrass Kernel

1 1
-
[|ﬂxxl|al e, 4.

Let a be a positive parameter. For x € R", we define A - Gauss-Weierstrass
kernel in the following form:

ol
W, (x,0)= c"a—llle da ¢))]
1
where ¢, = .
W 27T (2)

Lemma 1.
[ W, (x,@)dx =1 for alla>0.
-

Proof. By a change of variables with x = a*#, we first note that
[ W (x,a)dx = [ W, (x,))dx.
R R

Thus, it is sufficient to calculate the integral for a =1. The integral can easily be
calculated by passing to generalized spherical coordinates ;

x =(p cos(@l))“’,
x, =(psin(,)cos(d,))*".

x, , = (psin(@,)sin(8,)...sin(6, ,)cos(d,_,))* .
x, =(psin(6,)sin(6,)...sin(f,_,)sin(f,_, WA
where 0<6,,0,,...,0, , <z and 0<6_, <27
Denoting the Jacobian of this transformation by 7,(p,8,,6,,...,0,.), we
obtain
1,=p""Q,(0), @)
where
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.
A1

n 2
Q,(0)=2"2 4. A4, (cos8)** ' (sing)) ™
=l
Denoting the unit sphere in R" by S"', we see that the integral
Wina = .[ Q,(0)do (3)
Sn—l
is finite. Therefore, we have

:
Al

[WixDdx=c, [e * dx
- -

©
= cn J.
0
P
i R

= wl,n—lcn‘]- e p dp

0

2

-2
[e “p ', 0)dadp

s

=W, ,1Cp ZZM'IT e Mqr
0

=w,,.e, 2T =1.
This is the desired result.
2. 1 — Abel-Poisson Kernel

Let o be a positive parameter. For x e R", we define A -Abel-Poisson

kernel in the following form
a

I
=]

P (x,a)=c, AT

2

1
where ¢, = ———————.
Win1z B(|ﬂ'|’ 7)
Lemma 2.

j P (x,a)dx =1 for a > 0.
I

Proof. By a change of variable with x = a™t we have
[ Pi(x,a)dx = | P,(xD)dx (4)
R R

Thus, it is sufficient to calculate the integral for a =1. Also, the integral can easily
be calculated by passing to generalized spherical coordinates. From (4) we have
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f P, (x,))dx = J‘c,, ! T dx
R " 2
1+ leljl
® pZI}.]—]
=c, Ojs j T (0)dédp
(+p") ?
® 2|4
= Win-iCn .“ 202+t dp
T aeph) ?

If we change the variable by p = tan(u), it gives us

L3

2
[ P ldx = wy, ¢, | (sin()™ du
R 0
= wy, 0, B2 1)=1.
Now, we consider multidimensional singular integral with the general non-isotropic
kernel in the form of

(s ko = I fOK, Qx ”lz)dt , (5)

where « is a positive parameter which takes values in some number set, having a
limit point 0.

The following theorem gives the condition of convergence of integral
operators (5) in the A -Lebesgue points of function f.

We need the following definition.

Definition: The point x € R” will be called A -Lebesgue point of function f, at this
point, if it has the following properties;

tm—r [ G- = ffie =0 ©
s

Theorem1.Let I K, qt| A )dt =1, ¥, (x) =ess.sup
-

K, qtll)= a'mKa( o

Ka(]tll]and

L

) for a>0. If fel, (1< p<w) then
A

tim({Z2 £)x) = 1) )
whenever x isa A -Lebesgue point of function f.
Proof. Since x is a A -Lebesgue point of function f, V& >0 thereisa 6 >0 such

that for h <6
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[ 1fa=-0- fx)de < ™ . (8)
s
We first observe the properties of function ¥,. This is a radial function and
from definition of ¥, we see that this is a decreasing function. Thus

[ wo=Y, r% j dt

o,
121‘<|"|Em<’; <]x|2"'|<r2

=‘I’l[r%J’j- j Q, @) aadp

1
- 2 L 1 1
¥ [r Jr [ I;tl 2“'22'”] Win-1-

1
That s, for r — 0 and r — 0 we have ‘¥, | r? r!l 0. There is a constant A such

‘P{ﬁ}“‘ <4 ©)

for 0<r <oo. Using generalized spherical coordinates to calculate the integral (6)
we have

that

244
h—>0 h2lll I{ J. lfx (p9) )
For simplicity, let us write

0.(0)= | |rlb-(o0/™)- rofer,00a6
Spet

} 2Jaj- ‘dp 0.

and

P
G,(p) = [ g,(&)c™ae.
0
Therefore the integral (8) is equivalent to

G,(p) <™. (10)
Since [K,(f, Jt=1 for all & >0, we have
;
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(],

(Erko0 =100} =| [ - - sl

I -0 - FlK. ],

(-0

o [ [fex-0- 1ol
(s

=1+,

Now, we estimate /,. Using above notations and the observations, we get
2)A~1 A
}p e, (5)dp

, <

l

| { [re-coey
0 (S
Vo My, (£)dp

[g:(p)p
F) 3
(P, (Lydp | - | GAp)d( e ;))

5
1

s a 1
<8p2l'{]a—lll\¥,1(‘£f)dp | - I G;(azu)aﬂmd(l{l ()
a? 0 0

2\ T
=g(§——) ¥ [ eahulaa(w, wy)
(A—mjuz“'d(%(u))}

We calculate right hand side of the integral as
[ud (¥, ) = }ig(_ Py, (r))+ 24 [P, (u)du
0

24 [, (x)dx.

An-1 R"

Since the integral is finite, we have
I <&B,

where B depens only on ¥

(11)
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Let us consider /,. We denote y, which is the characteristic function of the

setof all x € R" such that |x|? > 0.
If %%,:n then using Holder inequality we have
L< [ |fa-ok)dt+ | |F@IK, (], )de
|1|3T"‘—‘>6 |1|Z{T|>6
sl sk @], +1r sk ),
Now, we calculate right hand side of the integrals;
sk = | Katd,)de

>

= | a""K(

jdt
i
Wi

= [ aVk{y, pMar

!
o

>
b e
= [ K (]t] A )dt.
W2
e
For a — 0, itis convergent to 0. So
// 7}
[ :
||V/5Ka (|t|1. )"pk\ = "J. [Ka (Itll )]ﬂ dt
- e in

.

SRR AR
s

<l olvok.l;

“‘//aKalL = sup Ka(lth) =a sup K(|t|l) -0 (a—0).
WH>s P>

Therefore, we have shown that for sufficiently small &
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(L1 ) - £ 0]
is bounded by a constant depending only on ¥,;. Then, Theorem 1 is proved.

Corollary 1. Let a function f satisfies at fixed x the condition of Theorem 1. Then
at this point x the following statements hold for non-isotropic Gauss-Weierstrass and
Abel-Poisson integrals,

2)

lim [ f(x=0)P,(r,@)d = £()
b) !
lim [ f(x -0, (t,@)dt = f(x)

Now, we give a theorem about the order of convergence of integral operators
family (5);

Theorem 2. Let S be real parameter, I K, (Itl )t =1 and
-

A4 B) = [ PPMPK (p)dp >0 (a—>0). Let
)

i) K,(p) be a decreasing function
iiy For V8 >0 K, (d)=0(A,(4,5)) (a—>0)

i) | K,(,)dt =0(8,(4,B) (@—0)

RREY
If the function f e L,(R") satisfies the condition
) t
lim—mgr | V=0 flpde=0 (13)
(R
at the point x then

(L1 )0 - 10| =0, (2. B) (@ —0).

Proof: Since the point x satisfies the condition (13), we have

limﬁj {S,:l_., lf(x - (Hp)lel) - f()c)lQl1 (B)de}pzhl-ldp =0.

h->0 h
If we denote

Fi(p)y= [ |f(x=@)")-f(»)

Sn—l

Q,(0)do (14)

then we have
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N S ¥
llmﬁl_’_;-.l. Fl(p)pziil ]dpz()
0

w0 p2l2

For simplicity let us write
P
4(p) = [ Fu&)eae.
0
Then, Ve >0 thereisa & >0 such that for p < §,

A, (p) < sp?P (15)
Obviously, for § >0 we have

() -1 = =0 sk, @,

< [ fa-0- sk,

s (16)
+ J rG-0- relk. 0,
5
=1 +1,.
Let us consider 7, . Passing to generalized spherical coordinates and using (14) and
(15), we have

L=l {If(x—wp)z‘") —f(x)IQA(e)de}Ka ()™ dp

F(p)K, (p)p™dp

il

Il

O ey ¥ O e

K (p)d(A,(p)
s &
=K. (P4 (p) | + [ 4,(p)d[-K . (p)]
<5k, (5)+e{—p2'*'“’1<u @]+l ] K, (p)pz"'*”“dp}

)
=@+ B) [ K. (p)p™ " dp.
0
Therefore, we have

L < Q]+ B, (4, )

< CeA (4, ). ()
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Now let us consider 7,.

L [ |fG-oK Q)+ [ K.,

> 2>5

W@+ | Kalblar
TREEY
and by hypothesis i) and ii)
I, =0(A,(4,5)) (a—0). (18)
Hence, from (17) and (18) we have
(L1 k) - £ 5 28,2 ) +0(8, (2. )

=0(A,(4, ) (@—0).
Corollary 2. Let a function f satisfies, at fixed point x, the condition (13). Then at
this point x for order of convergence of non-isotropic Gauss-Weierstrass and Abel-
Poisson integrals the following statements hold:

a)

J' fx=-0)P,(t,a)dt = f(x) = o(@?) (a—>0)and (B >0).
b

[ f-0W,(t,a)di = f(x)=0(@ ) (a— 0)and (B>0).

Proof. Since non-isotropic Gauss-Weierstrass and Abel-Poisson integrals satisfy the
condition of Theorem 2, we must calculate A, (4, 5).

First, we calculate for Gauss-Weierstrass kernel;
8,0 ) =i [ P e dp
0

B

- c"a2 i Fq/1|+§)

For Poisson kernel; by a change of variables with p = a tan(u), we have

® p2|i.|+ﬂ—l
A4 B)=c,a | —F——rdp

D @p) ?

b
=c,a’ '[ (sinu)***7 (cosu)? du.
0
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